51
|
Young MJ, Caplan RA, Connolly I, Matiello M, Mateen FJ. Closed-Eye Visual Hallucinations Associated With Clarithromycin. J Neuropsychiatry Clin Neurosci 2021; 33:230-232. [PMID: 33706534 PMCID: PMC9164280 DOI: 10.1176/appi.neuropsych.20100253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael J. Young
- Departments of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Rachel A. Caplan
- Departments of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Ian Connolly
- Departments of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Marcelo Matiello
- Departments of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Farrah J. Mateen
- Departments of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
52
|
Yuki N, Yoshioka A, Mizuhara R, Kimura T. Visual hallucinations and inferior longitudinal fasciculus in Parkinson's disease. Brain Behav 2020; 10:e01883. [PMID: 33078912 PMCID: PMC7749587 DOI: 10.1002/brb3.1883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION We investigated whether disruption of the inferior longitudinal fasciculus and inferior fronto-occipital fasciculus are associated with visual hallucinations in Parkinson's disease (PD). METHODS Sixty consecutive right-handed patients with PD with and without visual hallucinations were enrolled in this cross-sectional study. Diffusion tensor imaging was acquired by 3.0 T magnetic resonance imaging. We measured fractional anisotropy and mean diffusivity of the bilateral inferior longitudinal fasciculus and inferior fronto-occipital fasciculus using diffusion tensor tractography analysis software. RESULTS Seventeen patients with PD had visual hallucinations; these patients tended to have lower fractional anisotropy and higher mean diffusivity values in all fasciculi than did patients without visual hallucinations. A univariate logistic analysis showed that the presence of visual hallucinations was significantly associated with lower fractional anisotropy and higher mean diffusivity of the left inferior longitudinal fasciculus, and lower Mini-Mental State Examination (MMSE) scores. A multivariable logistic analysis adjusted by MMSE scores and disease duration showed a significant association between the presence of visual hallucinations and fractional anisotropy and mean diffusivity values of the left inferior longitudinal fasciculus. CONCLUSIONS Our results suggest that disruption of left inferior longitudinal fasciculus integrity is associated with visual hallucinations in patients with PD, independent of cognitive impairment and disease duration.
Collapse
Affiliation(s)
- Natsuko Yuki
- Department of Neurology, National Hospital Organization Maizuru Medical Center, Maizuru, Japan.,Department of Neurology, Kyoto Kizugawa Hospital, Joyo, Japan
| | - Akira Yoshioka
- Department of Neurology, Kyoto Kizugawa Hospital, Joyo, Japan.,Department of Clinical Research, National Hospital Organization Maizuru Medical Center, Maizuru, Japan
| | - Ryo Mizuhara
- Department of Neurology, National Hospital Organization Maizuru Medical Center, Maizuru, Japan
| | - Tadashi Kimura
- Department of Neurology, National Hospital Organization Maizuru Medical Center, Maizuru, Japan
| |
Collapse
|
53
|
Synthesis and biological evaluation of novel N-substituted nipecotic acid derivatives with tricyclic cage structures in the lipophilic domain as GABA uptake inhibitors. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02647-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractA new class of GABA reuptake inhibitors with sterically demanding, highly rigid tricyclic cage structures as the lipophilic domain was synthesized and investigated in regard to their biological activity at the murine GABA transporters (mGAT1–mGAT4). The construction of these compounds, consisting of nipecotic acid, a symmetric tricyclic amine, and a plain hydrocarbon linker connecting the two subunits via their amino nitrogens, was accomplished via reductive amination of a nipecotic acid derivative with an N-alkyl substituent displaying a terminal aldehyde function with tricyclic secondary amines. The target compounds varied with regard to spacer length, the bridge size of one of the bridges, and the substituents of the tricyclic skeleton to study the impact of these changes on their potency. Among the tested compounds nipecotic acid ethyl ester derivates with phenyl residues attached to the cage subunit showed reasonable inhibitory potency and subtype selectivity in favor of mGAT3 and mGAT4, respectively.
