51
|
Functional properties and mechanism of action of PPTQ, an allosteric agonist and low nanomolar positive allosteric modulator at GABAA receptors. Biochem Pharmacol 2018; 147:153-169. [DOI: 10.1016/j.bcp.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/13/2017] [Indexed: 11/23/2022]
|
52
|
Feng HJ, Forman SA. Comparison of αβδ and αβγ GABA A receptors: Allosteric modulation and identification of subunit arrangement by site-selective general anesthetics. Pharmacol Res 2017; 133:289-300. [PMID: 29294355 DOI: 10.1016/j.phrs.2017.12.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/27/2022]
Abstract
GABAA receptors play a dominant role in mediating inhibition in the mature mammalian brain, and defects of GABAergic neurotransmission contribute to the pathogenesis of a variety of neurological and psychiatric disorders. Two types of GABAergic inhibition have been described: αβγ receptors mediate phasic inhibition in response to transient high-concentrations of synaptic GABA release, and αβδ receptors produce tonic inhibitory currents activated by low-concentration extrasynaptic GABA. Both αβδ and αβγ receptors are important targets for general anesthetics, which induce apparently different changes both in GABA-dependent receptor activation and in desensitization in currents mediated by αβγ vs. αβδ receptors. Many of these differences are explained by correcting for the high agonist efficacy of GABA at most αβγ receptors vs. much lower efficacy at αβδ receptors. The stoichiometry and subunit arrangement of recombinant αβγ receptors are well established as β-α-γ-β-α, while those of αβδ receptors remain controversial. Importantly, some potent general anesthetics selectively bind in transmembrane inter-subunit pockets of αβγ receptors: etomidate acts at β+/α- interfaces, and the barbiturate R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB) acts at α+/β- and γ+/β- interfaces. Thus, these drugs are useful as structural probes in αβδ receptors formed from free subunits or concatenated subunit assemblies designed to constrain subunit arrangement. Although a definite conclusion cannot be drawn, studies using etomidate and R-mTFD-MPAB support the idea that recombinant α1β3δ receptors may share stoichiometry and subunit arrangement with α1β3γ2 receptors.
Collapse
Affiliation(s)
- Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
53
|
Nakata Y, Fuse T, Yamato K, Asahi M, Nakahira K, Ozoe F, Ozoe Y. A Single Amino Acid Substitution in the Third Transmembrane Region Has Opposite Impacts on the Selectivity of the Parasiticides Fluralaner and Ivermectin for Ligand-Gated Chloride Channels. Mol Pharmacol 2017; 92:546-555. [PMID: 28887352 DOI: 10.1124/mol.117.109413] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/09/2017] [Indexed: 02/14/2025] Open
Abstract
Fluralaner (Bravecto) is a recently marketed isoxazoline ectoparasiticide. This compound potently inhibits GABA-gated chloride channels (GABACls) and less potently glutamate-gated chloride channels (GluCls) in insects. The mechanism underlying this selectivity is unknown. Therefore, we sought to identify the amino acid residues causing the low potency of fluralaner toward GluCls. We examined the fluralaner sensitivity of mutant housefly (Musca domestica) GluCls in which amino acid residues in the transmembrane subunit interface were replaced with the positionally equivalent amino acids of Musca GABACls. Of these amino acids, substitution of an amino acid (Leu315) in the third transmembrane region (TM3) with an aromatic amino acid dramatically enhanced the potency of fluralaner in the GluCls. In stark contrast to the enhancement of fluralaner potency, this mutation eliminated the activation of currents and the potentiation but not the antagonism of glutamate responses that are otherwise all elicited by the macrolide parasiticide ivermectin (IVM). Our findings indicate that the amino acid Leu315 in Musca GluCls plays significant roles in determining the selectivity of fluralaner and IVM for these channels. Given the high sequence similarity of TM3, this may hold true more widely for the GluCls and GABACls of other insect species.
Collapse
Affiliation(s)
- Yunosuke Nakata
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan (Y.N., T.F., K.Y, F.O., Y.O.); and Biological Research Laboratories, Nissan Chemical Industries, Ltd., Saitama, Japan (M.A., K.N.)
| | - Toshinori Fuse
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan (Y.N., T.F., K.Y, F.O., Y.O.); and Biological Research Laboratories, Nissan Chemical Industries, Ltd., Saitama, Japan (M.A., K.N.)
| | - Kohei Yamato
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan (Y.N., T.F., K.Y, F.O., Y.O.); and Biological Research Laboratories, Nissan Chemical Industries, Ltd., Saitama, Japan (M.A., K.N.)
| | - Miho Asahi
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan (Y.N., T.F., K.Y, F.O., Y.O.); and Biological Research Laboratories, Nissan Chemical Industries, Ltd., Saitama, Japan (M.A., K.N.)
| | - Kunimitsu Nakahira
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan (Y.N., T.F., K.Y, F.O., Y.O.); and Biological Research Laboratories, Nissan Chemical Industries, Ltd., Saitama, Japan (M.A., K.N.)
| | - Fumiyo Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan (Y.N., T.F., K.Y, F.O., Y.O.); and Biological Research Laboratories, Nissan Chemical Industries, Ltd., Saitama, Japan (M.A., K.N.)
