51
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative illness with both motor and nonmotor symptoms. Deep brain stimulation (DBS) is an established safe neurosurgical symptomatic therapy for eligible patients with advanced disease in whom medical treatment fails to provide adequate symptom control and good quality of life, or in whom dopaminergic medications induce severe side effects such as dyskinesias. DBS can be tailored to the patient's symptoms and targeted to various nodes along the basal ganglia-thalamus circuitry, which mediates the various symptoms of the illness; DBS in the thalamus is most efficient for tremors, and DBS in the pallidum most efficient for rigidity and dyskinesias, whereas DBS in the subthalamic nucleus (STN) can treat both tremors, akinesia, rigidity and dyskinesias, and allows for decrease in doses of medications even in patients with advanced stages of the disease, which makes it the preferred target for DBS. However, DBS in the STN assumes that the patient is not too old, with no cognitive decline or relevant depression, and does not exhibit severe and medically resistant axial symptoms such as balance and gait disturbances, and falls. Dysarthria is the most common side effect of DBS, regardless of the brain target. DBS has a long-lasting effect on appendicular symptoms, but with progression of disease, nondopaminergic axial features become less responsive to DBS. DBS for PD is highly specialised; to enable adequate selection and follow-up of patients, DBS requires dedicated multidisciplinary teams of movement disorder neurologists, functional neurosurgeons, specialised DBS nurses and neuropsychologists.
Collapse
Affiliation(s)
- Marwan Hariz
- Department of Clinical Neuroscience, University Hospital of Umeå, Umeå, Sweden.,UCL-Queen Square Institute of Neurology, London, UK
| | - Patric Blomstedt
- Department of Clinical Neuroscience, University Hospital of Umeå, Umeå, Sweden
| |
Collapse
|
52
|
Bove F, Genovese D, Moro E. Developments in the mechanistic understanding and clinical application of deep brain stimulation for Parkinson's disease. Expert Rev Neurother 2022; 22:789-803. [PMID: 36228575 DOI: 10.1080/14737175.2022.2136030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION. Deep brain stimulation (DBS) is a life-changing treatment for patients with Parkinson's disease (PD) and gives the unique opportunity to directly explore how basal ganglia work. Despite the rapid technological innovation of the last years, the untapped potential of DBS is still high. AREAS COVERED. This review summarizes the developments in the mechanistic understanding of DBS and the potential clinical applications of cutting-edge technological advances. Rather than a univocal local mechanism, DBS exerts its therapeutic effects through several multimodal mechanisms and involving both local and network-wide structures, although crucial questions remain unexplained. Nonetheless, new insights in mechanistic understanding of DBS in PD have provided solid bases for advances in preoperative selection phase, prediction of motor and non-motor outcomes, leads placement and postoperative stimulation programming. EXPERT OPINION. DBS has not only strong evidence of clinical effectiveness in PD treatment, but technological advancements are revamping its role of neuromodulation of brain circuits and key to better understanding PD pathophysiology. In the next few years, the worldwide use of new technologies in clinical practice will provide large data to elucidate their role and to expand their applications for PD patients, providing useful insights to personalize DBS treatment and follow-up.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Danilo Genovese
- Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, New York University School of Medicine, New York, New York, USA
| | - Elena Moro
- Grenoble Alpes University, CHU of Grenoble, Division of Neurology, Grenoble, France.,Grenoble Institute of Neurosciences, INSERM, U1216, Grenoble, France
| |
Collapse
|
53
|
Axial impairment and falls in Parkinson’s disease: 15 years of subthalamic deep brain stimulation. NPJ Parkinsons Dis 2022; 8:121. [PMID: 36153351 PMCID: PMC9509398 DOI: 10.1038/s41531-022-00383-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractIn this retrospective study, we longitudinally analyzed axial impairment and falls in people with Parkinson’s disease (PD) and subthalamic nucleus deep brain stimulation (STN-DBS). Axial scores and falling frequency were examined at baseline, and 1, 10, and 15 years after surgery. Preoperative demographic and clinical data, including PD duration and severity, phenotype, motor and cognitive scales, medications, and vascular changes on neuroimaging were examined as possible risk factors through Kaplan–Meier and Cox regression analyses. Of 302 individuals examined before and at 1 year after surgery, 102 and 57 were available also at 10 and 15 years of follow-up, respectively. Axial scores were similar at baseline and at 1 year but worsened at 10 and 15 years. The prevalence rate of frequent fallers progressively increased from baseline to 15 years. Preoperative axial scores, frontal dysfunction and age at PD onset were risk factors for axial impairment progression after surgery. Axial scores, akinetic/rigid phenotype, age at disease onset and disease duration at surgery predicted frequent falls. Overall, axial signs progressively worsened over the long-term period following STN-DBS, likely related to the progression of PD, especially in a subgroup of subjects with specific risk factors.
Collapse
|
54
|
Abusrair AH, Elsekaily W, Bohlega S. Tremor in Parkinson's Disease: From Pathophysiology to Advanced Therapies. Tremor Other Hyperkinet Mov (N Y) 2022; 12:29. [PMID: 36211804 PMCID: PMC9504742 DOI: 10.5334/tohm.712] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
Background Tremor is one of the most prevalent symptoms in Parkinson's Disease (PD). The progression and management of tremor in PD can be challenging, as response to dopaminergic agents might be relatively poor, particularly in patients with tremor-dominant PD compared to the akinetic/rigid subtype. In this review, we aim to highlight recent advances in the underlying pathogenesis and treatment modalities for tremor in PD. Methods A structured literature search through Embase was conducted using the terms "Parkinson's Disease" AND "tremor" OR "etiology" OR "management" OR "drug resistance" OR "therapy" OR "rehabilitation" OR "surgery." After initial screening, eligible articles were selected with a focus on published literature in the last 10 years. Discussion The underlying pathophysiology of tremor in PD remains complex and incompletely understood. Neurodegeneration of dopaminergic neurons in the retrorubral area, in addition to high-power neural oscillations in the cerebello-thalamo-cortical circuit and the basal ganglia, play a major role. Levodopa is the first-line therapeutic option for all motor symptoms, including tremor. The addition of dopamine agonists or anticholinergics can lead to further tremor reduction. Botulinum toxin injection is an effective alternative for patients with pharmacological-resistant tremor who are not seeking advanced therapies. Deep brain stimulation is the most well-established advanced therapy owing to its long-term efficacy, reversibility, and effectiveness in other motor symptoms and fluctuations. Magnetic resonance-guided focused ultrasound is a promising modality, which has the advantage of being incisionless. Cortical and peripheral electrical stimulation are non-invasive innovatory techniques that have demonstrated good efficacy in suppressing intractable tremor.
