51
|
Wei Q, Zhong L, Zhang S, Mu H, Xiang J, Yue L, Dai Y, Han J. Bovine lineage specification revealed by single-cell gene expression analysis from zygote to blastocyst. Biol Reprod 2018; 97:5-17. [PMID: 28859285 DOI: 10.1093/biolre/iox071] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022] Open
Abstract
Preimplantation embryos undergo zygotic genome activation and lineage specification resulting in three distinct cell types in the late blastocyst. The molecular mechanisms underlying this progress are largely unknown in bovines. Here, we sought to analyze an extensive set of regulators at the single-cell level to define the events involved in the development of the bovine blastocyst. Using a quantitative microfluidics approach in single cells, we analyzed mRNA levels of 96 genes known to function in early embryonic development and maintenance of stem cell pluripotency in parallel in 384 individual cells from bovine preimplantation embryos. The developmental transitions can be distinguished by distinctive gene expression profiles and we identified NOTCH1, expressed in early developmental stages, while T-box 3 (TBX3) and fibroblast growth factor receptor 4 (FGFR4), expressed in late developmental stages. Three lineages can be segregated in bovine expanded blastocysts based on the expression patterns of lineage-specific genes such as disabled homolog 2 (DAB2), caudal type homeobox 2 (CDX2), ATPase H+/K+ transporting non-gastric alpha2 subunit (ATP12A), keratin 8 (KRT8), and transcription factor AP-2 alpha (TFAP2A) for trophectoderm; GATA binding protein 6 (GATA6) and goosecoid homeobox (GSC) for primitive endoderm; and Nanog homeobox (NANOG), teratocarcinoma-derived growth factor 1 (TDGF1), and PR/SET domain 14 (PRDM14) for epiblast. Moreover, some lineage-specific genes were coexpressed in blastomeres from the morula. The commitment to trophectoderm and inner cell mass lineages in bovines occurs later than in the mouse, and KRT8 might be an earlier marker for bovine trophectoderm cells. We determined that TDGF1 and PRDM14 might play pivotal roles in the primitive endoderm and epiblast specification of bovine blastocysts. Our results shed light on early cell fate determination in bovine preimplantation embryos and offer theoretical support for deriving bovine embryonic stem cells.
Collapse
Affiliation(s)
- Qingqing Wei
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Zhong
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shaopeng Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haiyuan Mu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinzhu Xiang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Yue
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yunping Dai
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jianyong Han
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
52
|
Tanaka T, Izawa K, Maniwa Y, Okamura M, Okada A, Yamaguchi T, Shirakura K, Maekawa N, Matsui H, Ishimoto K, Hino N, Nakagawa O, Aird WC, Mizuguchi H, Kawabata K, Doi T, Okada Y. ETV2-TET1/TET2 Complexes Induce Endothelial Cell-Specific Robo4 Expression via Promoter Demethylation. Sci Rep 2018; 8:5653. [PMID: 29618782 PMCID: PMC5884809 DOI: 10.1038/s41598-018-23937-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/23/2018] [Indexed: 01/18/2023] Open
Abstract
Although transcription factors regulating endothelial cell (EC)-specific gene expression have been identified, it is not known how those factors induce EC-specificity. We previously reported that DNA hypomethylation of the proximal promoter elicits EC-specific expression of Roundabout4 (Robo4). However, the mechanisms establishing EC-specific hypomethylation of the Robo4 promoter remain unknown. In this study, we demonstrated that the hypermethylated Robo4 proximal promoter is demethylated as human iPS cells differentiate into endothelial cells. Reporter assays demonstrated that ETV2, an ETS family transcription factor, bound to ETS motifs in the proximal promoter and activated Robo4 expression. Immunoprecipitation demonstrated direct interaction between ETV2 and methylcytosine-converting enzymes TET1 and TET2. Adenoviral expression of ETV2-TET1/TET2 complexes demethylated the Robo4 promoter and induced Robo4 expression in non-ECs. In summary, we propose a novel regulatory model of EC-specific gene expression via promoter demethylation induced by ETV2-TET1/TET2 complexes during endothelial differentiation.
