51
|
Kelmanson IA. Sleep disorders in elementary school children with childhood apraxia of speech. SOMNOLOGIE 2021. [DOI: 10.1007/s11818-021-00330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
52
|
Da Silva JD, Costa MD, Almeida B, Lopes F, Maciel P, Teixeira-Castro A. Case Report: A Novel GNB1 Mutation Causes Global Developmental Delay With Intellectual Disability and Behavioral Disorders. Front Neurol 2021; 12:735549. [PMID: 34646230 PMCID: PMC8504539 DOI: 10.3389/fneur.2021.735549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/27/2021] [Indexed: 01/26/2023] Open
Abstract
Diseases of neurodevelopment mostly exhibit neurological and psychiatric symptoms that go from very mild to extremely severe. While the etiology of most cases of neurodevelopmental disease is still unknown, the discovery of underlying genetic causes is rapidly increasing, with hundreds of genes being currently implicated as disease-causing. Here, we report a clinical case of a patient with a previously undiagnosed syndrome comprising severe global developmental delay, intellectual disability, and behavioral disorders (such as attention-deficit/hyperactivity disorder, autism spectrum disorder and recurrent bouts of aggressive behavior). After genetic testing, a pathogenic variant was detected in the GNB1 gene, which codes for the G-protein subunit β1. The detected variant (c.217G>A, p.A73T) has not been previously reported in any of the 58 published cases of GNB1 encephalopathy. However, it localizes to the mutational hotspot in exons 6 and 7 in which 88% of all missense mutations occur. An in silico model predicts that this mutation is likely to disrupt the WD40 domain of the GNB1 protein, which is required for its interaction with other G-proteins and, consequently, for downstream signal transduction. In conclusion, we reported an additional GNB1 encephalopathy patient, bearing a novel mutation, taking another step toward a better understanding of its clinical presentation and prospective development of treatments for the disease.
Collapse
Affiliation(s)
- Jorge Diogo Da Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-Portuguese Government Associate Laboratory, Braga, Guimarães, Portugal.,Pediatrics Department, Hospital of Santa Maria Maior, Barcelos, Portugal
| | - Marta Daniela Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-Portuguese Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Bruno Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-Portuguese Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Fátima Lopes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-Portuguese Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-Portuguese Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-Portuguese Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
53
|
Graziola F, Garone G, Grasso M, Capuano A. Cognitive Assessment in GNAO1 Neurodevelopmental Disorder Using an Eye Tracking System. J Clin Med 2021; 10:jcm10163541. [PMID: 34441836 PMCID: PMC8397136 DOI: 10.3390/jcm10163541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
GNAO1 gene mutations are associated with a neurodevelopmental disorder characterized by developmental delay, epilepsy, and movement disorder. Eye tracking and eye movement analysis are an intriguing method to assess cognitive and language function and, to the best of our knowledge, it has never been tested in a standardized way in GNAO1. GNAO1 children are usually wheelchair-bound and with numerous motor constrains, including dystonic movements and postures, heterotropia, and hypotonia, making the cognitive assessment arduous. These contribute to the burden and disability, with a high level of frustration of caregivers and patients. We have herein demonstrated that, through an eye tracking system, six GNAO1 patients evaluated showed variable degrees of communicative intent through intentionally directed gaze. Moreover, three of these were able to complete a cognitive evaluation, and showed normal fluid intelligence and lexical comprehension. In conclusion, in GNAO1-related disorders, the degree of cognitive development is underestimated; eye tracking technologies may help in overcome these boundaries.
Collapse
Affiliation(s)
- Federica Graziola
- Neurology Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (G.G.); (M.G.); (A.C.)
- Department of System Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence:
| | - Giacomo Garone
- Neurology Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (G.G.); (M.G.); (A.C.)