Collapse
Affiliation(s)
- Ali H. Abusrair
- Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Neurology, Department of Internal Medicine, Qatif Health Network, Qatif, Saudi Arabia
| | - Walaa Elsekaily
- College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
| | - Saeed Bohlega
- Movement Disorders Program, Neurosciences Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
55
|
Henry KA, Singh R, Zhang N, Lyons MK, McNett K, Neal MT, Mehta SH. Effect of STN/GPi DBS on swallowing function in Parkinson's disease as assessed by Video fluoroscopy: A retrospective study. Parkinsonism Relat Disord 2022; 103:136-140. [PMID: 36115199 DOI: 10.1016/j.parkreldis.2022.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The goal of the study is to objectively assess changes in swallowing (using "gold standard" video fluoroscopy (VFS)) following Deep Brain Stimulation (DBS) surgery in Parkinson's disease (PD) patients. There are few studies on the effect of DBS on swallowing in PD. We use VFS to assess swallowing function pre- and post-DBS. METHODS Our study participants underwent pre- and post-DBS VFS (6 months later) in the practically defined on state. We converted VFS reports into an objective numerical scale. Higher scores denote more severe dysphagia. We used non-parametric test (Wilcoxon signed rank test) to test if the difference between pre- and post-DBS swallow score is significantly different from 0. RESULTS Fifty-four PD patients completed pre- and post-DBS evaluations. Twenty-five patients had bilateral GPi DBS (46.3%) and 29 had bilateral STN DBS (53.7%). The mean (SD) post-DBS swallow score is 1.9 (2.0) and pre-DBS swallow score is 1.6 (1.3). The difference is not significantly different from 0 (p = 0.16). In our study, swallow scores for majority of the patients (39 out of 54) did not change after DBS regardless of lead location. Six (11.1%) PD patients had post-DBS swallow score decrease on average by 1 (SD: 0) points. 9 (16.7%) patients had post-DBS swallow score increase on average by 2.7 (SD: 2.3) points. CONCLUSION There was no statistically significant change in the swallow scores pre-and 6 months post-DBS with VFS when assessed in the practically defined on state, regardless of the site of bilateral lead implantation. Hence, we believe that DBS does not improve or reduce swallow function in a clinically meaningful way in PD.
Collapse
Affiliation(s)
- Katharine A Henry
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Rohin Singh
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Nan Zhang
- Department of Biostatics, Mayo Clinic, Scottsdale, AZ, USA
| | - Mark K Lyons
- Department of Neurosurgery, Mayo Clinic, Scottsdale, AZ, USA
| | - Karen McNett
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
| | - Matthew T Neal
- Department of Neurosurgery, Mayo Clinic, Scottsdale, AZ, USA
| | | |
Collapse
|
56
|
Freezing of Gait in Parkinson’s Disease Patients Treated with Bilateral Subthalamic Nucleus Deep Brain Stimulation: A Long-Term Overview. Biomedicines 2022; 10:biomedicines10092214. [PMID: 36140318 PMCID: PMC9496255 DOI: 10.3390/biomedicines10092214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bilateral subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment in advanced Parkinson’s Disease (PD). However, the effects of STN-DBS on freezing of gait (FOG) are still debated, particularly in the long-term follow-up (≥5-years). The main aim of the current study is to evaluate the long-term effects of STN-DBS on FOG. Twenty STN-DBS treated PD patients were included. Each patient was assessed before surgery through a detailed neurological evaluation, including FOG score, and revaluated in the long-term (median follow-up: 5-years) in different stimulation and drug conditions. In the long term follow-up, FOG score significantly worsened in the off-stimulation/off-medication condition compared with the pre-operative off-medication assessment (z = −1.930; p = 0.05) but not in the on-stimulation/off-medication (z = −0.357; p = 0.721). There was also a significant improvement of FOG at long-term assessment by comparing on-stimulation/off-medication and off-stimulation/off-medication conditions (z = −2.944; p = 0.003). These results highlight the possible beneficial long-term effects of STN-DBS on FOG.
Collapse
|
57
|
Park HR, Im HJ, Park J, Yoon BW, Lim YH, Song EJ, Kim KR, Lee JM, Park K, Park KH, Park HJ, Shin JH, Woo KA, Lee JY, Park S, Kim HJ, Jeon B, Paek SH. Long-Term Outcomes of Bilateral Subthalamic Nucleus Deep Brain Stimulation for Patients With Parkinson's Disease: 10 Years and Beyond. Neurosurgery 2022; 91:726-733. [PMID: 36084204 DOI: 10.1227/neu.0000000000002117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/05/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) represents an effective treatment for severe Parkinson's disease (PD), but little is known about the long-term benefit. OBJECTIVE To investigate the survival rate and long-term outcome of DBS. METHODS We investigated all 81 patients including 37 males and 44 females who underwent bilateral STN DBS from March 2005 to March 2008 at a single institution. The current survival status of the patients was investigated. Preoperative and postoperative follow-up assessments were analyzed. RESULTS The mean age at the time of surgery was 62 (range 27-82) years, and the median clinical follow-up duration was 145 months. Thirty-five patients (43%) died during the follow-up period. The mean duration from DBS surgery to death was 110.46 ± 40.8 (range 0-155) months. The cumulative survival rate is as follows: 98.8 ± 1.2% (1 year), 95.1 ± 2.4% (5 years), and 79.0 ± 4.5% (10 years). Of the 81 patients, 33 (40%) were ambulatory up to more than 11 years. The Unified Parkinson's Disease Rating Scale (UPDRS) score was significantly improved until 5 years after surgery although it showed a tendency to increase again after 10 years. The patient group with both electrodes located within the STN showed a higher rate of survival and maintained ambulation. CONCLUSION STN DBS is a safe and effective treatment for patients with advanced PD. This study based on the long-term follow-up of large patient populations can be used to elucidate the long-term fate of patients who underwent bilateral STN DBS for PD.