Collapse
Affiliation(s)
- Toru Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, 565-0871, Japan
| | - Kohei Izawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, 565-0871, Japan
| | - Yusuke Maniwa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, 565-0871, Japan
| | - Maki Okamura
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, 565-0871, Japan
| | - Atsumasa Okada
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki City, Osaka, 567-0085, Japan
| | - Tomoko Yamaguchi
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki City, Osaka, 567-0085, Japan
| | - Keisuke Shirakura
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, 565-0871, Japan
| | - Naoki Maekawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, 565-0871, Japan
| | - Hayato Matsui
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, 565-0871, Japan
| | - Kenji Ishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, 565-0871, Japan
| | - Nobumasa Hino
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, 565-0871, Japan
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita City, Osaka, 565-8565, Japan
| | - William C Aird
- Center for Vascular Biology Research and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Hiroyuki Mizuguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, 565-0871, Japan
| | - Kenji Kawabata
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki City, Osaka, 567-0085, Japan
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, 565-0871, Japan
| | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, 565-0871, Japan.
| |
Collapse
|
53
|
Draime A, Bridoux L, Belpaire M, Pringels T, Tys J, Rezsohazy R. PRDM14, a putative histone methyl-transferase, interacts with and decreases the stability and activity of the HOXA1 transcription factor. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:534-542. [PMID: 29471045 DOI: 10.1016/j.bbagrm.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 11/18/2022]
Abstract
Understanding how the activity of transcription factors like HOX proteins is regulated remains a widely open question. In a recent screen for proteins interacting with HOXA1, we identified a PRDM protein family member, PRDM14, which is known to be transiently co-expressed with HOXA1 in epiblast cells before their specification towards somatic versus germ cell fate. Here, we confirm PRDM14 is an interactor of HOXA1 and we identify the homeodomain of HOXA1 as well as the PR domain and Zinc fingers of PRDM14 to be required for the interaction. An 11-His repeat of HOXA1 previously highlighted to contribute to HOXA1-mediated protein-protein interactions is also involved. At a functional level, we provide evidence that HOXA1 displays an unexpectedly long half-life and demonstrate that PRDM14 can reduce the stability and affect the transcriptional activity of HOXA1.
Collapse
Affiliation(s)
- Amandine Draime
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - Magali Belpaire
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - Tamara Pringels
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - Janne Tys
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
54
|
Seki Y. PRDM14 Is a Unique Epigenetic Regulator Stabilizing Transcriptional Networks for Pluripotency. Front Cell Dev Biol 2018; 6:12. [PMID: 29487849 PMCID: PMC5816753 DOI: 10.3389/fcell.2018.00012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
PR-domain containing protein 14 (PRDM14) is a site-specific DNA-binding protein and is required for establishment of pluripotency in embryonic stem cells (ESCs) and primordial germ cells (PGCs) in mice. DNA methylation status is regulated by the balance between de novo methylation and passive/active demethylation, and global DNA hypomethylation is closely associated with cellular pluripotency and totipotency. PRDM14 ensures hypomethylation in mouse ESCs and PGCs through two distinct layers, transcriptional repression of the DNA methyltransferases Dnmt3a/b/l and active demethylation by recruitment of TET proteins. However, the function of PRDM14 remains unclear in other species including humans. Hence, here we focus on the unique characteristics of mouse PRDM14 in the epigenetic regulation of pluripotent cells and primordial germ cells. In addition, we discuss the expression regulation and function of PRDM14 in other species compared with those in mice.
