51
|
Mantel T, Dresel C, Welte M, Meindl T, Jochim A, Zimmer C, Haslinger B. Altered sensory system activity and connectivity patterns in adductor spasmodic dysphonia. Sci Rep 2020; 10:10179. [PMID: 32576918 PMCID: PMC7311401 DOI: 10.1038/s41598-020-67295-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Adductor-type spasmodic dysphonia (ADSD) manifests in effortful speech temporarily relievable by botulinum neurotoxin type A (BoNT-A). Previously, abnormal structure, phonation-related and resting-state sensorimotor abnormalities as well as peripheral tactile thresholds in ADSD were described. This study aimed at assessing abnormal central tactile processing patterns, their spatial relation with dysfunctional resting-state connectivity, and their BoNT-A responsiveness. Functional MRI in 14/12 ADSD patients before/under BoNT-A effect and 15 controls was performed (i) during automatized tactile stimulus application to face/hand, and (ii) at rest. Between-group differential stimulation-induced activation and resting-state connectivity (regional homogeneity, connectivity strength within selected sensory(motor) networks), as well as within-patient BoNT-A effects on these differences were investigated. Contralateral-to-stimulation overactivity in ADSD before BoNT-A involved primary and secondary somatosensory representations, along with abnormalities in higher-order parietal, insular, temporal or premotor cortices. Dysphonic impairment in ADSD positively associated with left-hemispheric temporal activity. Connectivity was increased within right premotor (sensorimotor network), left primary auditory cortex (auditory network), and regionally reduced at the temporoparietal junction. Activation/connectivity before/after BoNT-A within-patients did not significantly differ. Abnormal ADSD central somatosensory processing supports its significance as common pathophysiologic focal dystonia trait. Abnormal temporal cortex tactile processing and resting-state connectivity might hint at abnormal cross-modal sensory interactions.
Collapse
Affiliation(s)
- Tobias Mantel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Christian Dresel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany.,Department of Neurology, Johannes Gutenberg University, Langenbeckstrasse, 1, Mainz, Germany
| | - Michael Welte
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Tobias Meindl
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Angela Jochim
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany.
| |
Collapse
|
52
|
|
53
|
Tuleasca C, Bolton T, Régis J, Najdenovska E, Witjas T, Girard N, Thiran JP, Levivier M, Van De Ville D. Thalamotomy for tremor normalizes aberrant pre-therapeutic visual cortex functional connectivity. Brain 2020; 142:e57. [PMID: 31603507 DOI: 10.1093/brain/awz299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Constantin Tuleasca
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Centre Hospitalier Universitaire Bicêtre, Service de Neurochirurgie, Paris, France.,Faculté de Médecine, Sorbonne Université, Paris, France.,Centre Hospitalier Universitaire Vaudois (CHUV), Neurosurgery Service and Gamma Knife Center, Lausanne, Switzerland.,Medical Image Analysis Laboratory (MIAL) and Department of Radiology-Center of Biomedical Imaging (CIBM), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Signal Processing Laboratory (LTS 5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Thomas Bolton
- Medical Image Processing Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean Régis
- Stereotactic and Functional Neurosurgery Service and Gamma Knife Unit, CHU Timone, Marseille, France
| | - Elena Najdenovska
- Medical Image Analysis Laboratory (MIAL) and Department of Radiology-Center of Biomedical Imaging (CIBM), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | - Nadine Girard
- AMU, CRMBM UMR CNRS 7339, Faculté de Médecine et APHM, Hôpital Timone, Department of Diagnostic and Interventionnal Neuroradiology, Marseille, France
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS 5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marc Levivier
- Centre Hospitalier Universitaire Vaudois (CHUV), Neurosurgery Service and Gamma Knife Center, Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dimitri Van De Ville
- Medical Image Processing Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
54
|
DeSimone JC, Archer DB, Vaillancourt DE, Wagle Shukla A. Reply: Thalamotomy for tremor normalizes aberrant pre-therapeutic visual cortex functional connectivity. Brain 2020; 142:e58. [PMID: 31603506 DOI: 10.1093/brain/awz300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jesse C DeSimone
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Derek B Archer
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.,Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Aparna Wagle Shukla
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
55
|
Maguire F, Reilly RB, Simonyan K. Normal Temporal Discrimination in Musician's Dystonia Is Linked to Aberrant Sensorimotor Processing. Mov Disord 2020; 35:800-807. [PMID: 31930574 PMCID: PMC7818836 DOI: 10.1002/mds.27984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Alterations in sensory discrimination are a prominent nonmotor feature of dystonia. Abnormal temporal discrimination in focal dystonia is considered to represent its mediational endophenotype, albeit unclear pathophysiological correlates. We examined the associations between the visual temporal discrimination threshold (TDT) and brain activity in patients with musician's dystonia, nonmusician's dystonia, and healthy controls. METHODS A total of 42 patients and 41 healthy controls participated in the study. Between-group differences in TDT z scores were computed using inferential statistics. Statistical associations of TDT z scores with clinical characteristics of dystonia and resting-state functional brain activity were examined using nonparametric rank correlations. RESULTS The TDT z scores of healthy controls were significantly different from those of patients with nonmusician's dystonia, but not of patients with