Collapse
Affiliation(s)
- Hye Ran Park
- Department of Neurosurgery, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Jeongbin Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Byung Woo Yoon
- Department of Internal Medicine, School of Medicine, Chung-Ang University, Seoul, Korea
| | - Yong Hoon Lim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Eun Jin Song
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Kyung Ran Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Jae Meen Lee
- Department of Neurosurgery, Pusan National University Hospital, Busan, Korea
| | - Kawngwoo Park
- Department of Neurosurgery, Gachon University Gil Medical Center, Incheon, Korea
| | - Kwang Hyon Park
- Department of Neurosurgery, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Hyun Joo Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Jung-Hwan Shin
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung Ah Woo
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jee Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul, Korea
| | - Suyeon Park
- Department of Biostatistics, Soonchunhyang University Seoul Hospital, Seoul, Korea.,Department of Applied Statistics, Chung-Ang University, Seoul, Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea.,Clinical Research Institute, Seoul National University Hospital, Seoul, Korea.,Hypoxia/Ischemia Disease Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Advanced Institutes of Convergence Technology, Suwon-si, Gyeonggi-do, Korea
| |
Collapse
|
58
|
Potel SR, Marceglia S, Meoni S, Kalia SK, Cury RG, Moro E. Advances in DBS Technology and Novel Applications: Focus on Movement Disorders. Curr Neurol Neurosci Rep 2022; 22:577-588. [PMID: 35838898 DOI: 10.1007/s11910-022-01221-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is an established treatment in several movement disorders, including Parkinson's disease, dystonia, tremor, and Tourette syndrome. In this review, we will review and discuss the most recent findings including but not limited to clinical evidence. RECENT FINDINGS New DBS technologies include novel hardware design (electrodes, cables, implanted pulse generators) enabling new stimulation patterns and adaptive DBS which delivers potential stimulation tailored to moment-to-moment changes in the patient's condition. Better understanding of movement disorders pathophysiology and functional anatomy has been pivotal for studying the effects of DBS on the mesencephalic locomotor region, the nucleus basalis of Meynert, the substantia nigra, and the spinal cord. Eventually, neurosurgical practice has improved with more accurate target visualization or combined targeting. A rising research domain emphasizes bridging neuromodulation and neuroprotection. Recent advances in DBS therapy bring more possibilities to effectively treat people with movement disorders. Future research would focus on improving adaptive DBS, leading more clinical trials on novel targets, and exploring neuromodulation effects on neuroprotection.
Collapse
Affiliation(s)
- Sina R Potel
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Sara Marceglia
- Dipartimento Di Ingegneria E Architettura, Università Degli Studi Di Trieste, Trieste, Italy
| | - Sara Meoni
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France
| | - Suneil K Kalia
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Rubens G Cury
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Elena Moro
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France.
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France.
| |
Collapse
|
59
|
Chu C, He N, Zeljic K, Zhang Z, Wang J, Li J, Liu Y, Zhang Y, Sun B, Li D, Yan F, Zhang C, Liu C. Subthalamic and pallidal stimulation in Parkinson's disease induce distinct brain topological reconstruction. Neuroimage 2022; 255:119196. [PMID: 35413446 DOI: 10.1016/j.neuroimage.2022.119196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022] Open
Abstract
The subthalamic nucleus (STN) and globus pallidus internus (GPi) are the two most common and effective target brain areas for deep brain stimulation (DBS) treatment of advanced Parkinson's disease. Although DBS has been shown to restore functional neural circuits of this disorder, the changes in topological organization associated with active DBS of each target remain unknown. To investigate this, we acquired resting-state functional magnetic resonance imaging (fMRI) data from 34 medication-free patients with Parkinson's disease that had DBS electrodes implanted in either the subthalamic nucleus or internal globus pallidus (n = 17 each), in both ON and OFF DBS states. Sixteen age-matched healthy individuals were used as a control group. We evaluated the regional information processing capacity and transmission efficiency of brain networks with and without stimulation, and recorded how stimulation restructured the brain network topology of patients with Parkinson's disease. For both targets, the variation of local efficiency in motor brain regions was significantly correlated (p < 0.05) with improvement rate of the Uniform Parkinson's Disease Rating Scale-III scores, with comparable improvements in motor function for the two targets. However, non-motor brain regions showed changes in topological organization during active stimulation that were target-specific. Namely, targeting the STN decreased the information transmission of association, limbic and paralimbic regions, including the inferior frontal gyrus angle, insula, temporal pole, superior occipital gyri, and posterior cingulate, as evidenced by the simultaneous decrease of clustering coefficient and local efficiency. GPi-DBS had a similar effect on the caudate and lenticular nuclei, but enhanced information transmission in the cingulate gyrus. These effects were not present in the DBS-OFF state for GPi-DBS, but persisted for STN-DBS. Our results demonstrate that DBS to the STN and GPi induce distinct brain network topology reconstruction patterns, providing innovative theoretical evidence for deciphering the mechanism through which DBS affects disparate targets in the human brain.
Collapse
Affiliation(s)
- Chunguang Chu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kristina Zeljic
- School of Health Sciences, City, University of London, London, EC1V 0HB, UK
| | - Zhen Zhang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jun Li
- School of Information Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youmin Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinical Neuroscience Center, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinical Neuroscience Center, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinical Neuroscience Center, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Research Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| | - Chen Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China.
| |
Collapse
|
60
|
Deuschl G, Antonini A, Costa J, Śmiłowska K, Berg D, Corvol J, Fabbrini G, Ferreira J, Foltynie T, Mir P, Schrag A, Seppi K, Taba P, Ruzicka E, Selikhova M, Henschke N, Villanueva G, Moro E. European Academy of Neurology/Movement Disorder Society ‐ European Section guideline on the treatment of Parkinson's disease: I. Invasive therapies. Eur J Neurol 2022; 29:2580-2595. [DOI: 10.1111/ene.15386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Günther Deuschl
- Department of Neurology, UKSH‐Kiel Campus Christian‐Albrechts‐University Kiel Germany
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neuroscience University of Padua Padua Italy
| | - Joao Costa
- Faculdade de Medicina da Universidade de Lisboa Lisbon Portugal
| | - Katarzyna Śmiłowska
- Department of Neurology, UKSH‐Kiel Campus Christian‐Albrechts‐University Kiel Germany
| | - Daniela Berg
- Department of Neurology, UKSH‐Kiel Campus Christian‐Albrechts‐University Kiel Germany
| | - Jean‐Christophe Corvol
- Institut du Cerveau–Paris Brain Institute Assistance Publique Hôpitaux de Paris Pitié‐Salpêtrière Hospital Department of Neurology, Centre d'Investigation Clinique Neurosciences Sorbonne Université Paris France
| | - Giovanni Fabbrini
- Department Human Neurosciences Sapienza University of Rome Rome Italy
- Neuromed Rome Italy
| | - Joaquim Ferreira
- Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
- Instituto de Medicina Molecular João Lobo Antunes Lisbon Portugal
- Campus Neurológico Torres Vedras Portugal
| | - Tom Foltynie
- Department of Clinical & Movement Neurosciences Institute of Neurology London UK
| | - Pablo Mir
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/Universidad de Sevilla Seville Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Madrid Spain
- Departamento de Medicina Facultad de Medicina Universidad de Sevilla Seville Spain
| | - Annette Schrag
- Institute of Neurology, University Clinic London London UK
| | - Klaus Seppi
- Klinik f. Neurologie Medizinische Universität Innsbruck Innsbruck Austria
| | - Pille Taba
- Department of Neurology and Neurosurgery, Institute of Clinical Medicine University of Tartu Tartu Estonia
- Tartu University Hospital Tartu Estonia
| | - Evzen Ruzicka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine Charles University and General University Hospital in Prague Prague Czechia