Collapse
|
54
|
Kurita A, Koshikawa H, Akiba T, Seki K, Ishikawa H, Suzuki M. Visual Hallucinations and Impaired Conscious Visual Perception in Parkinson Disease. J Geriatr Psychiatry Neurol 2020; 33:377-385. [PMID: 31808354 DOI: 10.1177/0891988719892318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Visual hallucinations (VHs) are common in patients with Parkinson disease (PD), especially those with dementia, whereas auditory hallucinations are quite rare. Recent studies have revealed the involvement of several regions along the visual information-processing system that contribute to the pathophysiological mechanism of VHs: the eyes and retina, retinofugal projection, lateral geniculate nucleus, striate cortex, ventral pathways in the temporal cortices, and frontal and parietal cortices. In addition, the concurrent involvement of other systems in the brainstem and basal forebrain further modify VHs in PD. In this review, we discuss the pathophysiological association between the regional involvement of these areas and VHs.
Collapse
Affiliation(s)
- Akira Kurita
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Hiroaki Koshikawa
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Takeshi Akiba
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Kanako Seki
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Hiroaki Ishikawa
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Megumi Suzuki
- Department of Neurology, 26403Teikyo University Chiba Medical Center, Ichihara, Japan
| |
Collapse
|
55
|
Abstract
Hallucinations are important diagnostic symptoms in schizophrenia, but also occur in other medical and neuropsychiatric conditions. Not all patients with hallucinations are psychotic. There has been a surge of interest in the topic of hallucinations, as new research data have begun to reveal their neurobiology. Hallucinogenic molecules may also serve as new scaffolds for the development of new psychotropic drugs. We searched and reviewed recent literature, focusing on the refinement of clinical management, which was inspired by new data regarding the neurobiology of hallucination subtypes. We concluded that the successful management of hallucinations depends on accurate differential diagnosis to identify subtypes, which would then determine the most appropriate treatment.
Collapse
|
56
|
Visuo-Perceptual and Decision-Making Contributions to Visual Hallucinations in Mild Cognitive Impairment in Lewy Body Disease: Insights from a Drift Diffusion Analysis. Brain Sci 2020; 10:brainsci10080540. [PMID: 32796525 PMCID: PMC7464681 DOI: 10.3390/brainsci10080540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Visual hallucinations (VH) are a common symptom in dementia with Lewy bodies (DLB); however, their cognitive underpinnings remain unclear. Hallucinations have been related to cognitive slowing in DLB and may arise due to impaired sensory input, dysregulation in top-down influences over perception, or an imbalance between the two, resulting in false visual inferences. Methods: Here we employed a drift diffusion model yielding estimates of perceptual encoding time, decision threshold, and drift rate of evidence accumulation to (i) investigate the nature of DLB-related slowing of responses and (ii) their relationship to visuospatial performance and visual hallucinations. The EZ drift diffusion model was fitted to mean reaction time (RT), accuracy and RT variance from two-choice reaction time (CRT) tasks and data were compared between groups of mild cognitive impairment (MCI-LB) LB patients (n = 49) and healthy older adults (n = 25). Results: No difference was detected in drift rate between patients and controls, but MCI-LB patients showed slower non-decision times and boundary separation values than control participants. Furthermore, non-decision time was negatively correlated with visuospatial performance in MCI-LB, and score on visual hallucinations inventory. However, only boundary separation was related to clinical incidence of visual hallucinations. Conclusions: These results suggest that a primary impairment in perceptual encoding may contribute to the visuospatial performance, however a more cautious response strategy may be related to visual hallucinations in Lewy body disease. Interestingly, MCI-LB patients showed no impairment in information processing ability, suggesting that, when perceptual encoding was successful, patients were able to normally process information, potentially explaining the variability of hallucination incidence.
Collapse
|
57
|
Zarkali A, McColgan P, Leyland LA, Lees AJ, Rees G, Weil RS. Fiber-specific white matter reductions in Parkinson hallucinations and visual dysfunction. Neurology 2020; 94:e1525-e1538. [PMID: 32094242 PMCID: PMC7251523 DOI: 10.1212/wnl.0000000000009014] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate the microstructural and macrostructural white matter changes that accompany visual hallucinations and low visual performance in Parkinson disease, a risk factor for Parkinson dementia. METHODS We performed fixel-based analysis, a novel technique that provides metrics of specific fiber-bundle populations within a voxel (or fixel). Diffusion MRI data were acquired from patients with Parkinson disease (n = 105, of whom 34 were low visual performers and 19 were hallucinators) and age-matched controls (n = 35). We used whole-brain fixel-based analysis to compare microstructural differences in fiber density (FD), macrostructural differences in fiber bundle cross section (FC), and the combined FD and FC (FDC) metric across all white matter fixels. We then performed a tract-of-interest analysis comparing the most sensitive FDC metric across 11 tracts within the visual system. RESULTS Patients with Parkinson disease hallucinations exhibited macrostructural changes (reduced FC) within the splenium of the corpus callosum and the left posterior thalamic radiation compared to patients without hallucinations. While there were no significant changes in FD, we found large reductions in the combined FDC metric in Parkinson hallucinators within the splenium (>50% reduction compared to nonhallucinators). Patients with Parkinson disease and low visual performance showed widespread microstructural and macrostructural changes within the genu and splenium of the corpus callosum, bilateral posterior thalamic radiations, and left inferior fronto-occipital fasciculus. CONCLUSIONS We demonstrate specific white matter tract degeneration affecting posterior thalamic tracts in patients with Parkinson disease with hallucinations and low visual performance, providing direct mechanistic support for attentional models of visual hallucinations.