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Melissa Grasso
- Neurology Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (G.G.); (M.G.); (A.C.)
| | - Alessandro Capuano
- Neurology Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (G.G.); (M.G.); (A.C.)
| |
Collapse
|
54
|
Jansen NA, Braden RO, Srivastava S, Otness EF, Lesca G, Rossi M, Nizon M, Bernier RA, Quelin C, van Haeringen A, Kleefstra T, Wong MMK, Whalen S, Fisher SE, Morgan AT, van Bon BW. Clinical delineation of SETBP1 haploinsufficiency disorder. Eur J Hum Genet 2021; 29:1198-1205. [PMID: 33867525 PMCID: PMC8385049 DOI: 10.1038/s41431-021-00888-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 02/02/2023] Open
Abstract
SETBP1 haploinsufficiency disorder (MIM#616078) is caused by haploinsufficiency of SETBP1 on chromosome 18q12.3, but there has not yet been any systematic evaluation of the major features of this monogenic syndrome, assessing penetrance and expressivity. We describe the first comprehensive study to delineate the associated clinical phenotype, with findings from 34 individuals, including 24 novel cases, all of whom have a SETBP1 loss-of-function variant or single (coding) gene deletion, confirmed by molecular diagnostics. The most commonly reported clinical features included mild motor developmental delay, speech impairment, intellectual disability, hypotonia, vision impairment, attention/concentration deficits, and hyperactivity. Although there is a mild overlap in certain facial features, the disorder does not lead to a distinctive recognizable facial gestalt. As well as providing insight into the clinical spectrum of SETBP1 haploinsufficiency disorder, this reports puts forward care recommendations for patient management.
Collapse
Affiliation(s)
- Nadieh A. Jansen
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ruth O. Braden
- grid.1058.c0000 0000 9442 535XSpeech and Language, Murdoch Children’s Research Institute, Victoria, Australia
| | - Siddharth Srivastava
- grid.38142.3c000000041936754XTranslational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Erin F. Otness
- Deparment of Pediatrics, Texas Children’s Pediatrics Sugar Land, Sugar Land, USA
| | - Gaetan Lesca
- grid.413852.90000 0001 2163 3825Service de Génétique, Hospices Civils de Lyon, Lyon, France
| | - Massimiliano Rossi
- grid.413852.90000 0001 2163 3825Service de Génétique, Hospices Civils de Lyon, Lyon, France
| | - Mathilde Nizon
- grid.277151.70000 0004 0472 0371CHU Nantes, Service de Génétique Médicale, Nantes, France
| | - Raphael A. Bernier
- grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
| | - Chloé Quelin
- grid.411154.40000 0001 2175 0984Service de Genetique Medicale, CLAD Ouest CHU Hôpital Sud, Rennes, France
| | - Arie van Haeringen
- grid.10419.3d0000000089452978Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Tjitske Kleefstra
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maggie M. K. Wong
- grid.419550.c0000 0004 0501 3839Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sandra Whalen
- grid.413776.00000 0004 1937 1098Clinical and Medical Genetic Department, Armand Trousseau Hospital, APHP, Paris, France
| | - Simon E. Fisher
- grid.419550.c0000 0004 0501 3839Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands ,grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Angela T. Morgan
- grid.1058.c0000 0000 9442 535XSpeech and Language, Murdoch Children’s Research Institute, Victoria, Australia ,grid.1008.90000 0001 2179 088XDepartment of Audiology and Speech Pathology, University of Melbourne, Melbourne, Australia
| | - Bregje W. van Bon
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
55
|
Speech and language deficits are central to SETBP1 haploinsufficiency disorder. Eur J Hum Genet 2021; 29:1216-1225. [PMID: 33907317 PMCID: PMC8384874 DOI: 10.1038/s41431-021-00894-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 02/02/2023] Open
Abstract
Expressive communication impairment is associated with haploinsufficiency of SETBP1, as reported in small case series. Heterozygous pathogenic loss-of-function (LoF) variants in SETBP1 have also been identified in independent cohorts ascertained for childhood apraxia of speech (CAS), warranting further investigation of the roles of this gene in speech development. Thirty-one participants (12 males, aged 0; 8-23; 2 years, 28 with pathogenic SETBP1 LoF variants, 3 with 18q12.3 deletions) were assessed for speech, language and literacy abilities. Broader development was examined with standardised motor, social and daily life skills assessments. Gross and fine motor deficits (94%) and intellectual impairments (68%) were common. Protracted and aberrant speech development was consistently seen, regardless of motor or intellectual ability. We expand the linguistic phenotype associated with SETBP1 LoF syndrome (SETBP1 haploinsufficiency disorder), revealing a striking speech presentation that implicates both motor (CAS, dysarthria) and language (phonological errors) systems, with CAS (80%) being the most common diagnosis. In contrast to past reports, the understanding of language was rarely better preserved than language expression (29%). Language was typically low, to moderately impaired, with commensurate expression and comprehension ability. Children were sociable with a strong desire to communicate. Minimally verbal children (32%) augmented speech with sign language, gestures or digital devices. Overall, relative to general development, spoken language and literacy were poorer than social, daily living, motor and adaptive behaviour skills. Our findings show that poor communication is a central feature of SETBP1 haploinsufficiency disorder, confirming this gene as a strong candidate for speech and language disorders.