| | - Marianna Selikhova
- Department of Neurology Pirogov Russian National Research Medical University Moscow Russia
| | | | | | - Elena Moro
- Division of Neurology, Grenoble, Grenoble Institute of Neurosciences Grenoble Alpes University Grenoble France
| |
Collapse
|
61
|
Deuschl G, Antonini A, Costa J, Śmiłowska K, Berg D, Corvol J, Fabbrini G, Ferreira J, Foltynie T, Mir P, Schrag A, Seppi K, Taba P, Ruzicka E, Selikhova M, Henschke N, Villanueva G, Moro E. European Academy of Neurology/Movement Disorder Society‐European Section Guideline on the Treatment of Parkinson's Disease: I. Invasive Therapies. Mov Disord 2022; 37:1360-1374. [DOI: 10.1002/mds.29066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Affiliation(s)
- Günther Deuschl
- Department of Neurology, UKSH‐Kiel Campus Christian‐Albrechts‐University Kiel Germany
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neuroscience University of Padua Padua Italy
| | - Joao Costa
- Faculdade de Medicina da Universidade de Lisboa Lisbon Portugal
| | - Katarzyna Śmiłowska
- Department of Neurology, UKSH‐Kiel Campus Christian‐Albrechts‐University Kiel Germany
| | - Daniela Berg
- Department of Neurology, UKSH‐Kiel Campus Christian‐Albrechts‐University Kiel Germany
| | - Jean‐Christophe Corvol
- Institut du Cerveau‐Paris Brain Institute, Assistance Publique Hôpitaux de Paris, Pitié‐Salpêtrière Hospital, Department of Neurology, Centre d'Investigation Clinique Neurosciences Sorbonne Université Paris France
| | - Giovanni Fabbrini
- Department Human Neurosciences Sapienza University of Rome Rome Italy
- IRCCS Neuromed Rome Italy
| | - Joaquim Ferreira
- Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
- Instituto de Medicina Molecular João Lobo Antunes Lisbon Portugal
- Campus Neurológico Torres Vedras Portugal
| | - Tom Foltynie
- Department of Clinical & Movement Neurosciences Institute of Neurology London UK
| | - Pablo Mir
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/Universidad de Sevilla Seville Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Madrid Spain
- Departamento de Medicina Facultad de Medicina Universidad de Sevilla Seville Spain
| | - Annette Schrag
- Institute of Neurology, University Clinic London London UK
| | - Klaus Seppi
- Klinik f. Neurologie Medizinische Universität Innsbruck Innsbruck Austria
| | - Pille Taba
- Department of Neurology and Neurosurgery, Institute of Clinical Medicine University of Tartu Tartu Estonia
- Tartu University Hospital Tartu Estonia
| | - Evzen Ruzicka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine Charles University and General University Hospital in Prague Prague Czechia
| | | | | | | | - Elena Moro
- Division of Neurology, Grenoble, Grenoble Institute of Neurosciences Grenoble Alpes University Grenoble France
| |
Collapse
|
62
|
Intermuscular coherence as a biomarker of subthalamic nucleus deep brain stimulation efficacy in Parkinson’s disease. Clin Neurophysiol 2022; 142:36-43. [DOI: 10.1016/j.clinph.2022.07.489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
|
63
|
Bove F, Cavallieri F, Castrioto A, Meoni S, Schmitt E, Bichon A, Lhommée E, Pélissier P, Kistner A, Chevrier E, Seigneuret E, Chabardès S, Valzania F, Fraix V, Moro E. Does Motor Symptoms Asymmetry Predict Motor Outcome of Subthalamic Deep Brain Stimulation in Parkinson's Disease Patients? Front Hum Neurosci 2022; 16:931858. [PMID: 35799771 PMCID: PMC9253299 DOI: 10.3389/fnhum.2022.931858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Background In Parkinson's disease (PD), the side of motor symptoms onset may influence disease progression, with a faster motor symptom progression in patients with left side lateralization. Moreover, worse neuropsychological outcomes after subthalamic nucleus deep brain stimulation (STN-DBS) have been described in patients with predominantly left-sided motor symptoms. The objective of this study was to evaluate if the body side of motor symptoms onset may predict motor outcome of bilateral STN-DBS. Methods This retrospective study included all consecutive PD patients treated with bilateral STN-DBS at Grenoble University Hospital from 1993 to 2015. Demographic, clinical and neuroimaging data were collected before (baseline condition) and 1 year after surgery (follow-up condition). The predictive factors of motor outcome at one-year follow-up, measured by the percentage change in the MDS-UPDRS-III score, were evaluated through univariate and multivariate linear regression analysis. Results A total of 233 patients were included with one-year follow-up after surgery [143 males (61.40%); 121 (51.90 %) right body onset; 112 (48.10%) left body onset; mean age at surgery, 55.31 ± 8.44 years; mean disease duration, 11.61 ± 3.87]. Multivariate linear regression analysis showed that the left side of motor symptoms onset did not predict motor outcome (β = 0.093, 95% CI = −1.967 to 11.497, p = 0.164). Conclusions In this retrospective study, the body side of motor symptoms onset did not significantly influence the one-year motor outcome in a large cohort of PD patients treated with bilateral STN-DBS.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Cavallieri
- Neurology Unit, Department of Neuromotor and Rehabilitation, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- *Correspondence: Francesco Cavallieri
| | - Anna Castrioto
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Sara Meoni
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Emmanuelle Schmitt
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Amélie Bichon
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Eugénie Lhommée
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Pierre Pélissier
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Andrea Kistner
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Eric Chevrier
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Eric Seigneuret
- Division of Neurosurgery, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Stephan Chabardès
- Division of Neurosurgery, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Franco Valzania
- Neurology Unit, Department of Neuromotor and Rehabilitation, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Valerie Fraix
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Elena Moro
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
64
|
Weill C, Gallant A, Lintsky E, Dienstag A, Israel Z, Arkadir D. Cognitive effects of deep brain stimulation in GBA-related Parkinson's disease. Ann Neurol 2022; 92:344-345. [PMID: 35686430 DOI: 10.1002/ana.26432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Caroline Weill
- Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
| | - Akiva Gallant
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eduard Lintsky
- Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
| | - Aryeh Dienstag
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Psychiatry, Hadassah Medical Center, Jerusalem, Israel
| | - Zvi Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - David Arkadir
- Department of Neurology, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
65
|
Castrioto A, Debû B, Cousin E, Pelissier P, Lhommée E, Bichon A, Schmitt E, Kistner A, Meoni S, Seigneuret E, Chabardes S, Krack P, Moro E, Fraix V. Long-term independence and quality of life after subthalamic stimulation in Parkinson's disease. Eur J Neurol 2022; 29:2645-2653. [PMID: 35666167 PMCID: PMC9543065 DOI: 10.1111/ene.15436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
Background and purpose Studies on long‐term nonmotor outcomes of subthalamic nucleus stimulation in Parkinson disease (PD) are scarce. This study reports on very long‐term non‐motor and motor outcomes in one of the largest cohorts of people with advanced PD, treated for >10 years with subthalamic nucleus stimulation. The main outcome was to document the evolution of independence in activities of daily living. The secondary outcomes were to measure the change in quality of life, as well as non‐motor and motor outcomes. Methods Patients were studied preoperatively, at 1 year, and beyond 10 years after subthalamic stimulation with an established protocol including motor, non‐motor, and neuropsychological assessments. Results Eighty‐five people with PD were included. Independence scores in the off‐medication condition (measured with the Schwab & England Activities of Daily Living Scale) as well as quality of life (measured with the Parkinson's Disease Questionnaire [PDQ]‐37) remained improved at longest follow‐up compared to preoperatively (respectively, p < 0.001, p = 0.015). Cognitive scores, measured with the Mattis Dementia Rating Scale, significantly worsened compared to before and 1 year after surgery (p < 0.001), without significant change in depression, measured with the Beck Depression Inventory. Motor fluctuations, dyskinesias, and off dystonia remained improved at longest follow‐up (p < 0.001), with a significant reduction in dopaminergic treatment (45%, p < 0.001). Conclusions This study highlights the long‐term improvement of subthalamic stimulation on independence and quality of life, despite the progression of disease and the occurrence of levodopa‐resistant symptoms.