Collapse
Affiliation(s)
- Angeliki Zarkali
- From the Dementia Research Centre (A.Z., L.-A.L., R.S.W.), Huntington's Disease Centre (P.M.), Institute of Cognitive Neuroscience (G.R.), and Wellcome Centre for Human Neuroimaging (G.R., R.S.W.), University College London; and Reta Lila Weston Institute of Neurological Studies (A.J.L.), London, UK.
| | - Peter McColgan
- From the Dementia Research Centre (A.Z., L.-A.L., R.S.W.), Huntington's Disease Centre (P.M.), Institute of Cognitive Neuroscience (G.R.), and Wellcome Centre for Human Neuroimaging (G.R., R.S.W.), University College London; and Reta Lila Weston Institute of Neurological Studies (A.J.L.), London, UK
| | - Louise-Ann Leyland
- From the Dementia Research Centre (A.Z., L.-A.L., R.S.W.), Huntington's Disease Centre (P.M.), Institute of Cognitive Neuroscience (G.R.), and Wellcome Centre for Human Neuroimaging (G.R., R.S.W.), University College London; and Reta Lila Weston Institute of Neurological Studies (A.J.L.), London, UK
| | - Andrew J Lees
- From the Dementia Research Centre (A.Z., L.-A.L., R.S.W.), Huntington's Disease Centre (P.M.), Institute of Cognitive Neuroscience (G.R.), and Wellcome Centre for Human Neuroimaging (G.R., R.S.W.), University College London; and Reta Lila Weston Institute of Neurological Studies (A.J.L.), London, UK
| | - Geraint Rees
- From the Dementia Research Centre (A.Z., L.-A.L., R.S.W.), Huntington's Disease Centre (P.M.), Institute of Cognitive Neuroscience (G.R.), and Wellcome Centre for Human Neuroimaging (G.R., R.S.W.), University College London; and Reta Lila Weston Institute of Neurological Studies (A.J.L.), London, UK
| | - Rimona S Weil
- From the Dementia Research Centre (A.Z., L.-A.L., R.S.W.), Huntington's Disease Centre (P.M.), Institute of Cognitive Neuroscience (G.R.), and Wellcome Centre for Human Neuroimaging (G.R., R.S.W.), University College London; and Reta Lila Weston Institute of Neurological Studies (A.J.L.), London, UK
| |
Collapse
|
58
|
Caselli RJ, Langlais BT, Dueck AC, Chen Y, Su Y, Locke DE, Woodruff BK, Reiman EM. Neuropsychological decline up to 20 years before incident mild cognitive impairment. Alzheimers Dement 2020; 16:512-523. [PMID: 31787561 PMCID: PMC7067658 DOI: 10.1016/j.jalz.2019.09.085] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Some Alzheimer's disease biomarker studies found amyloid changes 20 years or more in advance of expected symptoms, while cognitive changes lagged for more than a decade, but this apparent lag might reflect the sensitivities of the biomarker and cognitive assays used. How far in advance of incident amnestic mild cognitive impairment (MCI) does cognition begin to decline? METHODS Longitudinal neuropsychological study of an apolipoprotein E e4 enriched cohort of cognitively normal individuals at entry. Linear mixed models for MCI converters (n = 65) and nonconverters (n = 719) fitted for each neuropsychological measure; annual changes compared between groups before and after linear model intersections (inflection points). RESULTS 34 of 35 cognitive measures and 9 of 18 behavioral measures declined faster post-inflection in the MCI converters; the earliest cognitive inflection point was nearly 20 years in advance of MCI diagnosis. DISCUSSION The preclinical duration of cognitive and behavioral changes approaches the earliest reported biomarker changes.
