Yamamoto Y, Takeshita H, Sawa H. Multiple Wnts redundantly control polarity orientation in Caenorhabditis elegans epithelial stem cells.
PLoS Genet 2011;
7:e1002308. [PMID:
22022276 PMCID:
PMC3192832 DOI:
10.1371/journal.pgen.1002308]
[Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/08/2011] [Indexed: 01/22/2023] Open
Abstract
During development, cell polarization is often coordinated to harmonize tissue patterning and morphogenesis. However, how extrinsic signals synchronize cell polarization is not understood. In Caenorhabditis elegans, most mitotic cells are polarized along the anterior-posterior axis and divide asymmetrically. Although this process is regulated by a Wnt-signaling pathway, Wnts functioning in cell polarity have been demonstrated in only a few cells. We analyzed how Wnts control cell polarity, using compound Wnt mutants, including animals with mutations in all five Wnt genes. We found that somatic gonadal precursor cells (SGPs) are properly polarized and oriented in quintuple Wnt mutants, suggesting Wnts are dispensable for the SGPs' polarity, which instead requires signals from the germ cells. Thus, signals from the germ cells organize the C. elegans somatic gonad. In contrast, in compound but not single Wnt mutants, most of the six seam cells, V1–V6 (which are epithelial stem cells), retain their polarization, but their polar orientation becomes random, indicating that it is redundantly regulated by multiple Wnt genes. In contrast, in animals in which the functions of three Wnt receptors (LIN-17, MOM-5, and CAM-1) are disrupted—the stem cells are not polarized and divide symmetrically—suggesting that the Wnt receptors are essential for generating polarity and that they function even in the absence of Wnts. All the seam cells except V5 were polarized properly by a single Wnt gene expressed at the cell's anterior or posterior. The ectopic expression of posteriorly expressed Wnts in an anterior region and vice versa rescued polarity defects in compound Wnt mutants, raising two possibilities: one, Wnts permissively control the orientation of polarity; or two, Wnt functions are instructive, but which orientation they specify is determined by the cells that express them. Our results provide a paradigm for understanding how cell polarity is coordinated by extrinsic signals.
Proper functions and development of organs often require the synchronized polarization of entire cell groups. How cells coordinate their polarity is poorly understood. One plausible model is that individual cells recognize extrinsic signal gradients that orient their polarity, although this has not been shown in any organism. In particular, although Wnt signaling is important for cell polarization, and Wnt signal gradients are important for the coordinated specification of cell fates, the Wnts' involvement in orienting cell polarity is unclear. In the nematode Caenorhabditis elegans, most asymmetrically dividing mitotic cells are polarized in the same anterior-posterior orientation. Here we show that multiple Wnt proteins redundantly control the proper orientation of cell polarity, but not for polarization per se, in a group of epithelial stem cells. In contrast, Wnt receptors are indispensable for cells to adopt a polarized phenotype. Most stem cells are properly oriented by Wnt genes that are expressed either at their anterior or posterior side. Surprisingly, Wnt signals can properly orient stem cell polarity, even when their source is changed from anterior to posterior or vice versa. Our results suggest the presence of novel mechanisms by which Wnt genes orient cell polarity.
Collapse