51
|
Chera S, Ghila L, Wenger Y, Galliot B. Injury-induced activation of the MAPK/CREB pathway triggers apoptosis-induced compensatory proliferation in hydra head regeneration. Dev Growth Differ 2011; 53:186-201. [PMID: 21338345 DOI: 10.1111/j.1440-169x.2011.01250.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
After bisection, Hydra polyps regenerate their head from the lower half thanks to a head-organizer activity that is rapidly established at the tip. Head regeneration is also highly plastic as both the wild-type and the epithelial Hydra (that lack the interstitial cell lineage) can regenerate their head. In the wild-type context, we previously showed that after mid-gastric bisection, a large subset of the interstitial cells undergo apoptosis, inducing compensatory proliferation of the surrounding progenitors. This asymmetric process is necessary and sufficient to launch head regeneration. The apoptotic cells transiently release Wnt3, which promotes the formation of a proliferative zone by activating the beta-catenin pathway in the adjacent cycling cells. However the injury-induced signaling that triggers apoptosis is unknown. We previously reported an asymmetric immediate activation of the mitogen-activated protein kinase/ribosomal S6 kinase/cAMP response element binding protein (MAPK/RSK/CREB) pathway in head-regenerating tips after mid-gastric bisection. We show here that pharmacological inhibition of the MAPK/ERK pathway or RNAi knockdown of the RSK, CREB, CREB binding protein (CBP) genes prevents apoptosis, compensatory proliferation and blocks head regeneration. As the activation of the MAPK pathway upon injury plays an essential role in regenerating bilaterian species, these results suggest that the MAPK-dependent activation of apoptosis-induced compensatory proliferation represents an evolutionary-conserved mechanism to launch a regenerative process.
Collapse
Affiliation(s)
- Simona Chera
- Department of Genetics and Evolution, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
52
|
Banerjee C, Goswami R, Datta S, Rajagopal R, Mazumder S. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus. Toxicol Appl Pharmacol 2011; 256:44-51. [PMID: 21798276 DOI: 10.1016/j.taap.2011.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 10/18/2022]
Abstract
We had earlier shown that exposure to arsenic (0.50 μM) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca(2+)) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca(2+) homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca(2+) levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus.
Collapse
Affiliation(s)
- Chaitali Banerjee
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | | | | | | | | |
Collapse
|
53
|
Chandramouli KH, Mok FSY, Wang H, Qian PY. Phosphoproteome analysis during larval development and metamorphosis in the spionid polychaete Pseudopolydora vexillosa. BMC DEVELOPMENTAL BIOLOGY 2011; 11:31. [PMID: 21612608 PMCID: PMC3115903 DOI: 10.1186/1471-213x-11-31] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 05/25/2011] [Indexed: 01/04/2023]
Abstract
Background The metamorphosis of the spionid polychaete Pseudopolydora vexillosa includes spontaneous settlement onto soft-bottom habitats and morphogenesis that can be completed in a very short time. A previous study on the total changes to the proteome during the various developmental stages of P. vexillosa suggested that little or no de novo protein synthesis occurs during metamorphosis. In this study, we used multicolor fluorescence detection of proteins in 2-D gels for differential analysis of proteins and phosphoproteins to reveal the dynamics of post-translational modification proteins in this species. A combination of affinity chromatography, 2D-PAGE, and mass spectrometry was used to identify the phosphoproteins in pre-competent larvae, competent larvae, and newly metamorphosed juveniles. Results We reproducibly detected 210, 492, and 172 phosphoproteins in pre-competent larvae, competent larvae, and newly metamorphosed juveniles, respectively. The highest percentage of phosphorylation was observed during the competent larval stage. About 64 stage-specific phosphoprotein spots were detected in the competent stage, and 32 phosphoproteins were found to be significantly differentially expressed in the three stages. We identified 38 phosphoproteins, 10 of which were differentially expressed during metamorphosis. These phosphoproteins belonged to six categories of biological processes: (1) development, (2) cell differentiation and integrity, (3) transcription and translation, (4) metabolism, (5) protein-protein interaction and proteolysis, and (6) receptors and enzymes. Conclusion This is the first study to report changes in phosphoprotein expression patterns during the metamorphosis of the marine polychaete P. vexillosa. The higher degree of phosphorylation during the process of attaining competence to settle and metamorphose may be due to fast morphological transitions regulated by various mechanisms. Our data are consistent with previous studies showing a high percentage of phosphorylation during competency in the barnacle Balanus amphitrite and the bryozoan Bugula neritina. The identified phosphoproteins may play an important role during metamorphosis, and further studies on the location and functions of important proteins during metamorphosis are warranted.