Collapse
Affiliation(s)
- Anna Castrioto
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Bettina Debû
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Emilie Cousin
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000 Grenoble, France.,Univ. Grenoble Alpes, UMS IRMaGe CHU Grenoble, 38000, Grenoble, France
| | - Pierre Pelissier
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Eugénie Lhommée
- Movement disorders Center, Neurology, CHU Grenoble Alpes, Grenoble, France
| | - Amélie Bichon
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Emmanuelle Schmitt
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Andrea Kistner
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Sara Meoni
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Eric Seigneuret
- Department of Neurosurgery, CHU Grenoble Alpes, Grenoble, France
| | - Stephan Chabardes
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Paul Krack
- Department of Neurology, Inselspital, University Hospital Bern, Bern
| | - Elena Moro
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Valérie Fraix
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| |
Collapse
|
66
|
Mahlknecht P, Foltynie T, Limousin P, Poewe W. How Does Deep Brain Stimulation Change the Course of Parkinson's Disease? Mov Disord 2022; 37:1581-1592. [PMID: 35560443 PMCID: PMC9545904 DOI: 10.1002/mds.29052] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022] Open
Abstract
A robust body of evidence from randomized controlled trials has established the efficacy of deep brain stimulation (DBS) in reducing off time and dyskinesias in levodopa‐treated patients with Parkinson's disease (PD). These effects go along with improvements in on period motor function, activities of daily living, and quality of life. In addition, subthalamic DBS is effective in controlling drug‐refractory PD tremor. Here, we review the available data from long‐term observational and controlled follow‐up studies in DBS‐treated patients to re‐examine the persistence of motor and quality of life benefits and evaluate the effects on disease progression, major disability milestones, and survival. Although there is consistent evidence from observational follow‐up studies in DBS‐treated patients over 5–10 years and beyond showing sustained improvement of motor control, the long‐term impact of DBS on overall progression of disability in PD is less clear. Whether DBS reduces or delays the development of later motor and non‐motor disability milestones in comparison to best medical management strategies is difficult to answer by uncontrolled observational follow‐up, but there are signals from controlled long‐term observational studies suggesting that subthalamic DBS may delay some of the late‐stage disability milestones including psychosis, falls, and institutionalization, and also slightly prolongs survival compared with matched medically managed patients. These observations could be attributable to the sustained improvements in motor function and reduction in medication‐induced side effects, whereas there is no clinical evidence of direct effects of DBS on the underlying disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Philipp Mahlknecht
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
67
|
França C, Carra RB, Diniz JM, Munhoz RP, Cury RG. Deep brain stimulation in Parkinson's disease: state of the art and future perspectives. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:105-115. [PMID: 35976323 PMCID: PMC9491408 DOI: 10.1590/0004-282x-anp-2022-s133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 05/14/2023]
Abstract
For more than 30 years, Deep Brain Stimulation (DBS) has been a therapeutic option for Parkinson's disease (PD) treatment. However, this therapy is still underutilized mainly due to misinformation regarding risks and clinical outcomes. DBS can ameliorate several motor and non-motor symptoms, improving patients' quality of life. Furthermore, most of the improvement after DBS is long-lasting and present even in advanced PD. Adequate patient selection, precise electric leads placement, and correct DBS programming are paramount for good surgical outcomes. Nonetheless, DBS still has many limitations: axial symptoms and signs, such as speech, balance and gait, do not improve to the same extent as appendicular symptoms and can even be worsened as a direct or indirect consequence of surgery and stimulation. In addition, there are still unanswered questions regarding patient's selection, surgical planning and programming techniques, such as the role of surgicogenomics, more precise imaging-based lead placement, new brain targets, advanced programming strategies and hardware features. The net effect of these innovations should not only be to refine the beneficial effect we currently observe on selected symptoms and signs but also to improve treatment resistant facets of PD, such as axial and non-motor features. In this review, we discuss the current state of the art regarding DBS selection, implant, and programming, and explore new advances in the DBS field.
Collapse
Affiliation(s)
- Carina França
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo, SP, Brazil
| | - Rafael Bernhart Carra
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo, SP, Brazil
| | - Juliete Melo Diniz
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Divisão de Neurocirurgia Funcional, São Paulo, SP, Brazil
| | - Renato Puppi Munhoz
- University of Toronto, Toronto Western Hospital, Movement Disorders Centre, Toronto, ON, Canada
| | - Rubens Gisbert Cury
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo, SP, Brazil
| |
Collapse
|
68
|
Bohnen NI, Yarnall AJ, Weil RS, Moro E, Moehle MS, Borghammer P, Bedard MA, Albin RL. Cholinergic system changes in Parkinson's disease: emerging therapeutic approaches. Lancet Neurol 2022; 21:381-392. [PMID: 35131038 PMCID: PMC8985079 DOI: 10.1016/s1474-4422(21)00377-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 01/16/2023]
Abstract
In patients with Parkinson's disease, heterogeneous cholinergic system changes can occur in different brain regions. These changes correlate with a range of clinical features, both motor and non-motor, that are refractory to dopaminergic therapy, and can be conceptualised within a systems-level framework in which nodal deficits can produce circuit dysfunctions. The topographies of cholinergic changes overlap with neural circuitries involved in sleep and cognitive, motor, visuo-auditory perceptual, and autonomic functions. Cholinergic deficits within cognition network hubs predict cognitive deficits better than do total brain cholinergic changes. Postural instability and gait difficulties are associated with cholinergic system changes in thalamic, caudate, limbic, neocortical, and cerebellar nodes. Cholinergic system deficits can involve also peripheral organs. Hypercholinergic activity of mesopontine cholinergic neurons in people with isolated rapid eye movement (REM) sleep behaviour disorder, as well as in the hippocampi of cognitively normal patients with Parkinson's disease, suggests early compensation during the prodromal and early stages of Parkinson's disease. Novel pharmacological and neurostimulation approaches could target the cholinergic system to treat motor and non-motor features of Parkinson's disease.
