51
|
Flynn C, Sharma T, Ruffins S, Guerra S, Crowley J, Ettensohn C. High-resolution, three-dimensional mapping of gene expression using GeneExpressMap (GEM). Dev Biol 2011; 357:532-40. [DOI: 10.1016/j.ydbio.2011.06.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 10/18/2022]
|
52
|
Pinsino A, Roccheri MC, Costa C, Matranga V. Manganese Interferes with Calcium, Perturbs ERK Signaling, and Produces Embryos with No Skeleton. Toxicol Sci 2011; 123:217-30. [DOI: 10.1093/toxsci/kfr152] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
53
|
Adomako-Ankomah A, Ettensohn CA. P58-A and P58-B: novel proteins that mediate skeletogenesis in the sea urchin embryo. Dev Biol 2011; 353:81-93. [PMID: 21362416 DOI: 10.1016/j.ydbio.2011.02.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 01/17/2023]
Abstract
During sea urchin embryogenesis, the skeleton is produced by primary mesenchyme cells (PMCs). PMCs undergo a sequence of morphogenetic behaviors that includes ingression, directed migration, and cell-cell fusion. Ultimately, PMCs deposit the calcite-containing biomineral that forms the endoskeleton of the late embryo and early larva. The endoskeleton has a stereotypical structure and is the major determinant of the distinctive, angular shape of the larva. Although many candidate biomineralization proteins have been identified, functional data concerning these proteins are scant. Here, we identify and characterize two new biomineralization genes, p58-a and p58-b. We show that these two genes are highly conserved in Strongylocentrotus purpuratus and Lytechinus variegatus, two sea urchin species whose ancestors diverged approximately 100 mya. The p58-a and p58-b genes lie in tandem on the chromosome, suggesting that one of the two genes arose via a gene duplication event. The two genes encode closely related, type I transmembrane proteins. We have established by whole mount in situ hybridization that p58-a and p58-b are expressed specifically in the PMCs in both species. Knockdown of either gene by morpholino antisense oligonucleotides leads to profound defects in skeletogenesis, although skeletal elements are not completely eliminated. The P58-A and P58-B proteins do not appear to play a role in the specification, directed migration or differentiation of the PMCs, but most likely are directly involved in biomineralization during sea urchin embryonic development.
Collapse
Affiliation(s)
- Ashrifia Adomako-Ankomah
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
54
|
Echinoderms as Blueprints for Biocalcification: Regulation of Skeletogenic Genes and Matrices. MOLECULAR BIOMINERALIZATION 2011; 52:225-48. [DOI: 10.1007/978-3-642-21230-7_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
55
|
Yamazaki A, Furuzawa Y, Yamaguchi M. Conserved early expression patterns of micromere specification genes in two echinoid species belonging to the orders clypeasteroida and echinoida. Dev Dyn 2010; 239:3391-403. [DOI: 10.1002/dvdy.22476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
56
|
Koga H, Matsubara M, Fujitani H, Miyamoto N, Komatsu M, Kiyomoto M, Akasaka K, Wada H. Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons. Dev Genes Evol 2010; 220:107-15. [PMID: 20680330 DOI: 10.1007/s00427-010-0333-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 07/04/2010] [Indexed: 11/28/2022]
Abstract
Convergent evolution of echinoderm pluteus larva was examined from the standpoint of functional evolution of a transcription factor Ets1/2. In sea urchins, Ets1/2 plays a central role in the differentiation of larval skeletogenic mesenchyme cells. In addition, Ets1/2 is suggested to be involved in adult skeletogenesis. Conversely, in starfish, although no skeletogenic cells differentiate during larval development, Ets1/2 is also expressed in the larval mesoderm. Here, we confirmed that the starfish Ets1/2 is indispensable for the differentiation of the larval mesoderm. This result led us to assume that, in the common ancestors of echinoderms, Ets1/2 activates the transcription of distinct gene sets, one for the differentiation of the larval mesoderm and the other for the development of the adult skeleton. Thus, the acquisition of the larval skeleton involved target switching of Ets1/2. Specifically, in the sea urchin lineage, Ets1/2 activated a downstream target gene set for skeletogenesis during larval development in addition to a mesoderm target set. We examined whether this heterochronic activation of the skeletogenic target set was achieved by the molecular evolution of the Ets1/2 transcription factor itself. We tested whether starfish Ets1/2 induced skeletogenesis when injected into sea urchin eggs. We found that, in addition to ectopic induction of mesenchyme cells, starfish Ets1/2 can activate some parts of the skeletogenic pathway in these mesenchyme cells. Thus, we suggest that the nature of the transcription factor Ets1/2 did not change, but rather that some unidentified co-factor(s) for Ets1/2 may distinguish between targets for the larval mesoderm and for skeletogenesis. Identification of the co-factor(s) will be key to understanding the molecular evolution underlying the evolution of the pluteus larvae.