Collapse
Affiliation(s)
- Kondethimmanahalli H Chandramouli
- KAUST Global Collaborative Research Program, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | | | | |
Collapse
|
54
|
Parrinello N, Vizzini A, Salerno G, Sanfratello MA, Cammarata M, Arizza V, Vazzana M, Parrinello D. Inflamed adult pharynx tissues and swimming larva of Ciona intestinalis share CiTNFα-producing cells. Cell Tissue Res 2010; 341:299-311. [DOI: 10.1007/s00441-010-0993-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 05/06/2010] [Indexed: 12/14/2022]
|
55
|
Wang H, Zhang H, Wong YH, Voolstra C, Ravasi T, B. Bajic V, Qian PY. Rapid transcriptome and proteome profiling of a non-model marine invertebrate, Bugula neritina. Proteomics 2010; 10:2972-81. [DOI: 10.1002/pmic.201000056] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
56
|
Caicci F, Zaniolo G, Burighel P, Degasperi V, Gasparini F, Manni L. Differentiation of papillae and rostral sensory neurons in the larva of the ascidian Botryllus schlosseri (Tunicata). J Comp Neurol 2010; 518:547-66. [PMID: 20020541 DOI: 10.1002/cne.22222] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During the metamorphosis of tunicate ascidians, the swimming larva uses its three anterior papillae to detect the substrate for settlement, reabsorbs its chordate-like tail, and becomes a sessile oozooid. In view of the crucial role played by the anterior structures and their nerve relations, we applied electron microscopy and immunocytochemistry to study the larva of the colonial ascidian Botryllus schlosseri, following differentiation of the anterior epidermis during late embryogenesis, the larval stage, and the onset of metamorphosis. Rudiments of the papillae appear in the early tail-bud stage as ectodermic protrusions, the apexes of which differentiate into central and peripheral bipolar neurons. Axons fasciculate into two nerves direct to the brain. Distally, the long, rod-like dendritic terminations extend during the larval stage, becoming exposed to sea water. After the larva selects and adheres to the substrate, these neurons retract and regress. Adjacent to the papillae, other scattered neurons insinuate dendrites into the tunic and form the net of rostral trunk epidermal neurons (RTENs) which fasciculate together with the papillary neurons. Our data indicate that the papillae are simple and coniform, the papillary neurons are mechanoreceptors, and the RTENs are chemoreceptors. The interpapillary epidermal area, by means of an apocrine secretion, provides sticky material for temporary adhesion of the larva to the substrate.
Collapse
Affiliation(s)
- Federico Caicci
- Dipartimento di Biologia, Università degli Studi di Padova, I-35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
57
|
Nakayama-Ishimura A, Chambon JP, Horie T, Satoh N, Sasakura Y. Delineating metamorphic pathways in the ascidian Ciona intestinalis. Dev Biol 2009; 326:357-67. [DOI: 10.1016/j.ydbio.2008.11.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/10/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
|
58
|
Martinand-Mari C, Maury B, Rousset F, Sahuquet A, Mennessier G, Rochal S, Lorman V, Mangeat P, Baghdiguian S. Topological control of life and death in non-proliferative epithelia. PLoS One 2009; 4:e4202. [PMID: 19145253 PMCID: PMC2625397 DOI: 10.1371/journal.pone.0004202] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 12/08/2008] [Indexed: 11/26/2022] Open
Abstract
Programmed cell death is one of the most fascinating demonstrations of the plasticity of biological systems. It is classically described to act upstream of and govern major developmental patterning processes (e.g. inter-digitations in vertebrates, ommatidia in Drosophila). We show here the first evidence that massive apoptosis can also be controlled and coordinated by a pre-established pattern of a specific ‘master cell’ population. This new concept is supported by the development and validation of an original model of cell patterning. Ciona intestinalis eggs are surrounded by a three-layered follicular organization composed of 60 elongated floating extensions made of as many outer and inner cells, and indirectly spread through an extracellular matrix over 1200 test cells. Experimental and selective ablation of outer and inner cells results in the abrogation of apoptosis in respective remaining neighbouring test cells. In addition incubation of outer/inner follicular cell-depleted eggs with a soluble extract of apoptotic outer/inner cells partially restores apoptosis to apoptotic-defective test cells. The 60 inner follicular cells were thus identified as ‘apoptotic master’ cells which collectively are induction sites for programmed cell death of the underlying test cells. The position of apoptotic master cells is controlled by topological constraints exhibiting a tetrahedral symmetry, and each cell spreads over and can control the destiny of 20 smaller test cells, which leads to optimized apoptosis signalling.