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan (Y.N., T.F., K.Y, F.O., Y.O.); and Biological Research Laboratories, Nissan Chemical Industries, Ltd., Saitama, Japan (M.A., K.N.)
| |
Collapse
|
54
|
Zhong Q, Chen X, Zhao Y, Liu R, Yao S. Association of Polymorphisms in Pharmacogenetic Candidate Genes with Propofol Susceptibility. Sci Rep 2017; 7:3343. [PMID: 28611364 PMCID: PMC5469860 DOI: 10.1038/s41598-017-03229-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
Significant individual susceptibility to intravenous anesthetic propofol exists. The etiology of individual variability in the response to propofol may be influenced by genetic polymorphisms in metabolic and functional pathways. With current pharmacogenetics and modern molecular biology technologies, it is possible to study the influence of genetic polymorphisms on susceptibility to propofol. When inducing general anesthesia with intravenous propofol, high individual susceptibility to propofol was found. Using Sequenom MassARRAY single-nucleotide polymorphism (SNP) genotyping, we identified a mutation (rs6313) in the 5HT2A gene that was correlated to individual susceptibility to propofol effect-site concentration (Cep) and onset time of propofol induction. Carriers of the minor allele (G) of 5HT2A rs6313 required less propofol (20% decrease in Cep) and less time (40% decrease in onset time) to induce anesthesia. Moreover, associations were found between the gamma-aminobutyric acid (GABA) receptor SNP rs2279020 and the SCN9A SNP rs6746030 and the susceptibility of bispectral index (BIS) after propofol-induced anesthesia. In addition, dominant mutations in GABAA1 rs2279020, GABAA2 rs11503014, and CHRM2 rs1824024 were putatively associated with cardiovascular susceptibility to propofol anesthesia. No gene-gene interactions were found through a standardized measure of linkage disequilibrium and a multifactor dimensionality reduction analysis. Our results suggest that genetic polymorphisms related to mechanisms of propofol anesthesia are involved in propofol susceptibility.
Collapse
Affiliation(s)
- Qi Zhong
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiangdong Chen
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yan Zhao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ru Liu
- Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang, Hunan, 421000, China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
55
|
Tryptophan and Cysteine Mutations in M1 Helices of α1β3γ2L γ-Aminobutyric Acid Type A Receptors Indicate Distinct Intersubunit Sites for Four Intravenous Anesthetics and One Orphan Site. Anesthesiology 2017; 125:1144-1158. [PMID: 27753644 DOI: 10.1097/aln.0000000000001390] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND γ-Aminobutyric acid type A (GABAA) receptors mediate important effects of intravenous general anesthetics. Photolabel derivatives of etomidate, propofol, barbiturates, and a neurosteroid get incorporated in GABAA receptor transmembrane helices M1 and M3 adjacent to intersubunit pockets. However, photolabels have not been consistently targeted at heteromeric αβγ receptors and do not form adducts with all contact residues. Complementary approaches may further define anesthetic sites in typical GABAA receptors. METHODS Two mutation-based strategies, substituted tryptophan sensitivity and substituted cysteine modification-protection, combined with voltage-clamp electrophysiology in Xenopus oocytes, were used to evaluate interactions between four intravenous anesthetics and six amino acids in M1 helices of α1, β3, and γ2L GABAA receptor subunits: two photolabeled residues, α1M236 and β3M227, and their homologs. RESULTS Tryptophan substitutions at α1M236 and positional homologs β3L231 and γ2L246 all caused spontaneous channel gating and reduced γ-aminobutyric acid EC50. Substituted cysteine modification experiments indicated etomidate protection at α1L232C and α1M236C, R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirinylphenyl) barbituric acid protection at β3M227C and β3L231C, and propofol protection at α1M236C and β3M227C. No alphaxalone protection was evident at the residues the authors explored, and none of the tested anesthetics protected γ2I242C or γ2L246C. CONCLUSIONS All five intersubunit transmembrane pockets of GABAA receptors display similar allosteric linkage to ion channel gating. Substituted cysteine modification and protection results were fully concordant with anesthetic photolabeling at α1M236 and β3M227 and revealed overlapping noncongruent sites for etomidate and propofol in β-α interfaces and R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirinylphenyl) barbituric acid and propofol in α-β and γ-β interfaces. The authors' results identify the α-γ transmembrane interface as a potentially unique orphan modulator site.
