51
|
Ter Schiphorst A, Charron S, Hassen WB, Provost C, Naggara O, Benzakoun J, Seners P, Turc G, Baron JC, Oppenheim C. Tissue no-reflow despite full recanalization following thrombectomy for anterior circulation stroke with proximal occlusion: A clinical study. J Cereb Blood Flow Metab 2021; 41:253-266. [PMID: 32960688 PMCID: PMC8370008 DOI: 10.1177/0271678x20954929] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite early thrombectomy, a sizeable fraction of acute stroke patients with large vessel occlusion have poor outcome. The no-reflow phenomenon, i.e. impaired microvascular reperfusion despite complete recanalization, may contribute to such "futile recanalizations". Although well reported in animal models, no-reflow is still poorly characterized in man. From a large prospective thrombectomy database, we included all patients with intracranial proximal occlusion, complete recanalization (modified thrombolysis in cerebral infarction score 2c-3), and availability of both baseline and 24 h follow-up MRI including arterial spin labeling perfusion mapping. No-reflow was operationally defined as i) hypoperfusion ≥40% relative to contralateral homologous region, assessed with both visual (two independent investigators) and automatic image analysis, and ii) infarction on follow-up MRI. Thirty-three patients were eligible (median age: 70 years, NIHSS: 18, and stroke onset-to-recanalization delay: 208 min). The operational criteria were met in one patient only, consistently with the visual and automatic analyses. This patient recanalized 160 min after stroke onset and had excellent functional outcome. In our cohort of patients with complete and stable recanalization following thrombectomy for intracranial proximal occlusion, severe ipsilateral hypoperfusion on follow-up imaging associated with newly developed infarction was a rare occurrence. Thus, no-reflow may be infrequent in human stroke and may not substantially contribute to futile recanalizations.
Collapse
Affiliation(s)
- Adrien Ter Schiphorst
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neurology, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Sylvain Charron
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Wagih Ben Hassen
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Corentin Provost
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Olivier Naggara
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Joseph Benzakoun
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Pierre Seners
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neurology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Guillaume Turc
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neurology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Jean-Claude Baron
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neurology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Catherine Oppenheim
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,Department of Neuroradiology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| |
Collapse
|
52
|
Role of neuroimaging before reperfusion therapy. Part 1 - IV thrombolysis - Review. Rev Neurol (Paris) 2021; 177:908-918. [PMID: 33455833 DOI: 10.1016/j.neurol.2020.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
This review paper summarises the yield of the different imaging modalities in the evaluation of patients for IV thrombolysis. Non-contrast CT and CTA or brain MRI combined with MRA are the recommended sequences for the evaluation of patients within the 4.5 hours time window. Multimodal MRI (DWI/PWI), and more recently, CT perfusion, offer reliable surrogate of salvageable penumbra, the target mismatch, which is now currently used as selection criteria for revascularisation treatment in an extended time window. Those sequences may also help the physician for the management of other limited cases when the diagnosis of acute ischemic stroke is difficult. Another approach the DWI/FLAIR mismatch has been proposed to identify among wake-up stroke patients those who have been experiencing an acute ischemic stroke evolving from less than 4.5hrs. Other biomarkers, such as the clot imaging on MRI and CT, help to predict the recanalisation rate after IVT, while the impact of the presence microbleeds on MRI remains to be determined.