Collapse
Affiliation(s)
| | | | | | | | - Yi Su
- Banner Alzheimer Institute
| | | | | | | |
Collapse
|
59
|
Russo M, Carrarini C, Dono F, Rispoli MG, Di Pietro M, Di Stefano V, Ferri L, Bonanni L, Sensi SL, Onofrj M. The Pharmacology of Visual Hallucinations in Synucleinopathies. Front Pharmacol 2019; 10:1379. [PMID: 31920635 PMCID: PMC6913661 DOI: 10.3389/fphar.2019.01379] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Visual hallucinations (VH) are commonly found in the course of synucleinopathies like Parkinson's disease and dementia with Lewy bodies. The incidence of VH in these conditions is so high that the absence of VH in the course of the disease should raise questions about the diagnosis. VH may take the form of early and simple phenomena or appear with late and complex presentations that include hallucinatory production and delusions. VH are an unmet treatment need. The review analyzes the past and recent hypotheses that are related to the underlying mechanisms of VH and then discusses their pharmacological modulation. Recent models for VH have been centered on the role played by the decoupling of the default mode network (DMN) when is released from the control of the fronto-parietal and salience networks. According to the proposed model, the process results in the perception of priors that are stored in the unconscious memory and the uncontrolled emergence of intrinsic narrative produced by the DMN. This DMN activity is triggered by the altered functioning of the thalamus and involves the dysregulated activity of the brain neurotransmitters. Historically, dopamine has been indicated as a major driver for the production of VH in synucleinopathies. In that context, nigrostriatal dysfunctions have been associated with the VH onset. The efficacy of antipsychotic compounds in VH treatment has further supported the notion of major involvement of dopamine in the production of the hallucinatory phenomena. However, more recent studies and growing evidence are also pointing toward an important role played by serotonergic and cholinergic dysfunctions. In that respect, in vivo and post-mortem studies have now proved that serotonergic impairment is often an early event in synucleinopathies. The prominent cholinergic impairment in DLB is also well established. Finally, glutamatergic and gamma aminobutyric acid (GABA)ergic modulations and changes in the overall balance between excitatory and inhibitory signaling are also contributing factors. The review provides an extensive overview of the pharmacology of VH and offers an up to date analysis of treatment options.
Collapse
Affiliation(s)
- Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Claudia Carrarini
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marianna Gabriella Rispoli
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Martina Di Pietro
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Di Stefano
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Ferri
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Stefano Luca Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Behavioral Neurology and Molecular Neurology Units, Center of Excellence on Aging and Translational Medicine—CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders—iMIND, University of California, Irvine, Irvine, CA, United States
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
60
|
Ibrahim BA, Llano DA. Aging and Central Auditory Disinhibition: Is It a Reflection of Homeostatic Downregulation or Metabolic Vulnerability? Brain Sci 2019; 9:brainsci9120351. [PMID: 31805729 PMCID: PMC6955996 DOI: 10.3390/brainsci9120351] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 01/08/2023] Open
Abstract
Aging-related changes have been identified at virtually every level of the central auditory system. One of the most common findings across these nuclei is a loss of synaptic inhibition with aging, which has been proposed to be at the heart of several aging-related changes in auditory cognition, including diminished speech perception in complex environments and the presence of tinnitus. Some authors have speculated that downregulation of synaptic inhibition is a consequence of peripheral deafferentation and therefore is a homeostatic mechanism to restore excitatory/inhibitory balance. As such, disinhibition would represent a form of maladaptive plasticity. However, clinical data suggest that deafferentation-related disinhibition tends to occur primarily in the aged brain. Therefore, aging-related disinhibition may, in part, be related to the high metabolic demands of inhibitory neurons relative to their excitatory counterparts. These findings suggest that both deafferentation-related maladaptive plastic changes and aging-related metabolic factors combine to produce changes in central auditory function. Here, we explore the arguments that downregulation of inhibition may be due to homeostatic responses to diminished afferent input vs. metabolic vulnerability of inhibitory neurons in the aged brain. Understanding the relative importance of these mechanisms will be critical for the development of treatments for the underlying causes of aging-related central disinhibition.