Collapse
Affiliation(s)
- Camille Martinand-Mari
- Université Montpellier 2, UMR CNRS 5554, Institut des Sciences de l'Evolution, Montpellier, France
| | - Benoit Maury
- Université Montpellier 2, UMR CNRS 5554, Institut des Sciences de l'Evolution, Montpellier, France
| | - François Rousset
- Université Montpellier 2, UMR CNRS 5554, Institut des Sciences de l'Evolution, Montpellier, France
| | - Alain Sahuquet
- Université Montpellier 2, CRBM UMR CNRS 5237, Montpellier, France
| | | | - Sergei Rochal
- South Federal University, Faculty of Physics, Rostov na Donu, Russia
| | - Vladimir Lorman
- Université Montpellier 2, UMR CNRS 5207-LPTA, Montpellier, France
| | - Paul Mangeat
- Université Montpellier 2, CRBM UMR CNRS 5237, Montpellier, France
| | - Stephen Baghdiguian
- Université Montpellier 2, UMR CNRS 5554, Institut des Sciences de l'Evolution, Montpellier, France
- * E-mail:
| |
Collapse
|
59
|
Nomura M, Nakajima A, Inaba K. Proteomic profiles of embryonic development in the ascidian Ciona intestinalis. Dev Biol 2009; 325:468-81. [DOI: 10.1016/j.ydbio.2008.10.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 10/24/2008] [Accepted: 10/28/2008] [Indexed: 12/24/2022]
|
60
|
In vitro effects of noradrenaline on Sydney rock oyster (Saccostrea glomerata) hemocytes. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:691-7. [DOI: 10.1016/j.cbpa.2008.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2007] [Revised: 08/13/2008] [Accepted: 08/18/2008] [Indexed: 11/20/2022]
|
61
|
Paris M, Laudet V. The history of a developmental stage: Metamorphosis in chordates. Genesis 2008; 46:657-72. [DOI: 10.1002/dvg.20443] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
62
|
Abstract
Little is known about the ancient chordates that gave rise to the first vertebrates, but the descendants of other invertebrate chordates extant at the time still flourish in the ocean. These invertebrates include the cephalochordates and tunicates, whose larvae share with vertebrate embryos a common body plan with a central notochord and a dorsal nerve cord. Tunicates are now thought to be the sister group of vertebrates. However, research based on several species of ascidians, a diverse and wide-spread class of tunicates, revealed that the molecular strategies underlying their development appear to diverge greatly from those found in vertebrates. Furthermore, the adult body plan of most tunicates, which arises following an extensive post-larval metamorphosis, shows little resemblance to the body plan of any other chordate. In this review, we compare the developmental strategies of ascidians and vertebrates and argue that the very divergence of these strategies reveals the surprising level of plasticity of the chordate developmental program and is a rich resource to identify core regulatory mechanisms that are evolutionarily conserved in chordates. Further, we propose that the comparative analysis of the architecture of ascidian and vertebrate gene regulatory networks may provide critical insight into the origin of the chordate body plan.