Collapse
|
56
|
Freitag CM, Noterdaeme M, Snippe K, Schulz P, Kim Z, Teufel K. [Developmental Speech and Language Disorders According to ICD-11]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2021; 49:468-479. [PMID: 34269095 DOI: 10.1024/1422-4917/a000821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Developmental Speech and Language Disorders According to ICD-11 Abstract. In ICD-11, similar to ICD-10, speech and language disorders are classified as neurodevelopmental disorders, which are part of ICD-11 Chapter 6 (Mental, Behavioural and Neurodevelopmental Disorders). The ICD-10 criteria were not well accepted by many professionals in research and clinic who work with children with speech and language disorders. Especially linguists and speech and language therapists see ICD-10 as too crude and lacking specification of individual language problems. Medical professions in turn criticize the missing aspect of organically caused speech and language problems. This paper presents the classification of speech and language problems or disorders according to ICD-11 compared to ICD-10. One essential aspect lies in the differentiation between "primary" and "secondary" neurodevelopmental disorders. In addition, we compare and discuss other recent classification approaches, such as DSM-5, CATALISE-2, and the classification "Auditory Processing Disorder" by pediatric audiologists. We present a classification approach based on ICD-11, supplemented by an additional specification of the respective impaired speech or language area in the individual child and based on a thorough speech and language assessment. We thus hope to pave the path for an interdisciplinary classification of speech and language disorders according to ICD-11, our aim being to establish a common terminology that can be used by all professions. We expect this common terminology to improve clinical care and to allow for the integration and comparability of speech- and language-related research efforts.
Collapse
Affiliation(s)
- Christine M Freitag
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Autismus-Therapie- und Forschungszentrum, Universitätsklinikum Frankfurt, Goethe-Universität Frankfurt am Main
| | - Michelle Noterdaeme
- Klinik für Kinder- und Jugendpsychiatrie und -psychotherapie, Fachklinik Josefinum Augsburg
| | | | - Petra Schulz
- Institut für Psycholinguistik und Didaktik der deutschen Sprache, Goethe-Universität Frankfurt am Main
| | - Ziyon Kim
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Autismus-Therapie- und Forschungszentrum, Universitätsklinikum Frankfurt, Goethe-Universität Frankfurt am Main
| | - Karoline Teufel
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Autismus-Therapie- und Forschungszentrum, Universitätsklinikum Frankfurt, Goethe-Universität Frankfurt am Main
| |
Collapse
|
57
|
Martinelli A, Rice ML, Talcott JB, Diaz R, Smith S, Raza MH, Snowling MJ, Hulme C, Stein J, Hayiou-Thomas ME, Hawi Z, Kent L, Pitt SJ, Newbury DF, Paracchini S. A rare missense variant in the ATP2C2 gene is associated with language impairment and related measures. Hum Mol Genet 2021; 30:1160-1171. [PMID: 33864365 PMCID: PMC8188402 DOI: 10.1093/hmg/ddab111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023] Open
Abstract
At least 5% of children present unexpected difficulties in expressing and understanding spoken language. This condition is highly heritable and often co-occurs with other neurodevelopmental disorders such as dyslexia and ADHD. Through an exome sequencing analysis, we identified a rare missense variant (chr16:84405221, GRCh38.p12) in the ATP2C2 gene. ATP2C2 was implicated in language disorders by linkage and association studies, and exactly the same variant was reported previously in a different exome sequencing study for language impairment (LI). We followed up this finding by genotyping the mutation in cohorts selected for LI and comorbid disorders. We found that the variant had a higher frequency in LI cases (1.8%, N = 360) compared with cohorts selected for dyslexia (0.8%, N = 520) and ADHD (0.7%, N = 150), which presented frequencies comparable to reference databases (0.9%, N = 24 046 gnomAD controls). Additionally, we observed that carriers of the rare variant identified from a general population cohort (N = 42, ALSPAC cohort) presented, as a group, lower scores on a range of reading and language-related measures compared to controls (N = 1825; minimum P = 0.002 for non-word reading). ATP2C2 encodes for an ATPase (SPCA2) that transports calcium and manganese ions into the Golgi lumen. Our functional characterization suggested that the rare variant influences the ATPase activity of SPCA2. Thus, our results further support the role of ATP2C2 locus in language-related phenotypes and pinpoint the possible effects of a specific rare variant at molecular level.