Collapse
|
56
|
Lu Y, Chen W, Lin C, Wang J, Zhu M, Chen J, Miao C. The protective effects of propofol against CoCl 2-induced HT22 cell hypoxia injury via PP2A/CAMKIIα/nNOS pathway. BMC Anesthesiol 2017; 17:32. [PMID: 28241801 PMCID: PMC5329915 DOI: 10.1186/s12871-017-0327-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
Background Perioperative cerebral ischemia/hypoxia could induce hippocampal injury and has been reported to induce cognitive impairment. In this study, we used cobalt chloride (CoCl2) to build a hypoxia model in mouse hippocampal cell lines. Propofol, a widely used intravenous anesthetic agent, has been demonstrated to have neuroprotective effect. Here, we explored whether and how propofol attenuated CoCl2-induced mouse hippocampal HT22 cell injury. Methods Mouse hippocampal HT22 cells were pretreated with propofol, and then stimulated with CoCl2. Cell viability was measured by cell counting kit 8 (CCK8). The effect of propofol on CoCl2-modulated expressions of B-cell lymphoma 2 (Bcl-2), BAX, cleaved caspase 3, phosphatase A2 (PP2A), and the phosphorylation of Ca2+/Calmodulin (CaM)-dependent protein kinase II (pCAMKIIα), neuron nitric oxide synthase at Ser1412 (pnNOS-Ser1412), neuron nitric oxide synthase at Ser847 (pnNOS-Ser847) were detected by Western blot analysis. Results Compared with control, CoCl2 treatment could significantly decrease cell viability, which could be reversed by propofol. Further, we found CoCl2 treatment could up-regulate the expression of PP2A, BAX, cleaved caspase three and cause the phosphorylation of nNOS-Ser1412, but it down-regulated the expression of Bcl-2 and the phosphorylation of CAMKIIα and nNOS-Ser847. More importantly, these CoCl2-mediated effects were attentuated by propofol. In addition, we demonstrated that propofol could exert similar effect to that of the PP2A inhibitor (okadaic acid). Further, the PP2A activator (FTY720) and the CAMKIIα inhibitor (KN93) could reverse the neuroprotective effect of propofol. Conclusion Our data indicated that propofol could attenuate CoCl2-induced HT22 cells hypoxia injury via PP2A/CAMKIIα/nNOS pathway.
Collapse
Affiliation(s)
- Yan Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Centre, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Centre, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Chen Lin
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Medical Oncology, Fudan University Shanghai Cancer Centre, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Jiaqiang Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Centre, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Minmin Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Centre, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jiawei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Centre, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Changhong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Centre, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
57
|
Machta BB, Gray E, Nouri M, McCarthy NLC, Gray EM, Miller AL, Brooks NJ, Veatch SL. Conditions that Stabilize Membrane Domains Also Antagonize n-Alcohol Anesthesia. Biophys J 2016; 111:537-545. [PMID: 27508437 PMCID: PMC4982967 DOI: 10.1016/j.bpj.2016.06.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022] Open
Abstract
Diverse molecules induce general anesthesia with potency strongly correlated with both their hydrophobicity and their effects on certain ion channels. We recently observed that several n-alcohol anesthetics inhibit heterogeneity in plasma-membrane-derived vesicles by lowering the critical temperature (Tc) for phase separation. Here, we exploit conditions that stabilize membrane heterogeneity to further test the correlation between the anesthetic potency of n-alcohols and effects on Tc. First, we show that hexadecanol acts oppositely to n-alcohol anesthetics on membrane mixing and antagonizes ethanol-induced anesthesia in a tadpole behavioral assay. Second, we show that two previously described "intoxication reversers" raise Tc and counter ethanol's effects in vesicles, mimicking the findings of previous electrophysiological and behavioral measurements. Third, we find that elevated hydrostatic pressure, long known to reverse anesthesia, also raises Tc in vesicles with a magnitude that counters the effect of butanol at relevant concentrations and pressures. Taken together, these results demonstrate that ΔTc predicts anesthetic potency for n-alcohols better than hydrophobicity in a range of contexts, supporting a mechanistic role for membrane heterogeneity in general anesthesia.
Collapse
Affiliation(s)
| | | | | | - Nicola L C McCarthy
- Department of Chemistry, Imperial College London, South Kensington Campus, London, United Kingdom
| | | | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, South Kensington Campus, London, United Kingdom
| | | |
Collapse
|