Collapse
Affiliation(s)
- Baher A. Ibrahim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Daniel A. Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
61
|
van Nuland AJM, den Ouden HEM, Zach H, Dirkx MFM, van Asten JJA, Scheenen TWJ, Toni I, Cools R, Helmich RC. GABAergic changes in the thalamocortical circuit in Parkinson's disease. Hum Brain Mapp 2019; 41:1017-1029. [PMID: 31721369 PMCID: PMC7267977 DOI: 10.1002/hbm.24857] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/31/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease is characterized by bradykinesia, rigidity, and tremor. These symptoms have been related to an increased gamma‐aminobutyric acid (GABA)ergic inhibitory drive from globus pallidus onto the thalamus. However, in vivo empirical evidence for the role of GABA in Parkinson's disease is limited. Some discrepancies in the literature may be explained by the presence or absence of tremor. Specifically, recent functional magnetic resonance imaging (fMRI) findings suggest that Parkinson's tremor is associated with reduced, dopamine‐dependent thalamic inhibition. Here, we tested the hypothesis that GABA in the thalamocortical motor circuit is increased in Parkinson's disease, and we explored differences between clinical phenotypes. We included 60 Parkinson patients with dopamine‐resistant tremor (n = 17), dopamine‐responsive tremor (n = 23), or no tremor (n = 20), and healthy controls (n = 22). Using magnetic resonance spectroscopy, we measured GABA‐to‐total‐creatine ratio in motor cortex, thalamus, and a control region (visual cortex) on two separate days (ON and OFF dopaminergic medication). GABA levels were unaltered by Parkinson's disease, clinical phenotype, or medication. However, motor cortex GABA levels were inversely correlated with disease severity, particularly rigidity and tremor, both ON and OFF medication. We conclude that cortical GABA plays a beneficial rather than a detrimental role in Parkinson's disease, and that GABA depletion may contribute to increased motor symptom expression.
Collapse
Affiliation(s)
- Annelies J M van Nuland
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Hanneke E M den Ouden
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Heidemarie Zach
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands.,Medical University of Vienna, Department of Neurology, Vienna, Austria
| | - Michiel F M Dirkx
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| | - Jack J A van Asten
- Radboud University Medical Centre, Department of Radiology and Nuclear Medicine, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Radboud University Medical Centre, Department of Radiology and Nuclear Medicine, Nijmegen, The Netherlands
| | - Ivan Toni
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Roshan Cools
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Rick C Helmich
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands.,Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| |
Collapse
|
62
|
Murueta-Goyena A, Andikoetxea A, Gómez-Esteban JC, Gabilondo I. Contribution of the GABAergic System to Non-Motor Manifestations in Premotor and Early Stages of Parkinson's Disease. Front Pharmacol 2019; 10:1294. [PMID: 31736763 PMCID: PMC6831739 DOI: 10.3389/fphar.2019.01294] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Non-motor symptoms are common in Parkinson’s disease (PD) and they represent a major source of disease burden. Several non-motor manifestations, such as rapid eye movement sleep behavior disorder, olfactory loss, gastrointestinal abnormalities, visual alterations, cognitive and mood disorders, are known to precede the onset of motor signs. Nonetheless, the mechanisms mediating these alterations are poorly understood and probably involve several neurotransmitter systems. The dysregulation of GABAergic system has received little attention in PD, although the spectrum of non-motor symptoms might be linked to this pathway. This Mini Review aims to provide up-to-date information about the involvement of the GABAergic system for explaining non-motor manifestations in early stages of PD. Therefore, special attention is paid to the clinical data derived from patients with isolated REM sleep behavior disorder or drug-naïve patients with PD, as they represent prodromal and early stages of the disease, respectively. This, in combination with animal studies, might help us to understand how the disturbance of the GABAergic system is related to non-motor manifestations of PD.