Collapse
|
53
|
Dai S, Piscicelli C, Lemaire C, Christiaens A, de Schotten MT, Hommel M, Krainik A, Detante O, Pérennou D. Recovery of balance and gait after stroke is deteriorated by confluent white matter hyperintensities: Cohort study. Ann Phys Rehabil Med 2021; 65:101488. [PMID: 33450367 DOI: 10.1016/j.rehab.2021.101488] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND White matter hyperintensities (WMHs) are well known to affect post-stroke disability, mainly by cognitive impairment. Their impact on post-stroke balance and gait disorders is unclear. OBJECTIVES We aimed to test the hypothesis that WMHs would independently deteriorate post-stroke balance and gait recovery. METHODS This study was performed in 210 individuals of the cohort Determinants of Balance Recovery After Stroke (DOBRAS), consecutively enrolled after a first-ever hemisphere stroke. Clinical data were systematically collected on day 30±3 (D30) post-stroke and at discharge from the rehabilitation ward. WMHs were searched on MRI, graded with the Fazekas scale, and dichotomized as no/mild (absence/sparse) or moderate/severe (confluent). The primary endpoint was the recovery of the single limb stance, assessed with the Postural Assessment Scale for Stroke (PASS). The secondary endpoint was the recovery of independent gait, assessed with the modified Fugl-Meyer Gait Assessment (mFMA). The adjusted hazard ratios (aHRs) of achievements of these endpoints by level of WMHs were estimated by using Cox models, accounting for other relevant clinical and imaging factors. RESULTS Individuals with moderate/severe WMHs (n=86, 41%) had greater balance and gait disorders and were more often fallers than others (n=124, 59%). Overall, they had worse and slower recovery of single limb stance and independent gait (p<0.001). Moderate/severe WMHs was the most detrimental factor for recovery of balance (aHR 0.46, 95% confidence interval [CI] 0.32-0.68, p<0.001) and gait (0.51, 0.35-0.74, p<0.001), along with age, stroke severity, lesion volume and disrupted corticospinal tract. With cerebral infarct, endovascular treatments had an independent positive effect, both on the recovery of balance (aHR 1.65, 95% CI 1.13-2.4, p=0.009) and gait (1.78, 1.24-2.55, p=0.002). CONCLUSIONS WMHs magnify balance and gait disorders after stroke and worsen their recovery. They should be better accounted for in post-stroke rehabilitation, especially to help establish a prognosis of mobility. ClinicalTrials.gov registration: NCT03203109.
Collapse
Affiliation(s)
- Shenhao Dai
- Neurorehabilitation Department, Institute of Rehabilitation, Grenoble Alpes University Hospital, 38434 Echirolles, France; Laboratoire de Psychologie et NeuroCognition, UMR CNRS 5105, Univ. Grenoble Alpes, Grenoble, France; Inserm, U 1216, Grenoble, France
| | - Céline Piscicelli
- Neurorehabilitation Department, Institute of Rehabilitation, Grenoble Alpes University Hospital, 38434 Echirolles, France; Laboratoire de Psychologie et NeuroCognition, UMR CNRS 5105, Univ. Grenoble Alpes, Grenoble, France; Inserm, U 1216, Grenoble, France
| | - Camille Lemaire
- Neurorehabilitation Department, Institute of Rehabilitation, Grenoble Alpes University Hospital, 38434 Echirolles, France; Laboratoire de Psychologie et NeuroCognition, UMR CNRS 5105, Univ. Grenoble Alpes, Grenoble, France; Inserm, U 1216, Grenoble, France
| | - Adélie Christiaens
- Neurorehabilitation Department, Institute of Rehabilitation, Grenoble Alpes University Hospital, 38434 Echirolles, France; Laboratoire de Psychologie et NeuroCognition, UMR CNRS 5105, Univ. Grenoble Alpes, Grenoble, France; Inserm, U 1216, Grenoble, France
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, 75013 Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, 33000 Bordeaux, France; Inserm, U 1216, Grenoble, France
| | - Marc Hommel
- Stroke Unit, Neurology Department, Grenoble Alpes University Hospital, 38043 Grenoble, France; Univ. Grenoble Alpes, AGEIS EA 7407, Grenoble, France; Inserm, U 1216, Grenoble, France
| | - Alexandre Krainik
- Department of Neuroradiology, Grenoble Alpes University Hospital, 38043 Grenoble, France; Univ. Grenoble Alpes, Inserm, CNRS, Grenoble Alpes University Hospital, IRMaGe, 38043 Grenoble, France; Inserm, U 1216, Grenoble, France
| | - Olivier Detante
- Stroke Unit, Neurology Department, Grenoble Alpes University Hospital, 38043 Grenoble, France; Univ. Grenoble Alpes, Grenoble Institute of Neurosciences, 38042 Grenoble, France; Inserm, U 1216, Grenoble, France
| | - Dominic Pérennou
- Neurorehabilitation Department, Institute of Rehabilitation, Grenoble Alpes University Hospital, 38434 Echirolles, France; Laboratoire de Psychologie et NeuroCognition, UMR CNRS 5105, Univ. Grenoble Alpes, Grenoble, France; Inserm, U 1216, Grenoble, France.