Collapse
Affiliation(s)
| | - Mabel L Rice
- Child Language Doctoral Program, University of Kansas, Lawrence, KS, USA
| | - Joel B Talcott
- Aston Brain Centre, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Rebeca Diaz
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Shelley Smith
- Department of Neurological Sciences, University of Nebraska Medical Center, Lincoln, NE, USA
| | | | - Margaret J Snowling
- Department of Experimental Psychology and St John's College, University of Oxford, Oxford, UK
| | - Charles Hulme
- Department of Education, University of Oxford, Oxford, UK
| | - John Stein
- Department of Physiology, University of Oxford, Oxford, UK
| | | | - Ziarih Hawi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Lindsey Kent
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Samantha J Pitt
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Dianne F Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | | |
Collapse
|
58
|
Whole-genome sequencing identifies functional noncoding variation in SEMA3C that cosegregates with dyslexia in a multigenerational family. Hum Genet 2021; 140:1183-1200. [PMID: 34076780 PMCID: PMC8263547 DOI: 10.1007/s00439-021-02289-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/27/2021] [Indexed: 12/11/2022]
Abstract
Dyslexia is a common heritable developmental disorder involving impaired reading abilities. Its genetic underpinnings are thought to be complex and heterogeneous, involving common and rare genetic variation. Multigenerational families segregating apparent monogenic forms of language-related disorders can provide useful entrypoints into biological pathways. In the present study, we performed a genome-wide linkage scan in a three-generational family in which dyslexia affects 14 of its 30 members and seems to be transmitted with an autosomal dominant pattern of inheritance. We identified a locus on chromosome 7q21.11 which cosegregated with dyslexia status, with the exception of two cases of phenocopy (LOD = 2.83). Whole-genome sequencing of key individuals enabled the assessment of coding and noncoding variation in the family. Two rare single-nucleotide variants (rs144517871 and rs143835534) within the first intron of the SEMA3C gene cosegregated with the 7q21.11 risk haplotype. In silico characterization of these two variants predicted effects on gene regulation, which we functionally validated for rs144517871 in human cell lines using luciferase reporter assays. SEMA3C encodes a secreted protein that acts as a guidance cue in several processes, including cortical neuronal migration and cellular polarization. We hypothesize that these intronic variants could have a cis-regulatory effect on SEMA3C expression, making a contribution to dyslexia susceptibility in this family.
Collapse
|
59
|
Lansdon LA, Fleming EA, Viso FD, Sullivan BR, Saunders CJ. Second patient with GNB2-related neurodevelopmental disease: Further evidence for a gene-disease association. Eur J Med Genet 2021; 64:104243. [PMID: 33971351 DOI: 10.1016/j.ejmg.2021.104243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 11/30/2022]
Abstract
G-proteins are ubiquitously expressed heterotrimeric proteins consisting of α, β and γ subunits and mediate G-protein coupled receptor signalling cascades. The β subunit is encoded by one of five highly similar paralogs (GNB1-GNB5, accordingly). The developmental importance of G-proteins is highlighted by the clinical relevance of variants in genes such as GNB1, which cause severe neurodevelopmental disease (NDD). Recently the candidacy of GNB2 was raised in association with NDD in an individual with a de novo variant affecting a codon conserved across paralogs and recurrently mutated in GNB1-related disease, c.229G>A p.(Gly77Arg), in association with global developmental delay, intellectual disability and dysmorphic features. Here, we report a patient with strikingly similar facial features and NDD in association with a de novo GNB2 variant affecting the same codon, c.229G>T p.(Gly77Trp). In addition, this individual has epilepsy and overgrowth. Our report is the second to implicate a de novo GNB2 variant with a severe yet variable NDD.