Collapse
Affiliation(s)
- Yoshiyuki Seki
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo, Japan
| |
Collapse
|
55
|
Liang J, Yang F, Zhao L, Bi C, Cai B. Physiological and pathological implications of 5-hydroxymethylcytosine in diseases. Oncotarget 2018; 7:48813-48831. [PMID: 27183914 PMCID: PMC5217052 DOI: 10.18632/oncotarget.9281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/19/2016] [Indexed: 12/11/2022] Open
Abstract
Gene expression is the prerequisite of proteins. Diverse stimuli result in alteration of gene expression profile by base substitution for quite a long time. However, during the past decades, accumulating studies proved that bases modification is involved in this process. CpG islands (CGIs) are DNA fragments enriched in CpG repeats which mostly locate in promoters. They are frequently modified, methylated in most conditions, thereby suggesting a role of methylation in profiling gene expression. DNA methylation occurs in many conditions, such as cancer, embryogenesis, nervous system diseases etc. Recently, 5-hydroxymethylcytosine (5hmC), the product of 5-methylcytosine (5mC) demethylation, is emerging as a novel demethylation marker in many disorders. Consistently, conversion of 5mC to 5hmC has been proved in many studies. Here, we reviewed recent studies concerning demethylation via 5hmC conversion in several conditions and progress of therapeutics-associated with it in clinic. We aimed to unveil its physiological and pathological significance in diseases and to provide insight into its clinical application potential.
Collapse
Affiliation(s)
- Jing Liang
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Fan Yang
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Liang Zhao
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Chongwei Bi
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Benzhi Cai
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China.,Institute of Clinical Pharmacy and Medicine, Academics of Medical Sciences of Heilongjiang Province, Harbin, China
| |
Collapse
|
56
|
Totonchi M, Hassani SN, Sharifi-Zarchi A, Tapia N, Adachi K, Arand J, Greber B, Sabour D, Araúzo-Bravo MJ, Walter J, Pakzad M, Gourabi H, Schöler HR, Baharvand H. Blockage of the Epithelial-to-Mesenchymal Transition Is Required for Embryonic Stem Cell Derivation. Stem Cell Reports 2017; 9:1275-1290. [PMID: 28919260 PMCID: PMC5639184 DOI: 10.1016/j.stemcr.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 11/30/2022] Open
Abstract
Pluripotent cells emanate from the inner cell mass (ICM) of the blastocyst and when cultivated under optimal conditions immortalize as embryonic stem cells (ESCs). The fundamental mechanism underlying ESC derivation has, however, remained elusive. Recently, we have devised a highly efficient approach for establishing ESCs, through inhibition of the MEK and TGF-β pathways. This regimen provides a platform for dissecting the molecular mechanism of ESC derivation. Via temporal gene expression analysis, we reveal key genes involved in the ICM to ESC transition. We found that DNA methyltransferases play a pivotal role in efficient ESC generation. We further observed a tight correlation between ESCs and preimplantation epiblast cell-related genes and noticed that fundamental events such as epithelial-to-mesenchymal transition blockage play a key role in launching the ESC self-renewal program. Our study provides a time course transcriptional resource highlighting the dynamics of the gene regulatory network during the ICM to ESC transition.