| |
Collapse
|
54
|
Molad J. Mechanical thrombectomy in patients with large core: Does location matter? Neurology 2020; 95:1078-1079. [PMID: 33093223 DOI: 10.1212/wnl.0000000000011095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jeremy Molad
- From the Department of Stroke & Neurology, Tel-Aviv Sourasky Medical Center, Israel.
| |
Collapse
|
55
|
Geraldo AF, Parodi A, Bertamino M, Buffelli F, Uccella S, Tortora D, Moretti P, Ramenghi L, Fulcheri E, Rossi A, Severino M. Perinatal Arterial Ischemic Stroke in Fetal Vascular Malperfusion: A Case Series and Literature Review. AJNR Am J Neuroradiol 2020; 41:2377-2383. [PMID: 33122209 DOI: 10.3174/ajnr.a6857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/17/2020] [Indexed: 11/07/2022]
Abstract
Fetal vascular malperfusion includes a continuum of placental histologic abnormalities increasingly associated with perinatal brain injury, namely arterial ischemic stroke. Here, we describe the clinical-neuroimaging features of 5 neonates with arterial ischemic stroke and histologically proved fetal vascular malperfusion. All infarcts involved the anterior territories and were multiple in 2 patients. In 2 neonates, there were additional signs of marked dural sinus congestion, thrombosis, or both. A mixed pattern of chronic hypoxic-ischemic encephalopathy and acute infarcts was noted in 1 patient at birth. Systemic cardiac or thrombotic complications were present in 2 patients. These peculiar clinical-radiologic patterns may suggest fetal vascular malperfusion and should raise the suspicion of this rare, underdiagnosed condition carrying important implications in patient management, medicolegal actions, and future pregnancy counseling.
Collapse
Affiliation(s)
- A F Geraldo
- From the Units of Neuroradiology (A.F.G., D.T., A.R., M.S.).,Diagnostic Neuroradiology Unit (A.F.G.), Imaging Department, Centro Hospitalar Vila Nova de Gaia/Espinho, Portugal
| | - A Parodi
- Neonatal Intensive Care (A.P., L.R.)
| | - M Bertamino
- Physical Medicine and Rehabilitation (M.B., P.M.)
| | - F Buffelli
- Gynaecologic and Fetal-Perinatal Pathology (F.B., E.F.)
| | - S Uccella
- Child Neuropsychiatry (S.U.), IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - D Tortora
- From the Units of Neuroradiology (A.F.G., D.T., A.R., M.S.)
| | - P Moretti
- Physical Medicine and Rehabilitation (M.B., P.M.)
| | - L Ramenghi
- Neonatal Intensive Care (A.P., L.R.).,Departments of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI) (L.R.)
| | - E Fulcheri
- Gynaecologic and Fetal-Perinatal Pathology (F.B., E.F.).,Surgical Sciences and Integrated Diagnostics, Pathology Division of Anatomic Pathology (E.F.)
| | - A Rossi
- From the Units of Neuroradiology (A.F.G., D.T., A.R., M.S.).,Health Sciences (DISSAL) (A.R.), University of Genoa, Genoa, Italy
| | - M Severino
- From the Units of Neuroradiology (A.F.G., D.T., A.R., M.S.)
| |
Collapse
|
56
|
Wu D, Fu Y, Wu L, Huber M, Chen J, Yao T, Zhang M, Wu C, Song M, He X, Li S, Zhang Y, Li S, Ding Y, Ji X. Reperfusion plus Selective Intra-arterial Cooling (SI-AC) Improve Recovery in a Nonhuman Primate Model of Stroke. Neurotherapeutics 2020; 17:1931-1939. [PMID: 32710291 PMCID: PMC7851312 DOI: 10.1007/s13311-020-00895-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Early reperfusion is increasingly prioritized in ischemic stroke care, but outcomes remain suboptimal. Therefore, there is an urgent need to find neuroprotective approaches that can be combined with reperfusion to maximize efficacy. Here, the neuroprotective mechanisms behind therapeutic hypothermia were evaluated in a monkey model of ischemic stroke. Focal ischemia was induced in adult rhesus monkeys by placing autologous clots in the middle cerebral artery. Monkeys were treated with tissue plasminogen activator (t-PA) alone or t-PA plus selective intra-arterial cooling (SI-AC). Serial MRI scans and functional deficit were evaluated after ischemia. Histopathology and immunohistochemistry analysis were performed after the final MRI scan. t-PA plus SI-AC treatment led to a higher rate of MRI tissue rescue, and significantly improved neurologic deficits and daily activity scores compared with t-PA alone. In peri-infarct areas, higher fractional anisotropy values and greater fiber numbers were observed in models receiving t-PA plus SI-AC. Histological findings indicated that myelin damage, spheroids, and spongiosis were significantly ameliorated in models receiving SI-AC treatment. White matter integrity was also improved by SI-AC based on immunochemical staining. Our study demonstrates that SI-AC can be effectively combined with t-PA to improve both structural and functional recovery in a monkey model of focal ischemia. These findings provide proof-of-concept that it may be feasible to add neuroprotective agents as adjunctive treatments to reperfusion therapy for stroke.