Collapse
Affiliation(s)
- Hiroyuki Koga
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | | | | | | | | | | | | | | |
Collapse
|
57
|
|
58
|
Hofmann GE, Todgham AE. Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu Rev Physiol 2010; 72:127-45. [PMID: 20148670 DOI: 10.1146/annurev-physiol-021909-135900] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rising atmospheric carbon dioxide has resulted in scientific projections of changes in global temperatures, climate in general, and surface seawater chemistry. Although the consequences to ecosystems and communities of metazoans are only beginning to be revealed, a key to forecasting expected changes in animal communities is an understanding of species' vulnerability to a changing environment. For example, environmental stressors may affect a particular species by driving that organism outside a tolerance window, by altering the costs of metabolic processes under the new conditions, or by changing patterns of development and reproduction. Implicit in all these examples is the foundational understanding of physiological mechanisms and how a particular environmental driver (e.g., temperature and ocean acidification) will be transduced through the animal to alter tolerances and performance. In this review, we highlight examples of mechanisms, focusing on those underlying physiological plasticity, that operate in contemporary organisms as a means to consider physiological responses that are available to organisms in the future.
Collapse
Affiliation(s)
- Gretchen E Hofmann
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106-9620, USA.
| | | |
Collapse
|
59
|
McCauley BS, Weideman EP, Hinman VF. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos. Dev Biol 2010; 340:200-8. [DOI: 10.1016/j.ydbio.2009.11.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 11/16/2022]
|
60
|
Sharma T, Ettensohn CA. Activation of the skeletogenic gene regulatory network in the early sea urchin embryo. Development 2010; 137:1149-57. [PMID: 20181745 DOI: 10.1242/dev.048652] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene regulatory network (GRN) that underlies the development of the embryonic skeleton in sea urchins is an important model for understanding the architecture and evolution of developmental GRNs. The initial deployment of the network is thought to be regulated by a derepression mechanism, which is mediated by the products of the pmar1 and hesC genes. Here, we show that the activation of the skeletogenic network occurs by a mechanism that is distinct from the transcriptional repression of hesC. By means of quantitative, fluorescent whole-mount in situ hybridization, we find that two pivotal early genes in the network, alx1 and delta, are activated in prospective skeletogenic cells prior to the downregulation of hesC expression. An analysis of the upstream regulation of alx1 shows that this gene is regulated by MAPK signaling and by the transcription factor Ets1; however, these inputs influence only the maintenance of alx1 expression and not its activation, which occurs by a distinct mechanism. By altering normal cleavage patterns, we show that the zygotic activation of alx1 and delta, but not that of pmar1, is dependent upon the unequal division of vegetal blastomeres. Based on these findings, we conclude that the widely accepted double-repression model is insufficient to account for the localized activation of the skeletogenic GRN. We postulate the existence of additional, unidentified repressors that are controlled by pmar1, and propose that the ability of pmar1 to derepress alx1 and delta is regulated by the unequal division of vegetal blastomeres.
Collapse
Affiliation(s)
- Tara Sharma
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
61
|
Mann K, Poustka AJ, Mann M. Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin. Proteome Sci 2010; 8:6. [PMID: 20181113 PMCID: PMC2830187 DOI: 10.1186/1477-5956-8-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/08/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Sea urchin is a major model organism for developmental biology and biomineralization research. However, identification of proteins involved in larval skeleton formation and mineralization processes in the embryo and adult, and the molecular characterization of such proteins, has just gained momentum with the sequencing of the Strongylocentrotus purpuratus genome and the introduction of high-throughput proteomics into the field. RESULTS The present report contains the determination of test (shell) and tooth organic matrix phosphoproteomes. Altogether 34 phosphoproteins were identified in the biomineral organic matrices. Most phosphoproteins were specific for one compartment, only two were identified in both matrices. The sea urchin phosphoproteomes contained several obvious orthologs of mammalian proteins, such as a Src family tyrosine kinase, protein kinase C-delta 1, Dickkopf-1 and other signal transduction components, or nucleobindin. In most cases phosphorylation sites were conserved between sea urchin and mammalian proteins. However, the majority of phosphoproteins had no mammalian counterpart. The most interesting of the sea urchin-specific phosphoproteins, from the perspective of biomineralization research, was an abundant highly phosphorylated and very acidic tooth matrix protein composed of 35 very similar short sequence repeats, a predicted N-terminal secretion signal sequence, and an Asp-rich C-terminal motif, contained in [Glean3:18919]. CONCLUSIONS The 64 phosphorylation sites determined represent the most comprehensive list of experimentally identified sea urchin protein phosphorylation sites at present and are an important addition to the recently analyzed Strongylocentrotus purpuratus shell and tooth proteomes. The identified phosphoproteins included a major, highly phosphorylated protein, [Glean3:18919], for which we suggest the name phosphodontin. Although not sequence-related to such highly phosphorylated acidic mammalian dental phosphoproteins as phosphoryn or dentin matrix protein-1, phosphodontin may perform similar functions in the sea urchin tooth. More than half of the detected proteins were not previously identified at the protein level, thus confirming the existence of proteins only known as genomic sequences previously.
