51
|
Gajendran N. The root cause of Duchenne muscular dystrophy is the lack of dystrophin in smooth muscle of blood vessels rather than in skeletal muscle per se. F1000Res 2018. [DOI: 10.12688/f1000research.15889.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background:The dystrophin protein is part of the dystrophin associated protein complex (DAPC) linking the intracellular actin cytoskeleton to the extracellular matrix. Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy (D/BMD). Neuronal nitric oxide synthase associates with dystrophin in the DAPC to generate the vasodilator nitric oxide (NO). Systemic dystrophin deficiency, such as in D/BMD, results in muscle ischemia, injury and fatigue during exercise as dystrophin is lacking, affecting NO production and hence vasodilation. The role of neuregulin 1 (NRG) signaling through the epidermal growth factor family of receptors ERBB2 and ERBB4 in skeletal muscle has been controversial, but it was shown to phosphorylate α-dystrobrevin 1 (α-DB1), a component of the DAPC. The aim of this investigation was to determine whether NRG signaling had a functional role in muscular dystrophy.Methods:Primary myoblasts (muscle cells) were isolated from conditional knock-out mice containing lox P flanked ERBB2 and ERBB4 receptors, immortalized and exposed to Cre recombinase to obtainErbb2/4double knock-out (dKO) myoblasts where NRG signaling would be eliminated. Myotubes, thein vitroequivalent of muscle fibers, formed by fusion of the lox P flankedErbb2/4myoblasts as well as theErbb2/4dKO myoblasts were then used to identify changes in dystrophin expression.Results:Elimination of NRG signaling resulted in the absence of dystrophin demonstrating that it is essential for dystrophin expression. However, unlike the DMD mouse model mdx, with systemic dystrophin deficiency, lack of dystrophin in skeletal muscles ofErbb2/4dKO mice did not result in muscular dystrophy. In these mice, ERBB2/4, and thus dystrophin, is still expressed in the smooth muscle of blood vessels allowing normal blood flow through vasodilation during exercise.Conclusions:Dystrophin deficiency in smooth muscle of blood vessels, rather than in skeletal muscle, is the main cause of disease progression in DMD.
Collapse
|
52
|
Leigh F, Ferlini A, Biggar D, Bushby K, Finkel R, Morgenroth LP, Wagner KR. Neurology Care, Diagnostics, and Emerging Therapies of the Patient With Duchenne Muscular Dystrophy. Pediatrics 2018; 142:S5-S16. [PMID: 30275245 DOI: 10.1542/peds.2018-0333c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy is the most common form of childhood muscular dystrophy. A mutation in the DMD gene disrupts dystrophin (protein) production, causing damage to muscle integrity, weakness, loss of ambulation, and cardiopulmonary compromise by the second decade of life. Life expectancy has improved from mid-teenage years to mid-20s with the use of glucocorticoids and beyond the third decade with ventilator support and multidisciplinary care. However, Duchenne muscular dystrophy is associated with comorbidities and is a fatal disease. Glucocorticoids prolong ambulation, but their side effects are significant. Emerging investigational therapies have surfaced over the past decade and have rapidly been tested in clinical trials. Gene-specific strategies include nonsense readthrough, exon skipping, gene editing, utrophin modulation, and gene replacement. Other mechanisms include muscle regeneration, antioxidants, and antifibrosis and anti-inflammatory pathways. With potential therapies emerging, early diagnosis is needed to initiate treatment early enough to minimize morbidity and mortality. Newborn screening can be used to significantly improve early diagnosis, especially for gene-specific therapeutics.