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Neurology Service, Ann Arbor, MI, USA; VA Geriatric Research Education and Clinical Center, Ann Arbor, MI, USA; Ann Arbor VAMC, Ann Arbor, MI, USA.
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rimona S Weil
- Dementia Research Centre, University College London, London, UK
| | - Elena Moro
- Division of Neurology, CHU of Grenoble, Grenoble, France; Grenoble Alpes University, and INSERM u1216, Grenoble, France
| | - Mark S Moehle
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marc-André Bedard
- Cognitive Pharmacology Research Unit, UQAM, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada; Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Roger L Albin
- VA Geriatric Research Education and Clinical Center, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
69
|
Pal G, Mangone G, Hill EJ, Ouyang B, Liu Y, Lythe V, Ehrlich D, Saunders-Pullman R, Shanker V, Bressman S, Alcalay RN, Garcia P, Marder KS, Aasly J, Mouradian MM, Link S, Rosenbaum M, Anderson S, Bernard B, Wilson R, Stebbins G, Nichols WC, Welter ML, Sani S, Afshari M, Verhagen L, de Bie RM, Foltynie T, Hall D, Corvol JC, Goetz CG. Parkinson Disease and Subthalamic Nucleus Deep Brain Stimulation: Cognitive Effects in GBA Mutation Carriers. Ann Neurol 2022; 91:424-435. [PMID: 34984729 PMCID: PMC8857042 DOI: 10.1002/ana.26302] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study was undertaken to compare the rate of change in cognition between glucocerebrosidase (GBA) mutation carriers and noncarriers with and without subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson disease. METHODS Clinical and genetic data from 12 datasets were examined. Global cognition was assessed using the Mattis Dementia Rating Scale (MDRS). Subjects were examined for mutations in GBA and categorized as GBA carriers with or without DBS (GBA+DBS+, GBA+DBS-), and noncarriers with or without DBS (GBA-DBS+, GBA-DBS-). GBA mutation carriers were subcategorized according to mutation severity (risk variant, mild, severe). Linear mixed modeling was used to compare rate of change in MDRS scores over time among the groups according to GBA and DBS status and then according to GBA severity and DBS status. RESULTS Data were available for 366 subjects (58 GBA+DBS+, 82 GBA+DBS-, 98 GBA-DBS+, and 128 GBA-DBS- subjects), who were longitudinally followed (range = 36-60 months after surgery). Using the MDRS, GBA+DBS+ subjects declined on average 2.02 points/yr more than GBA-DBS- subjects (95% confidence interval [CI] = -2.35 to -1.69), 1.71 points/yr more than GBA+DBS- subjects (95% CI = -2.14 to -1.28), and 1.49 points/yr more than GBA-DBS+ subjects (95% CI = -1.80 to -1.18). INTERPRETATION Although not randomized, this composite analysis suggests that the combined effects of GBA mutations and STN-DBS negatively impact cognition. We advise that DBS candidates be screened for GBA mutations as part of the presurgical decision-making process. We advise that GBA mutation carriers be counseled regarding potential risks associated with STN-DBS so that alternative options may be considered. ANN NEUROL 2022;91:424-435.
Collapse
Affiliation(s)
- Gian Pal
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Graziella Mangone
- Sorbonne Université, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Institut du Cerveau – Paris Brain Institute – ICM, Pitié-Salpêtrière Hospital, Department of Neurology, Centre d’Investigation Clinique Neurosciences, Paris, France
| | - Emily J. Hill
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Yuanqing Liu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Vanessa Lythe
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Debra Ehrlich
- Parkinson’s Disease Clinic, Office of the Clinical Director, NIH/NINDS, Bethesda, MD, USA
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vicki Shanker
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Susan Bressman
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Roy N. Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Priscilla Garcia
- Department of Neurology, New York Medical College, Valhalla, NY, USA
| | - Karen S. Marder
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Jan Aasly
- Department of Neurology, St. Olavs Hospital and Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, 7030, Norway
| | - M. Maral Mouradian
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Samantha Link
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Marc Rosenbaum
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sharlet Anderson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Bryan Bernard
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Robert Wilson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Glenn Stebbins
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - William C. Nichols
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Marie-Laure Welter
- Sorbonne Université, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Institut du Cerveau – Paris Brain Institute – ICM, Pitié-Salpêtrière Hospital, Department of Neurology, Centre d’Investigation Clinique Neurosciences, Paris, France
- Normandie Univ, CHU Rouen, Department of Neurophysiology, Rouen, France
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, USA
| | - Mitra Afshari
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Leo Verhagen
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Rob M.A. de Bie
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Tom Foltynie
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Deborah Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Jean-Christophe Corvol
- Sorbonne Université, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Institut du Cerveau – Paris Brain Institute – ICM, Pitié-Salpêtrière Hospital, Department of Neurology, Centre d’Investigation Clinique Neurosciences, Paris, France
| | - Christopher G. Goetz
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
70
|
de Noordhout AM, Mouchamps M, Remacle JM, Delstanche S, Bonhomme V, Gonce M. Subthalamic deep brain stimulation versus best medical treatment: a 12-year follow-up. Acta Neurol Belg 2022; 122:197-202. [PMID: 35084704 PMCID: PMC8894213 DOI: 10.1007/s13760-022-01874-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/17/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Electrical stimulation of the sub-thalamic nucleus (STN-DBS) is well established to alleviate motor fluctuations in advanced Parkinson's disease but little is known about its very long-term efficacy. METHODS We followed over 12 years 15 parkinsonian patients having undergone STN-DBS and compared them to a matched group of 14 patients with best medical drug therapy. All had been considered as good candidates for surgery. They were allocated to each group depending on their own decision. RESULTS After 12 years, mortality rates were similar in both groups. In the DBS group, best "on" UPDRS III scores (on medications, on stimulation) remained significantly better and dyskinesia shorter and weaker than in the drug-treated group (on medication only). Yet, looking at independent life and quality of life (QoL) evaluated with PDQ39, no significant difference could be observed between groups at the end of follow-up, probably due to development of dopa- and stimulation-resistant motor and non-motor symptoms like falls, freezing, dementia, apathy and depression, the latter two more frequent in the DBS group. CONCLUSION Drug- and DBS-resistant symptoms and signs occur more often after long disease evolution and in elder patients. It might be why differences in QoL between both groups no longer existed after twelve years as, compared to other studies, our patients were older at inclusion.