Collapse
Affiliation(s)
- Lisa A Lansdon
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, 2401 Gillham Road, Kansas City, MO, USA; Genomic Medicine Center, Children's Mercy-Kansas City, 2401 Gillham Road, Kansas City, MO, USA
| | - Emily A Fleming
- Division of Clinical Genetics, Children's Mercy-Kansas City, 2401 Gillham Road, Kansas City, MO, USA
| | - Florencia Del Viso
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, 2401 Gillham Road, Kansas City, MO, USA; Genomic Medicine Center, Children's Mercy-Kansas City, 2401 Gillham Road, Kansas City, MO, USA
| | - Bonnie R Sullivan
- Division of Clinical Genetics, Children's Mercy-Kansas City, 2401 Gillham Road, Kansas City, MO, USA; University of Missouri-Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, MO, USA
| | - Carol J Saunders
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, 2401 Gillham Road, Kansas City, MO, USA; Genomic Medicine Center, Children's Mercy-Kansas City, 2401 Gillham Road, Kansas City, MO, USA; University of Missouri-Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, MO, USA.
| |
Collapse
|
60
|
Gangfuß A, Yigit G, Altmüller J, Nürnberg P, Czeschik JC, Wollnik B, Bögershausen N, Burfeind P, Wieczorek D, Kaiser F, Roos A, Kölbel H, Schara-Schmidt U, Kuechler A. Intellectual disability associated with craniofacial dysmorphism, cleft palate, and congenital heart defect due to a de novo MEIS2 mutation: A clinical longitudinal study. Am J Med Genet A 2021; 185:1216-1221. [PMID: 33427397 DOI: 10.1002/ajmg.a.62070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 11/09/2022]
Abstract
Intellectual disability (ID) has an estimated prevalence of 1.5%-2%. Whole exome sequencing (WES) studies have identified a multitude of novel causative gene defects and have shown that sporadic ID cases result from de novo mutations in genes associated with ID. Here, we report on a 10-year-old girl, who has been regularly presented in our neuropediatric and genetic outpatient clinic. A median cleft palate and a heart defect were surgically corrected in infancy. Apart from ID, she has behavioral anomalies, muscular hypotonia, scoliosis, and hypermobile joints. The facial phenotype is characterized by arched eyebrows, mildly upslanting long palpebral fissures, prominent nasal tip, and large, protruding ears. Trio WES revealed a de novo missense variant in MEIS2 (c.998G>A; p.Arg333Lys). Haploinsufficiency of MEIS2 had been discussed as the most likely mechanism of the microdeletion 5q14-associated complex phenotype with ID, cleft palate, and heart defect. Recently, four studies including in total 17 individuals with intragenic MEIS2 variants were reported. Here we present the evolution of the clinical phenotype and compare with the data of known individuals.
Collapse
Affiliation(s)
- Andrea Gangfuß
- Department of Neuropediatrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Nina Bögershausen
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Burfeind
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, University Hospital Essen, University of Duisburg - Essen, Essen, Germany.,Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Frank Kaiser
- Institute of Human Genetics, University Hospital Essen, University of Duisburg - Essen, Essen, Germany
| | - Andreas Roos
- Department of Neuropediatrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Heike Kölbel
- Department of Neuropediatrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrike Schara-Schmidt
- Department of Neuropediatrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University of Duisburg - Essen, Essen, Germany
| |
Collapse
|
61
|
Lansdon LA, Saunders CJ. Genotype-phenotype correlation in GNB1-related neurodevelopmental disorder: Potential association of p.Leu95Pro with cleft palate. Am J Med Genet A 2021; 185:1341-1343. [PMID: 33427398 DOI: 10.1002/ajmg.a.62080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Lisa A Lansdon
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, Kansas City, Missouri, USA.,Center for Pediatric Genomic Medicine, Children's Mercy-Kansas City, Kansas City, Missouri, USA
| | - Carol J Saunders
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, Kansas City, Missouri, USA.,Center for Pediatric Genomic Medicine, Children's Mercy-Kansas City, Kansas City, Missouri, USA.,School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
62
|
Leonardi E, Bettella E, Pelizza MF, Aspromonte MC, Polli R, Boniver C, Sartori S, Milani D, Murgia A. Identification of SETBP1 Mutations by Gene Panel Sequencing in Individuals With Intellectual Disability or With "Developmental and Epileptic Encephalopathy". Front Neurol 2021; 11:593446. [PMID: 33391157 PMCID: PMC7772201 DOI: 10.3389/fneur.2020.593446] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022] Open
Abstract