Collapse
Affiliation(s)
- Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Ali Sharifi-Zarchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Chitsaz Lab, Department of Computer Science, Colorado State University, Fort Collins 80523, CO, USA
| | - Natalia Tapia
- Institute of Biomedicine of Valencia, Spanish National Research Council, Jaime Roig 11, 46010 Valencia, Spain
| | - Kenjiro Adachi
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Julia Arand
- University of Saarland, FR 8.3, Biological Sciences, Genetics/Epigenetics, Campus A2.4, 66123 Saarbrücken, Germany
| | - Boris Greber
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany; Chemical Genomics Centre of the Max Planck Society, Dortmung, Germany
| | - Davood Sabour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain
| | - Jörn Walter
- University of Saarland, FR 8.3, Biological Sciences, Genetics/Epigenetics, Campus A2.4, 66123 Saarbrücken, Germany
| | - Mohammad Pakzad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
57
|
Zimmerlin L, Park TS, Zambidis ET. Capturing Human Naïve Pluripotency in the Embryo and in the Dish. Stem Cells Dev 2017; 26:1141-1161. [PMID: 28537488 DOI: 10.1089/scd.2017.0055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although human embryonic stem cells (hESCs) were first derived almost 20 years ago, it was only recently acknowledged that they share closer molecular and functional identity to postimplantation lineage-primed murine epiblast stem cells than to naïve preimplantation inner cell mass-derived mouse ESCs (mESCs). A myriad of transcriptional, epigenetic, biochemical, and metabolic attributes have now been described that distinguish naïve and primed pluripotent states in both rodents and humans. Conventional hESCs and human induced pluripotent stem cells (hiPSCs) appear to lack many of the defining hallmarks of naïve mESCs. These include important features of the naïve ground state murine epiblast, such as an open epigenetic architecture, reduced lineage-primed gene expression, and chimera and germline competence following injection into a recipient blastocyst-stage embryo. Several transgenic and chemical methods were recently reported that appear to revert conventional human PSCs to mESC-like ground states. However, it remains unclear if subtle deviations in global transcription, cell signaling dependencies, and extent of epigenetic/metabolic shifts in these various human naïve-reverted pluripotent states represent true functional differences or alternatively the existence of distinct human pluripotent states along a spectrum. In this study, we review the current understanding and developmental features of various human pluripotency-associated phenotypes and discuss potential biological mechanisms that may support stable maintenance of an authentic epiblast-like ground state of human pluripotency.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Tea Soon Park
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Elias T Zambidis
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| |
Collapse
|
58
|
Abstract
Melanoma is a malignant tumor of melanocytes and is considered to be the most aggressive cancer among all skin diseases. The pathogenesis of melanoma has not been well documented, which may restrict the research and development of biomarkers and therapies. To date, several genetic and epigenetic factors have been identified as contributing to the development and progression of melanoma. Besides the findings on genetic susceptibilities, the recent progress in epigenetic studies has revealed that loss of the DNA hydroxymethylation mark, 5-hydroxymethylcytosine (5-hmC), along with high levels of DNA methylation at promoter regions of several tumor suppressor genes in melanoma, may serve as biomarkers for melanoma. Moreover, 5-Aza-2′-deoxycytidine, an epigenetic modifier causing DNA demethylation, and ten-eleven translocation family dioxygenase (TET), which catalyzes the generation of 5-hmC, demonstrate therapeutic potential in melanoma treatment. In this review, we will summarize the latest progress in research on DNA methylation/hydroxymethylation in melanoma, and we will discuss and provide insight for epigenetic biomarkers and therapies for melanoma. Particularly, we will discuss the role of DNA hydroxymethylation in melanoma infiltrating immune cells, which may also serve as a potential target for melanoma treatment.
Collapse
|
59
|
Abstract
In mammals, DNA methylation in the form of 5-methylcytosine (5mC) can be actively reversed to unmodified cytosine (C) through TET dioxygenase-mediated oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), followed by replication-dependent dilution or thymine DNA glycosylase (TDG)-dependent base excision repair. In the past few years, biochemical and structural studies have revealed mechanistic insights into how TET and TDG mediate active DNA demethylation. Additionally, many regulatory mechanisms of this process have been identified. Technological advances in mapping and tracing the oxidized forms of 5mC allow further dissection of their functions. Furthermore, the biological functions of active DNA demethylation in various biological contexts have also been revealed. In this Review, we summarize the recent advances and highlight key unanswered questions.