Collapse
Affiliation(s)
| | | | | | - Stéphanie Delstanche
- University Department of Neurology, Hôpital de la Citadelle, 4000, Liège, Belgium
| | - Vincent Bonhomme
- Department of Anaesthesiology, Hôpital de la Citadelle, 4000, Liège, Belgium
| | - Michel Gonce
- University Department of Neurology, Hôpital de la Citadelle, 4000, Liège, Belgium
| |
Collapse
|
71
|
Chen YC, Wu HT, Tu PH, Yeh CH, Liu TC, Yeap MC, Chao YP, Chen PL, Lu CS, Chen CC. Theta Oscillations at Subthalamic Region Predicts Hypomania State After Deep Brain Stimulation in Parkinson's Disease. Front Hum Neurosci 2022; 15:797314. [PMID: 34987369 PMCID: PMC8721814 DOI: 10.3389/fnhum.2021.797314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
Subthalamic nucleus (STN) deep brain stimulation (DBS) is an effective treatment for the motor impairments of patients with advanced Parkinson's disease. However, mood or behavioral changes, such as mania, hypomania, and impulsive disorders, can occur postoperatively. It has been suggested that these symptoms are associated with the stimulation of the limbic subregion of the STN. Electrophysiological studies demonstrate that the low-frequency activities in ventral STN are modulated during emotional processing. In this study, we report 22 patients with Parkinson's disease who underwent STN DBS for treatment of motor impairment and presented stimulation-induced mood elevation during initial postoperative programming. The contact at which a euphoric state was elicited by stimulation was termed as the hypomania-inducing contact (HIC) and was further correlated with intraoperative local field potential recorded during the descending of DBS electrodes. The power of four frequency bands, namely, θ (4–7 Hz), α (7–10 Hz), β (13–35 Hz), and γ (40–60 Hz), were determined by a non-linear variation of the spectrogram using the concentration of frequency of time (conceFT). The depth of maximum θ power is located approximately 2 mm below HIC on average and has significant correlation with the location of contacts (r = 0.676, p < 0.001), even after partializing the effect of α and β, respectively (r = 0.474, p = 0.022; r = 0.461, p = 0.027). The occurrence of HIC was not associated with patient-specific characteristics such as age, gender, disease duration, motor or non-motor symptoms before the operation, or improvement after stimulation. Taken together, these data suggest that the location of maximum θ power is associated with the stimulation-induced hypomania and the prediction of θ power is frequency specific. Our results provide further information to refine targeting intraoperatively and select stimulation contacts in programming.
Collapse
Affiliation(s)
- Yi-Chieh Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hau-Tieng Wu
- Department of Mathematics, Duke University, Durham, NC, United States.,Department of Statistical Science, Duke University, Durham, NC, United States
| | - Po-Hsun Tu
- College of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Hua Yeh
- College of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Neuroradiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzu-Chi Liu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mun-Chun Yeap
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Po-Lin Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chin-Song Lu
- Professor Lu Neurological Clinic, Taoyuan, Taiwan
| | - Chiung-Chu Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
72
|
Jahanshahi M, Leimbach F, Rawji V. Short and Long-Term Cognitive Effects of Subthalamic Deep Brain Stimulation in Parkinson's Disease and Identification of Relevant Factors. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2191-2209. [PMID: 36155529 DOI: 10.3233/jpd-223446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN-DBS) successfully controls the motor symptoms of Parkinson's disease (PD) but has associated cognitive side-effects. OBJECTIVE Establish the short- and long-term cognitive effects of STN-DBS in PD. METHODS Both the short-term and long-term effects of STN-DBS on cognition were examined through evaluation of the controlled studies that compared patients with STN-DBS to unoperated PD patients, thus controlling for illness progression. We also reviewed the literature to identify the factors that influence cognitive outcome of STN-DBS in PD. RESULTS The meta-analysis of the short-term cognitive effects of STN-DBS revealed moderate effect sizes for semantic and phonemic verbal fluency and small effect sizes for psychomotor speed and language, indicating greater decline in the STN-DBS operated than the unoperated patients in these cognitive domains. The longer-term STN-DBS results from controlled studies indicated rates of cognitive decline/dementia up to 32%; which are no different from the rates from the natural progression of PD. Greater executive dysfunction and poorer memory pre-operatively, older age, higher pre-operative doses of levodopa, and greater axial involvement are some of the factors associated with worse cognition after STN-DBS in PD. CONCLUSION This evidence can be used to inform patients and their families about the short-term and long-term risks of cognitive decline following STN-DBS surgery and aid the team in selection of suitable candidates for surgery.
Collapse
Affiliation(s)
- Marjan Jahanshahi
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| | - Friederike Leimbach
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| | - Vishal Rawji
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, The National Hospital for Neurology & Neurosurgery, London, UK
| |
Collapse
|
73
|
Antonini A, Pahwa R, Odin P, Isaacson SH, Merola A, Wang L, Kandukuri PL, Alobaidi A, Yan CH, Bao Y, Zadikoff C, Parra JC, Bergmann L, Chaudhuri KR. Comparative Effectiveness of Device-Aided Therapies on Quality of Life and Off-Time in Advanced Parkinson's Disease: A Systematic Review and Bayesian Network Meta-analysis. CNS Drugs 2022; 36:1269-1283. [PMID: 36414908 PMCID: PMC9712309 DOI: 10.1007/s40263-022-00963-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Research comparing levodopa/carbidopa intestinal gel (LCIG), deep brain stimulation (DBS), and continuous subcutaneous apomorphine infusion (CSAI) for advanced Parkinson's disease (PD) is lacking. This network meta-analysis (NMA) assessed the comparative effectiveness of LCIG, DBS, CSAI and best medical therapy (BMT) in reducing off-time and improving quality of life (QoL) in patients with advanced PD. METHODS A systematic literature review was conducted for randomized controlled trials (RCTs), observational and interventional studies from January 2003 to September 2019. Data extracted at baseline and 6 months were off-time, as reported by diary or Unified Parkinson's Disease Rating Scale Part IV item 39, and QoL, as reported by Parkinson's Disease Questionnaire (PDQ-39/PDQ-8). Bayesian NMA was performed to estimate pooled treatment effect sizes and to rank treatments in order of effectiveness. RESULTS A total of 22 studies fulfilled the inclusion criteria (n = 2063 patients): four RCTs, and 16 single-armed, one 2-armed and one 3-armed prospective studies. Baseline mean age was between 55.5-70.9 years, duration of PD was 9.1-15.3 years, off-time ranged from 5.4 to 8.7 h/day in 9 studies, and PDQ scores ranged from 28.8 to 67.0 in 19 studies. Levodopa/carbidopa intestinal gel and DBS demonstrated significantly greater improvement in off-time and QoL at 6 months compared with CSAI and BMT (p < 0.05). There was no significant difference in the effects of LCIG and DBS, but DBS was ranked first for reduction in off-time, and LCIG was ranked first for improvement in QoL. CONCLUSIONS This NMA found that LCIG and DBS were associated with superior improvement in off-time and PD-related QoL compared with CSAI and BMT at 6 months after treatment initiation. This comparative effectiveness research may assist providers, patients, and caregivers in the selection of the optimal device-aided therapy.