Collapse
Affiliation(s)
- Ane Murueta-Goyena
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Andikoetxea
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Juan Carlos Gómez-Esteban
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iñigo Gabilondo
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
63
|
Lenka A, Pagonabarraga J, Pal PK, Bejr-Kasem H, Kulisevsky J. Minor hallucinations in Parkinson disease: A subtle symptom with major clinical implications. Neurology 2019; 93:259-266. [PMID: 31289146 PMCID: PMC6709995 DOI: 10.1212/wnl.0000000000007913] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Psychosis is one of the most debilitating complications of Parkinson disease (PD). Although research on PD psychosis has been focused on the study of well-structured visual hallucinations (VH), currently accepted National Institute of Neurological Disorders and Stroke-National Institute of Mental Health diagnostic criteria emphasize minor hallucinations (MH) as the most common psychotic phenomena in PD. The objective of this review is to comprehensively describe the clinical and research advances on the understanding of MH and to provide future directions for obtaining further insights into their potential major implications for PD management and prognosis. METHODS A PubMed search was done in November 2018 to identify articles on minor psychotic phenomena in PD. RESULTS MH often precede the onset of well-structured VH and are associated with other nonmotor symptoms such as REM sleep behavior disorder and depression. The pattern of functional brain connectivity changes associated with MH involve visual-processing areas and attention control networks, which overlap with abnormalities described in patients with well-structured VH. The dysfunction of cortical networks in patients with MH may be an early indicator of a more widespread form of the disease. CONCLUSION Although called "minor," MH may have major clinical and prognostic implications. Further research is needed to establish whether MH are associated with a higher risk of disabling psychotic complications, cognitive deterioration, or a more accelerated disease progression. Understanding the early neurobiological underpinnings of MH may provide the background for future studies to identify the progressive dysfunction of neural circuits leading to more severe forms of psychosis in PD.
Collapse
Affiliation(s)
- Abhishek Lenka
- From the Department of Neurology (A.L.), Medstar Georgetown University Hospital, Washington, DC; Movement Disorders Unit, Neurology Department (J.P., H.B.-K., J.K.), Hospital de la Santa Creu i Sant Pau; Biomedical Research Institute (IIB-Sant Pau) (J.P., H.B.-K., J.K.), Sant Antoni Maria Claret; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED) (J.P., J.K.), Barcelona, Spain; and Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS) (P.K.P.), Bangalore, India
| | - Javier Pagonabarraga
- From the Department of Neurology (A.L.), Medstar Georgetown University Hospital, Washington, DC; Movement Disorders Unit, Neurology Department (J.P., H.B.-K., J.K.), Hospital de la Santa Creu i Sant Pau; Biomedical Research Institute (IIB-Sant Pau) (J.P., H.B.-K., J.K.), Sant Antoni Maria Claret; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED) (J.P., J.K.), Barcelona, Spain; and Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS) (P.K.P.), Bangalore, India.
| | - Pramod Kumar Pal
- From the Department of Neurology (A.L.), Medstar Georgetown University Hospital, Washington, DC; Movement Disorders Unit, Neurology Department (J.P., H.B.-K., J.K.), Hospital de la Santa Creu i Sant Pau; Biomedical Research Institute (IIB-Sant Pau) (J.P., H.B.-K., J.K.), Sant Antoni Maria Claret; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED) (J.P., J.K.), Barcelona, Spain; and Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS) (P.K.P.), Bangalore, India
| | - Helena Bejr-Kasem
- From the Department of Neurology (A.L.), Medstar Georgetown University Hospital, Washington, DC; Movement Disorders Unit, Neurology Department (J.P., H.B.-K., J.K.), Hospital de la Santa Creu i Sant Pau; Biomedical Research Institute (IIB-Sant Pau) (J.P., H.B.-K., J.K.), Sant Antoni Maria Claret; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED) (J.P., J.K.), Barcelona, Spain; and Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS) (P.K.P.), Bangalore, India
| | - Jaime Kulisevsky
- From the Department of Neurology (A.L.), Medstar Georgetown University Hospital, Washington, DC; Movement Disorders Unit, Neurology Department (J.P., H.B.-K., J.K.), Hospital de la Santa Creu i Sant Pau; Biomedical Research Institute (IIB-Sant Pau) (J.P., H.B.-K., J.K.), Sant Antoni Maria Claret; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED) (J.P., J.K.), Barcelona, Spain; and Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS) (P.K.P.), Bangalore, India
| |
Collapse
|
64
|