Collapse
|
60
|
DUSP9 Modulates DNA Hypomethylation in Female Mouse Pluripotent Stem Cells. Cell Stem Cell 2017; 20:706-719.e7. [PMID: 28366588 DOI: 10.1016/j.stem.2017.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/12/2016] [Accepted: 03/06/2017] [Indexed: 11/23/2022]
Abstract
Blastocyst-derived embryonic stem cells (ESCs) and gonad-derived embryonic germ cells (EGCs) represent two classic types of pluripotent cell lines, yet their molecular equivalence remains incompletely understood. Here, we compare genome-wide methylation patterns between isogenic ESC and EGC lines to define epigenetic similarities and differences. Surprisingly, we find that sex rather than cell type drives methylation patterns in ESCs and EGCs. Cell fusion experiments further reveal that the ratio of X chromosomes to autosomes dictates methylation levels, with female hybrids being hypomethylated and male hybrids being hypermethylated. We show that the X-linked MAPK phosphatase DUSP9 is upregulated in female compared to male ESCs, and its heterozygous loss in female ESCs leads to male-like methylation levels. However, male and female blastocysts are similarly hypomethylated, indicating that sex-specific methylation differences arise in culture. Collectively, our data demonstrate the epigenetic similarity of sex-matched ESCs and EGCs and identify DUSP9 as a regulator of female-specific hypomethylation.
Collapse
|
61
|
Kalkan T, Olova N, Roode M, Mulas C, Lee HJ, Nett I, Marks H, Walker R, Stunnenberg HG, Lilley KS, Nichols J, Reik W, Bertone P, Smith A. Tracking the embryonic stem cell transition from ground state pluripotency. Development 2017; 144:1221-1234. [PMID: 28174249 PMCID: PMC5399622 DOI: 10.1242/dev.142711] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022]
Abstract
Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naïve pluripotency. Here, we examine the initial transition process. The ES cell population behaves asynchronously. We therefore exploited a short-half-life Rex1::GFP reporter to isolate cells either side of exit from naïve status. Extinction of ES cell identity in single cells is acute. It occurs only after near-complete elimination of naïve pluripotency factors, but precedes appearance of lineage specification markers. Cells newly departed from the ES cell state display features of early post-implantation epiblast and are distinct from primed epiblast. They also exhibit a genome-wide increase in DNA methylation, intermediate between early and late epiblast. These findings are consistent with the proposition that naïve cells transition to a distinct formative phase of pluripotency preparatory to lineage priming.
Collapse
Affiliation(s)
- Tüzer Kalkan
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK
| | | | - Mila Roode
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK
| | - Carla Mulas
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK
| | - Heather J Lee
- Babraham Institute, Cambridge CB22 3AT, UK.,Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Isabelle Nett
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK
| | - Hendrik Marks
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen 6500HB, The Netherlands
| | - Rachael Walker
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK.,Babraham Institute, Cambridge CB22 3AT, UK
| | - Hendrik G Stunnenberg
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen 6500HB, The Netherlands
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.,The Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 4BG, UK
| | - Wolf Reik
- Babraham Institute, Cambridge CB22 3AT, UK.,Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Paul Bertone
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK .,Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
62
|
Hagiwara-Chatani N, Shirai K, Kido T, Horigome T, Yasue A, Adachi N, Hirai Y. Membrane translocation of t-SNARE protein syntaxin-4 abrogates ground-state pluripotency in mouse embryonic stem cells. Sci Rep 2017; 7:39868. [PMID: 28057922 PMCID: PMC5216394 DOI: 10.1038/srep39868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Embryonic stem (ES) and induced pluripotent stem (iPS) cells are attractive tools for regenerative medicine therapies. However, aberrant cell populations that display flattened morphology and lose ground-state pluripotency often appear spontaneously, unless glycogen synthase kinase 3β (GSK3β) and mitogen-activated protein kinase kinase (MEK1/2) are inactivated. Here, we show that membrane translocation of the t-SNARE protein syntaxin-4 possibly is involved in this phenomenon. We found that mouse ES cells cultured without GSK3β/MEK1/2 inhibitors (2i) spontaneously extrude syntaxin-4 at the cell surface and that artificial expression of cell surface syntaxin-4 induces appreciable morphological changes and mesodermal differentiation through dephosphorylation of Akt. Transcriptome analyses revealed several candidate elements responsible for this, specifically, an E-to P-cadherin switch and a marked downregulation of Zscan4 proteins, which are DNA-binding proteins essential for ES cell pluripotency. Embryonic carcinoma cell lines F9 and P19CL6, which maintain undifferentiated states independently of Zscan4 proteins, exhibited similar cellular behaviors upon stimulation with cell surface syntaxin-4. The functional ablation of E-cadherin and overexpression of P-cadherin reproduced syntaxin-4-induced cell morphology, demonstrating that the E- to P-cadherin switch executes morphological signals from cell surface syntaxin-4. Thus, spontaneous membrane translocation of syntaxin-4 emerged as a critical element for maintenance of the stem-cell niche.