Collapse
Affiliation(s)
- Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neuroscience, Study Center for Neurodegeneration (CESNE), University of Padova, 35128, Padua, Italy.
| | - Rajesh Pahwa
- Medical Center, University of Kansas, Kansas City, KS USA
| | - Per Odin
- University of Lund, Lund, Sweden
| | | | - Aristide Merola
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Lin Wang
- AbbVie Inc., North Chicago, IL USA ,Johns Hopkins School of Public Health, Baltimore, MD USA
| | | | - Ali Alobaidi
- AbbVie Inc., North Chicago, IL USA ,University of Illinois at Chicago, Chicago, IL USA
| | - Connie H. Yan
- AbbVie Inc., North Chicago, IL USA ,University of Illinois at Chicago, Chicago, IL USA
| | | | | | | | | | - K. Ray Chaudhuri
- King’s College and Parkinson Foundation Centre of Excellence, Kings College Hospital London, London, UK
| |
Collapse
|
74
|
Mishra A, Ramdhani RA. Directional Deep Brain Stimulation in the Treatment of Parkinson's Disease. Neurology 2022. [DOI: 10.17925/usn.2022.18.1.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Deep brain stimulation (DBS) is a treatment modality that has been shown to improve the clinical outcomes of individuals with movement disorders, including Parkinson's disease. Directional DBS represents an advance in the field that allows clinicians to better modulate the electrical stimulation to increase therapeutic gains while minimizing side effects. In this review, we summarize the principles of directional DBS, including available technologies and stimulation paradigms, and examine the growing clinical study data with respect to its use in Parkinson's disease.
Collapse
|
75
|
Tai CH. Subthalamic burst firing: A pathophysiological target in Parkinson's disease. Neurosci Biobehav Rev 2021; 132:410-419. [PMID: 34856222 DOI: 10.1016/j.neubiorev.2021.11.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 11/27/2022]
Abstract
Understanding the pathophysiological mechanism of Parkinson's disease (PD) in the subthalamic nucleus (STN) has become a critical issue since deep brain stimulation (DBS) in this region has been proven as an effective treatment for this disease. The STN possesses a special ability to switch from the spike to the burst firing mode in response to dopamine deficiency in parkinsonism, and this STN burst is considered an electrophysiological signature of the cortico-basal ganglia circuit in the brains of PD patients. This review focuses on the role of STN burst firing in the pathophysiology of PD and during DBS. Here, we review existing literature on how STN bursts originate and the specific factors affecting their formation; how STN burst firing causes motor symptoms in PD and how interventions can rescue these symptoms. Finally, the similarities and differences between the two electrophysiological hallmarks of PD, STN burst firing and beta-oscillation, are discussed. STN burst firing should be considered as a pathophysiological target in PD during treatment with DBS.
Collapse
Affiliation(s)
- Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, No. 7, Jhongshan South Road, 100225, Taipei, Taiwan.
| |
Collapse
|
76
|
Gaire S, Kafle S, Bastakoti S, Paudel A, Karki K. Continuous Subcutaneous Apomorphine Infusion in Advanced Parkinson's Disease: A Systematic Review. Cureus 2021; 13:e17949. [PMID: 34660137 PMCID: PMC8514709 DOI: 10.7759/cureus.17949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 11/09/2022] Open
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is caused due to the loss of dopaminergic neurons in substantia nigra pars compacta, and it mainly affects the motor function of the diseased individual. The most effective treatment for PD to date is levodopa, the precursor molecule for dopamine which ultimately helps overcome the loss of dopamine in the brain. However, long-term levodopa therapy significantly impairs patients' quality of life by causing various disabling motor and non-motor complications. We conducted this study intending to review the available literature that has compared the efficacy and safety of continuous subcutaneous apomorphine infusion (CSAI) with other available treatment options like deep brain stimulation, intestinal levodopa gel, and oral dopaminergic agents. We searched PubMed, Embase, and Scopus databases using the appropriate search strategy. The studies which compared the safety and efficacy of continuous subcutaneous apomorphine infusion to other available treatment options in advanced Parkinson's disease were included in our study. The bias assessment of the studies was done using Cochrane Risk of Bias 2.0 tool for randomized controlled trials, Risk of Bias In Non-Randomized Studies - of Interventions (ROBINS-I) tool for non-randomized interventional studies, and Joanna Briggs Institute Critical Appraisal tools (JBI) for cohort studies. We included eight articles in our systematic review including a randomized controlled trial. None of the included studies had a high risk of bias. We found that in patients with advanced Parkinson's, CSAI demonstrated definite improvement in off-time duration. CSAI has also been shown to improve various non-motor functions, including neuropsychiatric problems in these patients. CSAI has demonstrated safety and efficacy in patients with advanced Parkinson's disease. However, the decision-making is multifactorial. Hence, further studies are required that directly compare the available treatment options with one another and study their overall effects on patients' quality of life.
Collapse
Affiliation(s)
- Suman Gaire
- Department of Emergency Medicine, Palpa Hospital, Palpa, NPL
| | - Sunam Kafle
- Internal Medicine, College of Medical Sciences, Bharatpur, NPL
| | - Sanjiv Bastakoti
- Internal Medicine, Metrocity Hospital and Research Center, Pokhara, NPL
| | - Anuj Paudel
- Emergency Medicine, Metrocity Hospital and Research Center, Pokhara, NPL
| | - Kumar Karki
- Internal Medicine, National Medical College, Birgunj, NPL
| |
Collapse
|
77
|
Chou KL, Charles D. Subthalamic Nucleus Deep Brain Stimulation: Uncomplicating Motor Complications for the Long Haul. Neurology 2021; 97:107-108. [PMID: 34078714 DOI: 10.1212/wnl.0000000000012245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Kelvin L Chou
- From the Departments of Neurology and Neurosurgery (K.L.C.), University of Michigan, Ann Arbor; and Department of Neurology (D.C.), Vanderbilt University, Nashville, TN.
| | - David Charles
- From the Departments of Neurology and Neurosurgery (K.L.C.), University of Michigan, Ann Arbor; and Department of Neurology (D.C.), Vanderbilt University, Nashville, TN
| |
Collapse
|