Collapse
|
63
|
Sardet C, Swalla BJ, Satoh N, Sasakura Y, Branno M, Thompson EM, Levine M, Nishida H. Euro chordates: Ascidian community swims ahead. The 4th International Tunicate meeting in Villefranche sur Mer. Dev Dyn 2008; 237:1207-13. [DOI: 10.1002/dvdy.21487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
64
|
Rinkevich Y, Douek J, Haber O, Rinkevich B, Reshef R. Urochordate whole body regeneration inaugurates a diverse innate immune signaling profile. Dev Biol 2007; 312:131-46. [PMID: 17964563 DOI: 10.1016/j.ydbio.2007.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 08/28/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
Abstract
The phenomenon of whole body regeneration (WBR) from minute soma fragments is a rare event in chordates, confined to the subfamily of botryllid ascidians and is poorly understood on the cellular and molecular levels. We assembled a list of 1326 ESTs from subtracted mRNA, at early stages of Botrylloides leachi WBR, and classified them into functional categories. Sixty-seven (15%) ESTs with roles in innate immunity signaling were classified into a broad functional group, a result supported by domain search and RT-PCR reactions. Gene ontology analysis for human homologous to the immune gene category, identified 22 significant entries, of which "peptidase activity" and "protease inhibitor activity", stood out as functioning during WBR. Analyzing expressions of serine protease Bl-TrSP, a representative candidate gene from the "peptidase activity" subgroup, revealed low transcript levels in naïve vasculature with upregulated expression during WBR. This was confirmed by in situ hybridization that further elucidated staining restricted to a circulating population of macrophage cells. Furthermore, Bl-TrSP was localized in regeneration niches within vasculature, in regenerating buds, and in buds, during blastogenesis. Functional inhibition of serine protease activity disrupts early remodeling processes of the vasculature microenvironment and hinders WBR. Comparison of genome-wide transcription of WBR with five other developmental processes in ascidians (including metamorphosis, budding and blastogenesis), revealed a broad conservation of immune signaling expressions, suggesting a ubiquitous route of harnessing immune-related genes within a broader range of tunicate developmental context. This, in turn, may have enabled the high diversity of life history traits represented by urochordate ascidians.
Collapse
Affiliation(s)
- Yuval Rinkevich
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | |
Collapse
|
65
|
Comes S, Locascio A, Silvestre F, d'Ischia M, Russo GL, Tosti E, Branno M, Palumbo A. Regulatory roles of nitric oxide during larval development and metamorphosis in Ciona intestinalis. Dev Biol 2007; 306:772-84. [PMID: 17499701 DOI: 10.1016/j.ydbio.2007.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 04/11/2007] [Accepted: 04/16/2007] [Indexed: 01/30/2023]
Abstract
Metamorphosis in the ascidian Ciona intestinalis is a very complex process which converts a swimming tadpole to an adult. The process involves reorganisation of the body plan and a remarkable regression of the tail, which is controlled by caspase-dependent apoptosis. However, the endogenous signals triggering apoptosis and metamorphosis are little explored. Herein, we report evidence that nitric oxide (NO) regulates tail regression in a dose-dependent manner, acting on caspase-dependent apoptosis. An increase or decrease of NO levels resulted in a delay or acceleration of tail resorption, without affecting subsequent juvenile development. A similar hastening effect was induced by suppression of cGMP-dependent NO signalling. Inhibition of NO production resulted in an increase in caspase-3-like activity with respect to untreated larvae. Detection of endogenously activated caspase-3 and NO revealed the existence of a spatial correlation between the diminution of the NO signal and caspase-3 activation during the last phases of tail regression. Real-time PCR during development, from early larva to early juveniles, showed that during all stages examined, NO synthase (NOS) is always more expressed than arginase and it reaches the maximum value at late larva, the stage immediately preceding tail resorption. The spatial expression pattern of NOS is very dynamic, moving rapidly along the body in very few hours, from the anterior part of the trunk to central nervous system (CNS), tail and new forming juvenile digestive organs. NO detection revealed free diffusion from the production sites to other cellular districts. Overall, the results of this study provide a new important link between NO signalling and apoptosis during metamorphosis in C. intestinalis and hint at novel roles for the NO signalling system in other developmental and metamorphosis-related events preceding and following tail resorption.
Collapse
Affiliation(s)
- Stefania Comes
- Biochemistry and Molecular Biology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|