Collapse
Affiliation(s)
- Di Wu
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Yongjuan Fu
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Longfei Wu
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Mitchell Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Tianqi Yao
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Mo Zhang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Chuanjie Wu
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ming Song
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xiaoduo He
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Yongbiao Zhang
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shengli Li
- Department of Laboratory Animal Science, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
57
|
McGarry BL, Damion RA, Chew I, Knight MJ, Harston GW, Carone D, Jezzard P, Sitaram A, Muir KW, Clatworthy P, Kauppinen RA. A Comparison of T 2 Relaxation-Based MRI Stroke Timing Methods in Hyperacute Ischemic Stroke Patients: A Pilot Study. J Cent Nerv Syst Dis 2020; 12:1179573520943314. [PMID: 32963473 PMCID: PMC7488882 DOI: 10.1177/1179573520943314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/29/2020] [Indexed: 12/25/2022] Open
Abstract
Background: T2 relaxation-based magnetic resonance imaging (MRI) signals may provide onset time for acute ischemic strokes with an unknown onset. The ability of visual and quantitative MRI-based methods in a cohort of hyperacute ischemic stroke patients was studied. Methods: A total of 35 patients underwent 3T (3 Tesla) MRI (<9-hour symptom onset). Diffusion-weighted (DWI), apparent diffusion coefficient (ADC), T1-weighted (T1w), T2-weighted (T2w), and T2 relaxation time (T2) images were acquired. T2-weighted fluid attenuation inversion recovery (FLAIR) images were acquired for 17 of these patients. Image intensity ratios of the average intensities in ischemic and non-ischemic reference regions were calculated for ADC, DWI, T2w, T2 relaxation, and FLAIR images, and optimal image intensity ratio cut-offs were determined. DWI and FLAIR images were assessed visually for DWI/FLAIR mismatch. Results: The T2 relaxation time image intensity ratio was the only parameter with significant correlation with stroke duration (r = 0.49, P = .003), an area under the receiver operating characteristic curve (AUC = 0.77, P < .0001), and an optimal cut-off (T2 ratio = 1.072) that accurately identified patients within the 4.5-hour thrombolysis treatment window with sensitivity of 0.74 and specificity of 0.74. In the patients with the additional FLAIR, areas under the precision-recall-gain curve (AUPRG) and F1 scores showed that the T2 relaxation time ratio (AUPRG = 0.60, F1 = 0.73) performed considerably better than the FLAIR ratio (AUPRG = 0.39, F1 = 0.57) and the visual DWI/FLAIR mismatch (F1 = 0.25). Conclusions: Quantitative T2 relaxation time is the preferred MRI parameter in the assessment of patients with unknown onset for treatment stratification.
Collapse
Affiliation(s)
- Bryony L McGarry
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Robin A Damion
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Isabel Chew
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Michael J Knight
- School of Psychological Science, University of Bristol, Bristol, UK
| | - George Wj Harston
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Davide Carone
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Jezzard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Amith Sitaram
- Institute of Neuroscience and Psychology, Queen Elizabeth University Hospital, University of Glasgow, Glasgow, UK
| | - Keith W Muir
- Institute of Neuroscience and Psychology, Queen Elizabeth University Hospital, University of Glasgow, Glasgow, UK
| | - Philip Clatworthy
- Stroke Neurology, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | | |
Collapse
|