Collapse
Affiliation(s)
- Fawn Leigh
- Massachusetts General Hospital and Harvard Medical School, Harvard University, Cambridge, Massachusetts; .,Seattle Children's Hospital, University of Washington, Seattle, Washington
| | | | - Doug Biggar
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Katharine Bushby
- John Walton Centre for Muscular Dystrophy Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | - Kathryn R Wagner
- Kennedy Krieger Institute, Baltimore, Maryland; and.,School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
53
|
Boulanger Piette A, Hamoudi D, Marcadet L, Morin F, Argaw A, Ward L, Frenette J. Targeting the Muscle-Bone Unit: Filling Two Needs with One Deed in the Treatment of Duchenne Muscular Dystrophy. Curr Osteoporos Rep 2018; 16:541-553. [PMID: 30225627 DOI: 10.1007/s11914-018-0468-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW In Duchenne muscular dystrophy (DMD), the progressive skeletal and cardiac muscle dysfunction and degeneration is accompanied by low bone mineral density and bone fragility. Glucocorticoids, which remain the standard of care for patients with DMD, increase the risk of developing osteoporosis. The scope of this review emphasizes the mutual cohesion and common signaling pathways between bone and skeletal muscle in DMD. RECENT FINDINGS The muscle-bone interactions involve bone-derived osteokines, muscle-derived myokines, and dual-origin cytokines that trigger common signaling pathways leading to fibrosis, inflammation, or protein synthesis/degradation. In particular, the triad RANK/RANKL/OPG including receptor activator of NF-kB (RANK), its ligand (RANKL), along with osteoprotegerin (OPG), regulates bone matrix modeling and remodeling pathways and contributes to muscle pathophysiology in DMD. This review discusses the importance of the muscle-bone unit in DMD and covers recent research aimed at determining the muscle-bone interactions that may eventually lead to the development of multifunctional and effective drugs for treating muscle and bone disorders regardless of the underlying genetic mutations in DMD.
Collapse
Affiliation(s)
- Antoine Boulanger Piette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Dounia Hamoudi
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Laetitia Marcadet
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Françoise Morin
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Anteneh Argaw
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Leanne Ward
- Division of Endocrinology and Metabolism, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada.
- Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
54
|
Weng WC, Chen JC, Lee CY, Lin CW, Lee WT, Shieh JY, Wang CC, Chuang CC. Cross-section and feasibility study on the non-invasive evaluation of muscle hemodynamic responses in Duchenne muscular dystrophy by using a near-infrared diffuse optical technique. BIOMEDICAL OPTICS EXPRESS 2018; 9:4767-4780. [PMID: 30319901 PMCID: PMC6179388 DOI: 10.1364/boe.9.004767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked debilitating muscular disease that may decrease nitric oxide (NO) production and lead to functional muscular ischemia. Currently, the 6-minute walk test (6-MWT) and the North Star Ambulatory Assessment (NSAA) are the primary outcome measures in clinical trials, but they are severely limited by the subjective consciousness and mood of patients, and can only be used in older and ambulatory boys. This study proposed using functional near-infrared spectroscopy (fNIRS) to evaluate the dynamic changes in muscle hemodynamic responses (gastrocnemius and forearm muscle) during a 6-MWT and a venous occlusion test (VOT), respectively. Muscle oxygenation of the forearm was evaluated non-invasively before, during and after VOT in all participants (included 30 DMD patients and 30 age-matched healthy controls), while dynamic muscle oxygenation of gastrocnemius muscle during 6-MWT was determined in ambulatory participants (n = 18) and healthy controls (n = 30). The results reveal that impaired muscle oxygenation was observed during 6-MWT in DMD patients that may explain why the DMD patients walked shorter distances than healthy controls. Moreover, the results of VOT implied that worsening muscle function was associated with a lower supply of muscle oxygenation and may provide useful information on the relationship between muscular oxygen consumption and supply for the clinical diagnosis of DMD. Therefore, the method of fNIRS with VOT possesses great potential in future evaluations of DMD patients that implies a good feasibility for clinical application such as for monitoring disease severity of DMD.