SETBP1 mutations are associated with the Schinzel-Giedion syndrome (SGS), characterized by profound neurodevelopmental delay, typical facial features, and multiple congenital malformations (OMIM 269150). Refractory epilepsy is a common feature of SGS. Loss of function mutations have been typically associated with a distinct and milder phenotype characterized by intellectual disability and expressive speech impairment. Here we report three variants of SETBP1, two novel de novo truncating mutations, identified by NGS analysis of an Intellectual Disability gene panel in 600 subjects with non-specific neurodevelopmental disorders, and one missense identified by a developmental epilepsy gene panel tested in 56 pediatric epileptic cases. The three individuals carrying the identified SETBP1 variants presented mild to severe developmental delay and lacked the cardinal features of classical SGS. One of these subjects, carrying the c.1765C>T (p.Arg589*) mutation, had mild Intellectual Disability with speech delay; the second one carrying the c.2199_2203del (p.Glu734Alafs19*) mutation had generalized epilepsy, responsive to treatment, and moderate Intellectual Disability; the third patient showed a severe cognitive defects and had a history of drug resistant epilepsy with West syndrome evolved into a Lennox-Gastaut syndrome. This latter subject carries the missense c.2572G>A (p.Glu858Lys) variant, which is absent from the control population, reported as de novo in a subject with ASD, and located close to the SETBP1 hot spot for SGS-associated mutations. Our findings contribute to further characterizing the associated phenotypes and suggest inclusion of SETBP1 in the list of prioritized genes for the genetic diagnosis of overlapping phenotypes ranging from non-specific neurodevelopmental disorders to “developmental and epileptic encephalopathy” (DEE).
Collapse
Affiliation(s)
- Emanuela Leonardi
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| | - Elisa Bettella
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| | - Maria Federica Pelizza
- Paediatric Neurology and Neurophysiology Unit, Department of Woman and Child Health, University Hospital of Padova, Padua, Italy
| | - Maria Cristina Aspromonte
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| | - Roberta Polli
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| | - Clementina Boniver
- Paediatric Neurology and Neurophysiology Unit, Department of Woman and Child Health, University Hospital of Padova, Padua, Italy
| | - Stefano Sartori
- Paediatric Neurology and Neurophysiology Unit, Department of Woman and Child Health, University Hospital of Padova, Padua, Italy
| | - Donatella Milani
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Murgia
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Padua, Italy.,Fondazione Istituto di Ricerca Pediatrica (IRP), Città Della Speranza, Padua, Italy
| |
Collapse
|
63
|
Nagy O, Kárteszi J, Elmont B, Ujfalusi A. Case Report: Expressive Speech Disorder in a Family as a Hallmark of 7q31 Deletion Involving the FOXP2 Gene. Front Pediatr 2021; 9:664548. [PMID: 34490154 PMCID: PMC8417935 DOI: 10.3389/fped.2021.664548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Pathogenic variants of FOXP2 gene were identified first as a monogenic cause of childhood apraxia of speech (CAS), a complex disease that is associated with an impairment of the precision and consistency of movements underlying speech, due to deficits in speech motor planning and programming. FOXP2 variants are heterogenous; single nucleotide variants and small insertions/deletions, intragenic and large-scale deletions, as well as disruptions by structural chromosomal aberrations and uniparental disomy of chromosome 7 are the most common types of mutations. FOXP2-related speech and language disorders can be classified as "FOXP2-only," wherein intragenic mutations result in haploinsufficiency of the FOXP2 gene, or "FOXP2-plus" generated by structural genomic variants (i.e., translocation, microdeletion, etc.) and having more likely developmental and behavioral disturbances adjacent to speech and language impairment. The additional phenotypes are usually related to the disruption/deletion of multiple genes neighboring FOXP2 in the affected chromosomal region. We report the clinical and genetic findings in a family with four affected individuals having expressive speech impairment as the dominant symptom and additional mild dysmorphic features in three. A 7.87 Mb interstitial deletion of the 7q31.1q31.31 region was revealed by whole genome diagnostic microarray analysis in the proband. The FOXP2 gene deletion was confirmed by multiplex ligation-dependent probe amplification (MLPA), and all family members were screened by this targeted method. The FOXP2 deletion was detected in the mother and two siblings of the proband using MLPA. Higher resolution microarray was performed in all the affected individuals to refine the extent and breakpoints of the 7q31 deletion and to exclude other pathogenic copy number variants. To the best of our knowledge, there are only two family-studies reported to date with interstitial 7q31 deletion and showing the core phenotype of FOXP2 haploinsufficiency. Our study may contribute to a better understanding of the behavioral phenotype of FOXP2 disruptions and aid in the identification of such patients. We illustrate the importance of a targeted MLPA analysis suitable for the detection of FOXP2 deletion in selected cases with a specific phenotype of expressive speech disorder. The "phenotype first" and targeted diagnostic strategy can improve the diagnostic yield of speech disorders in the routine clinical practice.