Collapse
Affiliation(s)
- Karlheinz Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, D-82152 Martinsried, Am Klopferspitz 18, Germany
| | - Albert J Poustka
- Max-Planck-Institut für Molekulare Genetik, Evolution and Development Group, D-14195 Berlin, Ihnestrasse 73, Germany
| | - Matthias Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, D-82152 Martinsried, Am Klopferspitz 18, Germany
| |
Collapse
|
62
|
Fujii T, Sakamoto N, Ochiai H, Fujita K, Okamitsu Y, Sumiyoshi N, Minokawa T, Yamamoto T. Role of the nanos homolog during sea urchin development. Dev Dyn 2010; 238:2511-21. [PMID: 19705446 DOI: 10.1002/dvdy.22074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The nanos genes play important roles in the development of primordial germ cells in animal species. In the sea urchin, Hemicentrotus pulcherrimus, small micromere descendants specifically express HpNanos mRNA and this expression continues in the left coelomic pouch, which produces the major component of the adult rudiment. In this study, we showed that morpholino knockdown of HpNanos resulted in a delay of primary mesenchyme cell ingression and a decrease in the number of cells comprising the left coelomic pouch. Knockdown analysis in chimeras and whole embryos revealed the disappearance of small micromere descendants from the archenteron tip. Furthermore, the expression of HpNanos mRNA was induced in other cell lineages in the HpNanos-knockdown and micromere-deleted embryos. Taken together, our results suggest that HpNanos is involved in the inductive interaction of small micromere descendants with other cell lineages, and that HpNanos is required for the survival of small micromere descendants.
Collapse
Affiliation(s)
- Takayoshi Fujii
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Regulative recovery in the sea urchin embryo and the stabilizing role of fail-safe gene network wiring. Proc Natl Acad Sci U S A 2009; 106:18291-6. [PMID: 19822764 DOI: 10.1073/pnas.0910007106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Design features that ensure reproducible and invariant embryonic processes are major characteristics of current gene regulatory network models. New cis-regulatory studies on a gene regulatory network subcircuit activated early in the development of the sea urchin embryo reveal a sequence of encoded "fail-safe" regulatory devices. These ensure the maintenance of fate separation between skeletogenic and nonskeletogenic mesoderm lineages. An unexpected consequence of the network design revealed in the course of these experiments is that it enables the embryo to "recover" from regulatory interference that has catastrophic effects if this feature is disarmed. A reengineered regulatory system inserted into the embryo was used to prove how this system operates in vivo. Genomically encoded backup control circuitry thus provides the mechanism underlying a specific example of the regulative development for which the sea urchin embryo has long been famous.
Collapse
|
64
|
Todgham AE, Hofmann GE. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J Exp Biol 2009; 212:2579-94. [DOI: 10.1242/jeb.032540] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Ocean acidification from the uptake of anthropogenic CO2 is expected to have deleterious consequences for many calcifying marine animals. Forecasting the vulnerability of these marine organisms to climate change is linked to an understanding of whether species possess the physiological capacity to compensate for the potentially adverse effects of ocean acidification. We carried out a microarray-based transcriptomic analysis of the physiological response of larvae of a calcifying marine invertebrate, the purple sea urchin, Strongylocentrotus purpuratus, to CO2-driven seawater acidification. In lab-based cultures, larvae were raised under conditions approximating current ocean pH conditions (pH 8.01) and at projected, more acidic pH conditions (pH 7.96 and 7.88) in seawater aerated with CO2 gas. Targeting expression of ∼1000 genes involved in several biological processes, this study captured changes in gene expression patterns that characterize the transcriptomic response to CO2-driven seawater acidification of developing sea urchin larvae. In response to both elevated CO2 scenarios, larvae underwent broad scale decreases in gene expression in four major cellular processes:biomineralization, cellular stress response, metabolism and apoptosis. This study underscores that physiological processes beyond calcification are impacted greatly, suggesting that overall physiological capacity and not just a singular focus on biomineralization processes is essential for forecasting the impact of future CO2 conditions on marine organisms. Conducted on targeted and vulnerable species, genomics-based studies, such as the one highlighted here, have the potential to identify potential `weak links' in physiological function that may ultimately determine an organism's capacity to tolerate future ocean conditions.
Collapse
Affiliation(s)
- Anne E. Todgham
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Gretchen E. Hofmann
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
65
|
Genotype-phenotype mapping developmental biology confronts the toolkit paradox. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:119-48. [PMID: 19815178 DOI: 10.1016/s1937-6448(09)78003-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The quest to understand the relationship between an organism's DNA sequence and three-dimensional form is an interdisciplinary task, integrating diverse fields of the life sciences. The relevance of the metaphor of a genotype-phenotype map is explored from a developmental perspective, in light of the recent concept of a "molecular toolkit" of protein-coding genes, and the widespread view that analyzing the logic and mechanics of gene regulation at multiple levels is key to explaining how morphology is genetically encoded. We discuss the challenges of decoding genomes despite variable genetic backgrounds, the dynamically changing physical and molecular contexts of the internal environment during development, and the impact of external forces on morphogenesis.
Collapse
|