Onofrj M, Espay AJ, Bonanni L, Delli Pizzi S, Sensi SL. Hallucinations, somatic-functional disorders of PD-DLB as expressions of thalamic dysfunction. Mov Disord 2019; 34:1100-1111. [PMID: 31307115 DOI: 10.1002/mds.27781] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/30/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Hallucinations, delusions, and functional neurological manifestations (conversion and somatic symptom disorders) of Parkinson's disease (PD) and dementia with Lewy bodies increase in frequency with disease progression, predict the onset of cognitive decline, and eventually blend with and are concealed by dementia. These symptoms share the absence of reality constraints and can be considered comparable elements of the PD-dementia with Lewy bodies psychosis. We propose that PD-dementia with Lewy bodies psychotic disorders depend on thalamic dysfunction promoting a theta burst mode and subsequent thalamocortical dysrhythmia with focal cortical coherence to theta electroencephalogram rhythms. This theta electroencephalogram activity, also called fast-theta or pre-alpha, has been shown to predict cognitive decline and fluctuations in Parkinson's disease with dementia and dementia with Lewy bodies. These electroencephalogram alterations are now considered a predictive marker for progression to dementia. The resulting thalamocortical dysrhythmia inhibits the frontal attentional network and favors the decoupling of the default mode network. As the default mode network is involved in integration of self-referential information into conscious perception, unconstrained default mode network activity, as revealed by recent imaging studies, leads to random formation of connections that link strong autobiographical correlates to trivial stimuli, thereby producing hallucinations, delusions, and functional neurological disorders. The thalamocortical dysrhythmia default mode network decoupling hypothesis provides the rationale for the design and testing of novel therapeutic pharmacological and nonpharmacological interventions in the context of PD, PD with dementia, and dementia with Lewy bodies. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Alberto J Espay
- Department of Neurology, James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, Ohio, USA
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Stefano Delli Pizzi
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy.,Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders, University of California - Irvine, Irvine, California, USA
| |
Collapse
|
65
|
Elder GJ, Colloby SJ, Firbank MJ, McKeith IG, Taylor JP. Consecutive sessions of transcranial direct current stimulation do not remediate visual hallucinations in Lewy body dementia: a randomised controlled trial. Alzheimers Res Ther 2019; 11:9. [PMID: 30658705 PMCID: PMC6339360 DOI: 10.1186/s13195-018-0465-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Complex visual hallucinations are common in Lewy body dementia (LBD) and can cause significant patient and caregiver distress. Current treatments are primarily pharmacological in nature and have limited efficacy and associated side effects. The objective of this study was to assess the effects of consecutive sessions of transcranial direct current stimulation (tDCS) on visual hallucination frequency and severity in LBD, at short-term and long-term follow-up stages. METHODS The study was a randomised, double-blind, placebo-controlled trial involving 40 participants with LBD (Mage = 75.52 years, SDage = 8.69 years) which was conducted at a single site between November 2013 and December 2017. Participants received two consecutive 20-min sessions of active (0.048 mA/cm2) or placebo tDCS, separated by a 30-min break, over 5 consecutive days. The anodal electrode was applied to the right parietal cortex (P4) and the cathodal electrode was applied to the occipital cortex (Oz). The primary outcome measure was the Neuropsychiatric Inventory (NPI) hallucinations subscale, as completed by a caregiver/informant at baseline and day 5 (short-term) follow-up, and month 1 and month 3 (long-term) follow-up. Secondary outcome measures included visual cortical excitability, as measured using transcranial magnetic stimulation, computerised attentional and visuoperceptual tasks, and measures of global cognition and cognitive fluctuations. RESULTS Complete study data were obtained from 36 participants. There was an overall improvement in visual hallucinations (NPI) for both groups at day 5 relative to baseline, with a medium-to-large effect size; however, compared to placebo, active tDCS did not result in any improvements in visual hallucinations (NPI) at day 5 relative to baseline, or at month 1 or month 3 follow-up time points. Additionally, comparisons of secondary outcome measures showed that active tDCS did not result in any improvements on any measure (visual cortical excitability, attentional and visuoperceptual tasks or cognitive measures) at any time point. CONCLUSIONS Repeated consecutive sessions of parietal anodal tDCS, and occipital cathodal tDCS, do not improve visual hallucinations or visuoperceptual function, or alter visual cortical excitability in LBD. TRIAL REGISTRATION ISRCTN, ISRCTN40214749 . Registered on 25 October 2013.