Collapse
Affiliation(s)
- Natsumi Hagiwara-Chatani
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Kota Shirai
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Takumi Kido
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Tomoatsu Horigome
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Akihiro Yasue
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, The University of Tokushima, Tokushima, Japan
| | - Naoki Adachi
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Yohei Hirai
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
63
|
PRDM14 Drives OCT3/4 Recruitment via Active Demethylation in the Transition from Primed to Naive Pluripotency. Stem Cell Reports 2016; 7:1072-1086. [PMID: 27866876 PMCID: PMC5161533 DOI: 10.1016/j.stemcr.2016.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022] Open
Abstract
Primordial germ cells (PGCs) are specified from epiblast cells in mice. Genes associated with naive pluripotency are repressed in the transition from inner cell mass to epiblast cells, followed by upregulation after PGC specification. However, the molecular mechanisms underlying the reactivation of pluripotency genes are poorly characterized. Here, we exploited the in vitro differentiation of epiblast-like cells (EpiLCs) from embryonic stem cells (ESCs) to elucidate the molecular and epigenetic functions of PR domain-containing 14 (PRDM14). We found that Prdm14 overexpression in EpiLCs induced their conversion to ESC-like cells even in the absence of leukemia inhibitory factor in adherent culture. This was impaired by the loss of Kruppel-like factor 2 and ten-eleven translocation (TET) proteins. Furthermore, PRDM14 recruited OCT3/4 to the enhancer regions of naive pluripotency genes via TET-base excision repair-mediated demethylation. Our results provide evidence that PRDM14 establishes a transcriptional network for naive pluripotency via active DNA demethylation.
Collapse
|
64
|
Jin C, Qin T, Barton MC, Jelinek J, Issa JPJ. Minimal role of base excision repair in TET-induced global DNA demethylation in HEK293T cells. Epigenetics 2016; 10:1006-13. [PMID: 26440216 DOI: 10.1080/15592294.2015.1091145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Oxidation of 5-methylcytosine by TET family proteins can induce DNA replication-dependent (passive) DNA demethylation and base excision repair (BER)-based (active) DNA demethylation. The balance of active vs. passive TET-induced demethylation remains incompletely determined. In the context of large scale DNA demethylation, active demethylation may require massive induction of the DNA repair machinery and thus compromise genome stability. To study this issue, we constructed a tetracycline-controlled TET-induced global DNA demethylation system in HEK293T cells. Upon TET overexpression, we observed induction of DNA damage and activation of a DNA damage response; however, BER genes are not upregulated to promote DNA repair. Depletion of TDG (thymine DNA glycosylase) or APEX1 (apurinic/apyrimidinic endonuclease 1), two key BER enzymes, enhances rather than impairs global DNA demethylation, which can be explained by stimulated proliferation. By contrast, growth arrest dramatically blocks TET-induced global DNA demethylation. Thus, in the context of TET-induction in HEK293T cells, the DNA replication-dependent passive mechanism functions as the predominant pathway for global DNA demethylation. In the same context, BER-based active demethylation is markedly restricted by limited BER upregulation, thus potentially preventing a disastrous DNA damage response to extensive active DNA demethylation.