Collapse
Affiliation(s)
- Orsolya Nagy
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Beatrix Elmont
- Department of Pediatrics, Hospital of Zala County, Zalaegerszeg, Hungary
| | - Anikó Ujfalusi
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
64
|
Su JX, Velsher LS, Juusola J, Nezarati MM. MEIS2 sequence variant in a child with intellectual disability and cardiac defects: Expansion of the phenotypic spectrum and documentation of low-level mosaicism in an unaffected parent. Am J Med Genet A 2020; 185:300-303. [PMID: 33091211 DOI: 10.1002/ajmg.a.61929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 11/07/2022]
Abstract
Deletions and pathogenic sequence variants in Myeloid Ecotropic Insertion Site 2 (MEIS2) gene have been reported to cause a recognizable triad of intellectual disability, congenital heart malformations, and palatal defects. To date, 18 individuals with de novo pathogenic sequence variants in MEIS2 have been reported in the literature, most with all three cardinal features. We recently saw a young boy, almost 3 years of age, who was known to have mosaic XYY syndrome (47,XYY [23]/46,XY[7]). He presented with atrial and ventricular septal defects, developmental delay, facial dysmorphism, gastroesophageal reflux, undescended testicle, a buried penis with penoscrotal transposition, primary neutropenia, and a branchial cleft sinus. Whole-exome sequencing identified a previously reported in-frame pathogenic deletion (c.998_1000delGAA; p.R333del; NM_170674.4) in MEIS2. His unaffected father was confirmed to have low-level mosaicism for the same MEIS2 variant. The proband represents the 19th reported individual with a pathogenic sequence variant in MEIS2 and expands the phenotypic spectrum to include primary neutropenia, branchial anomalies, and complex genital anomalies. Furthermore, to our knowledge this is the first reported case of mosaicism for a variant in this gene in an apparently unaffected parent. This finding would have implications for recurrence risk counseling for families.
Collapse
Affiliation(s)
- Julia X Su
- Genetics Program, North York General Hospital, Toronto, Canada
| | - Lea S Velsher
- Genetics Program, North York General Hospital, Toronto, Canada.,Department of Laboratory Medicine, University of Toronto, Toronto, Canada
| | | | - Marjan M Nezarati
- Genetics Program, North York General Hospital, Toronto, Canada.,Department of Paediatrics, University of Toronto, Toronto, Canada
| |
Collapse
|
65
|
Savitsky M, Solis GP, Kryuchkov M, Katanaev VL. Humanization of Drosophila Gαo to Model GNAO1 Paediatric Encephalopathies. Biomedicines 2020; 8:E395. [PMID: 33036271 PMCID: PMC7599900 DOI: 10.3390/biomedicines8100395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
Several hundred genes have been identified to contribute to epilepsy-the disease affecting 65 million people worldwide. One of these genes is GNAO1 encoding Gαo, the major neuronal α-subunit of heterotrimeric G proteins. An avalanche of dominant de novo mutations in GNAO1 have been recently described in paediatric epileptic patients, suffering, in addition to epilepsy, from motor dysfunction and developmental delay. Although occurring in amino acids conserved from humans to Drosophila, these mutations and their functional consequences have only been poorly analysed at the biochemical or neuronal levels. Adequate animal models to study the molecular aetiology of GNAO1 encephalopathies have also so far been lacking. As the first step towards modeling the disease in Drosophila, we here describe the humanization of the Gαo locus in the fruit fly. A two-step CRISPR/Cas9-mediated replacement was conducted, first substituting the coding exons 2-3 of Gαo with respective human GNAO1 sequences. At the next step, the remaining exons 4-7 were similarly replaced, keeping intact the gene Cyp49a1 embedded in between, as well as the non-coding exons, exon 1 and the surrounding regulatory sequences. The resulting flies, homozygous for the humanized GNAO1 loci, are viable and fertile without any visible phenotypes; their body weight, locomotion, and longevity are also normal. Human Gαo-specific antibodies confirm the endogenous-level expression of the humanized Gαo, which fully replaces the Drosophila functions. The genetic model we established will make it easy to incorporate encephalopathic GNAO1 mutations and will permit intensive investigations into the molecular aetiology of the human disease through the powerful toolkit of Drosophila genetics.