musician's dystonia. Healthy controls showed a significant relationship between normal TDT levels and activity in the inferior parietal cortex. This relationship was lost in all patients. Instead, TDT z scores in musician's dystonia established additional correlations with activity in premotor, primary somatosensory, ventral extrastriate cortices, inferior occipital gyrus, precuneus, and cerebellum, whereas nonmusician's dystonia showed a trending correlation in the lingual gyrus extending to the cerebellar vermis. There were no significant relationships between TDT z scores and dystonia onset, duration, or severity. CONCLUSIONS TDT assessment as an endophenotypic marker may only be relevant to nonmusician forms of dystonia because of the lack of apparent alterations in musician's dystonia. Compensatory adaptation of neural circuitry responsible for TDT processing likely adjusted the TDT performance to the behaviorally normal levels in patients with musician's dystonia, but not nonmusician's dystonia. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Fiachra Maguire
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Richard B. Reilly
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Kristina Simonyan
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Otolaryngology–Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
56
|
Hanekamp S, Simonyan K. The large-scale structural connectome of task-specific focal dystonia. Hum Brain Mapp 2020; 41:3253-3265. [PMID: 32311207 PMCID: PMC7375103 DOI: 10.1002/hbm.25012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
The emerging view of dystonia is that of a large‐scale functional network disorder, in which the communication is disrupted between sensorimotor cortical areas, basal ganglia, thalamus, and cerebellum. The structural underpinnings of functional alterations in dystonia are, however, poorly understood. Notably, it is unclear whether structural changes form a larger‐scale dystonic network or rather remain focal to isolated brain regions, merely underlying their functional abnormalities. Using diffusion‐weighted imaging and graph theoretical analysis, we examined inter‐regional white matter connectivity of the whole‐brain structural network in two different forms of task‐specific focal dystonia, writer's cramp and laryngeal dystonia, compared to healthy individuals. We show that, in addition to profoundly altered functional network in focal dystonia, its structural connectome is characterized by large‐scale aberrations due to abnormal transfer of prefrontal and parietal nodes between neural communities and the reorganization of normal hub architecture, commonly involving the insula and superior frontal gyrus in patients compared to controls. Other prominent common changes involved the basal ganglia, parietal and cingulate cortical regions, whereas premotor and occipital abnormalities distinctly characterized the two forms of dystonia. We propose a revised pathophysiological model of focal dystonia as a disorder of both functional and structural connectomes, where dystonia form‐specific abnormalities underlie the divergent mechanisms in the development of distinct clinical symptomatology. These findings may guide the development of novel therapeutic strategies directed at targeted neuromodulation of pathophysiological brain regions for the restoration of their structural and functional connectivity.
Collapse
Affiliation(s)
- Sandra Hanekamp
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristina Simonyan
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
57
|
Pérez-de-Heredia-Torres M, García-Bravo C, Huertas-Hoyas E, Martínez-Piédrola MR, Serrada-Tejeda S, Martínez-Castrillo JC. Sensitivity and pain in focal dystonia of the hand. Neurologia 2020; 37:S0213-4853(20)30043-8. [PMID: 32327198 DOI: 10.1016/j.nrl.2019.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/10/2019] [Accepted: 12/12/2019] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION A growing body of evidence highlights the importance of understanding both the sensory and the motor pathophysiology of focal dystonia in order to improve its treatment. This study aims to evaluate somatosensory afferences in patients with focal or segmental dystonia affecting the upper limbs, to analyse whether the dominant limb is more frequently affected, to analyse pain tolerance, and to examine the potential association with pain perception in patients with hand dystonia. METHODS We recruited 24 participants: 12 patients with focal hand dystonia and 12 individuals without dystonia. All participants were evaluated with a digital algometer (Somedic SenseLab AB®, Farsta, Sweden), a Semmes-Weinstein monofilament test, and the visual analogue scale for pain. RESULTS According to our data, patients showed greater impairment in surface sensitivity than controls, both in the dominant and the non-dominant hands, as well as greater presence of pain (P>.001). Furthermore, the dystonia group showed a negative correlation between perceived pain and pressure pain tolerance threshold (rho=-0.83; P<.001). CONCLUSIONS Patients with focal hand dystonia presented alterations in sensitivity and more severe perceived pain than individuals without dystonia. Future studies with larger samples should aim to analyse the clinical implications and everyday impact of both objective and subjective pain.
Collapse
Affiliation(s)
- M Pérez-de-Heredia-Torres
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Universidad Rey Juan Carlos, Alcorcón, Madrid, España
| | - C García-Bravo
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Universidad Rey Juan Carlos, Alcorcón, Madrid, España
| | - E Huertas-Hoyas
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Universidad Rey Juan Carlos, Alcorcón, Madrid, España.
| | - M R Martínez-Piédrola
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Universidad Rey Juan Carlos, Alcorcón, Madrid, España
| | - S Serrada-Tejeda
- Departamento de Fisioterapia, Terapia Ocupacional, Rehabilitación y Medicina Física, Universidad Rey Juan Carlos, Alcorcón, Madrid, España
| | | |
Collapse
|