Collapse
Affiliation(s)
- Greg J. Elder
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL UK
- Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST UK
| | - Sean J. Colloby
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL UK
| | - Michael J. Firbank
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL UK
| | - Ian G. McKeith
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL UK
| | - John-Paul Taylor
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL UK
| |
Collapse
|
66
|
Interaction Between Neuropsychiatric Symptoms and Cognitive Performance in Parkinson's Disease: What Do Clinical and Neuroimaging Studies Tell Us? Curr Neurol Neurosci Rep 2018; 18:91. [PMID: 30324260 DOI: 10.1007/s11910-018-0907-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW Parkinson's disease was studied for a long time from the prism of a motor impairment. Recent advances have outlined the importance of cognitive and neuropsychiatric symptoms (NPS) in the PD equation. This review concentrates on the present possibilities of using neuroimaging techniques in order to quantify the cognitive performance and NPS in PD patients. RECENT FINDINGS Mild cognitive impairment as well as many NPS have been acknowledged as important criteria for assessing the quality of life in patients with Parkinson's disease and have been shown as potential factors in predicting further evolution of PD from a clinical perspective. Some NPS strongly influence cognition (depression, REM sleep behavior disorder), while others are less specifically associated with it (impulse control disorders). Neuroimaging techniques reported specific structural, functional, and metabolic brain changes that might be specific for each NPS type. Recent neuroimaging advances report a strong interrelation between NPS and cognitive performance in PD. A special place for consideration is given to REM sleep behavior disorder, depression, and hallucinations. Nevertheless, some studies report distinct results, outlining that the neuroimaging acquisition and analysis techniques still have limitations and also likely represent the complexity of the manifestation of NPS in PD.
Collapse
|
67
|
Blamire AM. MR approaches in neurodegenerative disorders. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 108:1-16. [PMID: 30538047 DOI: 10.1016/j.pnmrs.2018.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/22/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Neurodegenerative disease is the umbrella term which refers to a range of clinical conditions causing degeneration of neurons within the central nervous system leading to loss of brain function and eventual death. The most prevalent of these is Alzheimer's disease (AD), which affects approximately 50 million people worldwide and is predicted to reach 75 million by 2030. Neurodegenerative diseases can only be fully diagnosed at post mortem by neuropathological assessment of the type and distribution of protein deposits which characterise each different condition, but there is a clear role for imaging technologies in aiding patient diagnoses in life. Magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques have been applied to study these conditions for many years. In this review, we consider the range of MR-based measurements and describe the findings in AD, but also contrast these with the second most common dementia, dementia with Lewy bodies (DLB). The most definitive observation is the major structural brain changes seen in AD using conventional T1-weighted (T1w) MRI, where medial temporal lobe structures are notably atrophied in most symptomatic patients with AD, but often preserved in DLB. Indeed these findings are sufficiently robust to have been incorporated into clinical diagnostic criteria. Diffusion tensor imaging (DTI) reveals widespread changes in tissue microstructure, with increased mean diffusivity and decreased fractional anisotropy reflecting the degeneration of the white matter structures. There are suggestions that there are subtle differences between AD and DLB populations. At the metabolic level, atrophy-corrected MRS demonstrates reduced density of healthy neurons in brain areas with altered perfusion and in regions known to show higher deposits of pathogenic proteins. As studies have moved from patients with advanced disease and clear dysfunction to patients with earlier presentation such as with mild cognitive impairment (MCI), which in some represents the first signs of their ensuing dementia, the ability of MRI to detect differences has been weaker and further work is still required, ideally in much larger cohorts than previously studied. The vast majority of imaging research in dementia populations has been univariate with respect to the MR-derived parameters considered. To date, none of these measurements has uniquely replicated the patterns of tissue involvement seen by neuropathology, and the ability of MR techniques to deliver a non-invasive diagnosis eludes us. Future opportunities may lie in combining MR and nuclear medicine approaches (position emission tomography, PET) to provide a more complete view of structural and metabolic changes. Such developments will require multi-variate analyses, possibly combined with artificial intelligence or deep learning algorithms, to enhance our ability to combine the array of image-derived information, genetic, gender and lifestyle factors.
Collapse
Affiliation(s)
- Andrew M Blamire
- Institute of Cellular Medicine and Centre for In Vivo Imaging, Newcastle University, UK.
| |
Collapse
|
68
|
Onofrj M, Gilbert GJ. GABA and hallucinations in Parkinson disease: Who is that sitting on my chair? Neurology 2018; 91:293-294. [PMID: 30021918 DOI: 10.1212/wnl.0000000000005985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Marco Onofrj
- From Clinica Neurologica (M.O.), Department of Neurosciences, Imaging and Clinical Sciences, Università Chieti-Pescara, Chieti, Italy; and Department of Physiology and Biophysics (G.J.G.), University of South Florida, Tampa.
| | - Gordon J Gilbert
- From Clinica Neurologica (M.O.), Department of Neurosciences, Imaging and Clinical Sciences, Università Chieti-Pescara, Chieti, Italy; and Department of Physiology and Biophysics (G.J.G.), University of South Florida, Tampa
| |
Collapse
|