Collapse
Affiliation(s)
- Wen-Chin Weng
- Department of Pediatrics, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei 10041, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Pediatric Neurology, National Taiwan University Children’s Hospital, Taipei 10041, Taiwan
| | - Jung-Chih Chen
- Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chia-Yen Lee
- Department of Electrical Engineering, National United University, Miaoli 36063, Taiwan
| | - Chia-Wei Lin
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 30059, Taiwan
| | - Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei 10041, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Pediatric Neurology, National Taiwan University Children’s Hospital, Taipei 10041, Taiwan
| | - Jeng-Yi Shieh
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Chia-Chen Wang
- Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ching-Cheng Chuang
- Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
55
|
Dombernowsky NW, Ölmestig JNE, Witting N, Kruuse C. Role of neuronal nitric oxide synthase (nNOS) in Duchenne and Becker muscular dystrophies - Still a possible treatment modality? Neuromuscul Disord 2018; 28:914-926. [PMID: 30352768 DOI: 10.1016/j.nmd.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/07/2018] [Accepted: 09/05/2018] [Indexed: 02/08/2023]
Abstract
Neuronal nitric oxide synthase (nNOS) is involved in nitric oxide (NO) production and suggested to play a crucial role in blood flow regulation of skeletal muscle. During activation of the muscle, NO helps attenuate the sympathetic vasoconstriction to accommodate increased metabolic demands, a phenomenon known as functional sympatholysis. In inherited myopathies such as the dystrophinopathies Duchenne and Becker muscle dystrophies (DMD and BMD), nNOS is lost from the sarcolemma. The loss of nNOS may cause functional ischemia contributing to skeletal and cardiac muscle cell injury. Effects of NO is augmented by inhibiting degradation of the second messenger cyclic guanosine monophosphate (cGMP) using sildenafil and tadalafil, both of which inhibit the enzyme phosphodiesterase 5 (PDE5). In animal models of DMD, PDE5-inhibitors prevent functional ischemia, reduce post-exercise skeletal muscle pathology and fatigue, show amelioration of cardiac muscle cell damage and increase cardiac performance. However, effect on clinical outcomes in DMD and BMD patients have been disappointing with minor effects on upper limb performance and none on ambulation. This review aims to summarize the current knowledge of nNOS function related to functional sympatholysis in skeletal muscle and studies on PDE5-inhibitor treatment in nNOS-deficient animal models and patients.
Collapse
Affiliation(s)
- Nanna W Dombernowsky
- Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Denmark
| | - Joakim N E Ölmestig
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Denmark
| | - Nanna Witting
- Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Denmark
| | - Christina Kruuse
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Denmark; PDE Research Group, Lundbeck Foundation Center for Neurovascular Research (LUCENS), Denmark.
| |
Collapse
|
56
|
McDonald CM. Timed function tests have withstood the test of time as clinically meaningful and responsive endpoints in duchenne muscular dystrophy. Muscle Nerve 2018; 58:614-617. [PMID: 30192014 DOI: 10.1002/mus.26334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Craig M McDonald
- Department of Physical Medicine & Rehabilitation, University of California, Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
57
|
Nutrition in Duchenne muscular dystrophy 16–18 March 2018, Zaandam, the Netherlands. Neuromuscul Disord 2018; 28:680-689. [DOI: 10.1016/j.nmd.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/09/2018] [Indexed: 11/17/2022]
|
58
|
Crispi V, Matsakas A. Duchenne muscular dystrophy: genome editing gives new hope for treatment. Postgrad Med J 2018; 94:296-304. [DOI: 10.1136/postgradmedj-2017-135377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/03/2018] [Accepted: 01/13/2018] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive wasting disease of skeletal and cardiac muscles, representing one of the most common recessive fatal inherited genetic diseases with 1:3500–1:5000 in yearly incidence. It is caused by mutations in the DMD gene that encodes the membrane-associated dystrophin protein. Over the years, many have been the approaches to management of DMD, but despite all efforts, no effective treatment has yet been discovered. Hope for the development of potential therapeutics has followed the recent advances in genome editing and gene therapy. This review gives an overview to DMD and summarises current lines of evidence with regard to treatment and disease management alongside the appropriate considerations.
Collapse
|
59
|
Employment of Microencapsulated Sertoli Cells as a New Tool to Treat Duchenne Muscular Dystrophy. J Funct Morphol Kinesiol 2017. [DOI: 10.3390/jfmk2040047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
60
|
Neuromuscular disease: Tadalafil fails to halt the progression of Duchenne muscular dystrophy. Nat Rev Neurol 2017; 13:707. [PMID: 29064468 DOI: 10.1038/nrneurol.2017.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|