Collapse
Affiliation(s)
- Mikhail Savitsky
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.S.); (G.P.S.); (M.K.)
| | - Gonzalo P. Solis
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.S.); (G.P.S.); (M.K.)
| | - Mikhail Kryuchkov
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.S.); (G.P.S.); (M.K.)
| | - Vladimir L. Katanaev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.S.); (G.P.S.); (M.K.)
- School of Biomedicine, Far Eastern Federal University, 690690 Vladivostok, Russia
| |
Collapse
|
66
|
Rieger M, Krumbiegel M, Reuter MS, Schützenberger A, Reis A, Zweier C. 7q31.2q31.31 deletion downstream of FOXP2 segregating in a family with speech and language disorder. Am J Med Genet A 2020; 182:2737-2741. [PMID: 32885567 DOI: 10.1002/ajmg.a.61838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 11/10/2022]
Abstract
Chromosomal 7q31 deletions have been described in individuals with variable neurodevelopmental phenotypes including speech and language impairment. These copy number variants usually encompass FOXP2, haploinsufficiency of which represents a widely acknowledged cause for specific speech and language disorders. By chromosomal microarray analysis we identified a 4.7 Mb microdeletion at 7q31.2q31.31 downstream of FOXP2 in three family members presenting with variable speech, language and neurodevelopmental phenotypes. The index individual showed delayed speech development with impaired speech production, reduced language comprehension, and additionally learning difficulties, microcephaly, and attention deficit. His younger sister had delayed speech development with impaired speech production and partially reduced language comprehension. Their mother had attended a school for children with speech and language deficiencies and presented with impaired articulation. The deletion had occurred de novo in the mother, includes 15 protein-coding genes and is located in close proximity to the 3' end of FOXP2. Though a novel locus at 7q31.2q31.31 associated with mild neurodevelopmental and more prominent speech and language impairment is possible, the close phenotypic overlap with FOXP2-associated speech and language disorder rather suggests a positional effect on FOXP2 expression and function.
Collapse
Affiliation(s)
- Melissa Rieger
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Miriam S Reuter
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anne Schützenberger
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
67
|
den Hoed J, Fisher SE. Genetic pathways involved in human speech disorders. Curr Opin Genet Dev 2020; 65:103-111. [PMID: 32622339 DOI: 10.1016/j.gde.2020.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
Rare genetic variants that disrupt speech development provide entry points for deciphering the neurobiological foundations of key human capacities. The value of this approach is illustrated by FOXP2, a transcription factor gene that was implicated in speech apraxia, and subsequently investigated using human cell-based systems and animal models. Advances in next-generation sequencing, coupled to de novo paradigms, facilitated discovery of etiological variants in additional genes in speech disorder cohorts. As for other neurodevelopmental syndromes, gene-driven studies show blurring of boundaries between diagnostic categories, with some risk genes shared across speech disorders, intellectual disability and autism. Convergent evidence hints at involvement of regulatory genes co-expressed in early human brain development, suggesting that etiological pathways could be amenable for investigation in emerging neural models such as cerebral organoids.
Collapse
Affiliation(s)
- Joery den Hoed
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands; International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands.
| |
Collapse
|