Collapse
Affiliation(s)
- Chunlei Jin
- a Fels Institute for Cancer Research and Molecular Biology; Temple University ; Philadelphia , PA USA.,b Department of Epigenetics and Molecular Carcinogenesis ; The University of Texas MD Anderson Cancer Center ; Houston , TX USA
| | - Taichun Qin
- c Department of Cancer Biology ; The University of Texas MD Anderson Cancer Center ; Houston , TX USA
| | - Michelle Craig Barton
- b Department of Epigenetics and Molecular Carcinogenesis ; The University of Texas MD Anderson Cancer Center ; Houston , TX USA
| | - Jaroslav Jelinek
- a Fels Institute for Cancer Research and Molecular Biology; Temple University ; Philadelphia , PA USA
| | - Jean-Pierre J Issa
- a Fels Institute for Cancer Research and Molecular Biology; Temple University ; Philadelphia , PA USA
| |
Collapse
|
65
|
Gavin DP, Kusumo H, Sharma RP, Guizzetti M. Ethanol-induced changes in poly (ADP ribose) polymerase and neuronal developmental gene expression. Neuropharmacology 2016; 110:287-296. [PMID: 27497606 DOI: 10.1016/j.neuropharm.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 01/20/2023]
Abstract
Prenatal alcohol exposure has profound effects on neuronal growth and development. Poly-ADP Ribose Polymerase (PARP) enzymes are perhaps unique in the field of epigenetics in that they directly participate in histone modifications, transcription factor modifications, DNA methylation/demethylation and are highly inducible by ethanol. It was our hypothesis that ethanol would induce PARP enzymatic activity leading to alterations in neurodevelopmental gene expression. Mouse E18 cortical neurons were treated with ethanol, PARP inhibitors, and nuclear hormone receptor transcription factor PPARγ agonists and antagonists. Subsequently, we measured PARP activity and changes in Bdnf, OKSM (Oct4, Klf4, Sox2, c-Myc), DNA methylating/demethylating factors, and Pparγ mRNA expression, promoter 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC), and PPARγ promoter binding. We found that ethanol reduced Bdnf4, 9a, and Klf4 mRNA expression, and increased c-Myc expression. These changes were reversed with a PARP inhibitor. In agreement with its role in DNA demethylation PARP inhibition increased 5MC levels at the c-Myc promoter. In addition, we found that inhibition of PARP enzymatic activity increased PPARγ promoter binding, and this corresponded to increased Bdnf and Klf4 mRNA expression. Our results suggest that PARP participates in DNA demethylation and reduces PPARγ promoter binding. The current study underscores the importance of PARP in ethanol-induced changes to neurodevelopmental gene expression.
Collapse
Affiliation(s)
- David P Gavin
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| | - Handojo Kusumo
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Rajiv P Sharma
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, USA
| |
Collapse
|
66
|
Suelves M, Carrió E, Núñez-Álvarez Y, Peinado MA. DNA methylation dynamics in cellular commitment and differentiation. Brief Funct Genomics 2016; 15:443-453. [PMID: 27416614 DOI: 10.1093/bfgp/elw017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts, revealing a more dynamic regulation than originally thought, as active DNA methylation and demethylation occur during cell fate commitment and terminal differentiation. Recent data provide insights into the contribution of different epigenetic factors, and DNA methylation in particular, to the establishment of cellular memory during embryonic development and the modulation of cell type-specific gene regulation programs to ensure proper differentiation. This review summarizes published data regarding DNA methylation changes along lineage specification and differentiation programs. We also discuss the current knowledge about DNA methylation alterations occurring in physiological and pathological conditions such as aging and cancer.
Collapse
|
67
|
Li L, Li C, Mao H, Du Z, Chan WY, Murray P, Luo B, Chan AT, Mok TS, Chan FK, Ambinder RF, Tao Q. Epigenetic inactivation of the CpG demethylase TET1 as a DNA methylation feedback loop in human cancers. Sci Rep 2016; 6:26591. [PMID: 27225590 PMCID: PMC4880909 DOI: 10.1038/srep26591] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/05/2016] [Indexed: 12/17/2022] Open
Abstract
Promoter CpG methylation is a fundamental regulatory process of gene expression. TET proteins are active CpG demethylases converting 5-methylcytosine to 5-hydroxymethylcytosine, with loss of 5 hmC as an epigenetic hallmark of cancers, indicating critical roles of TET proteins in epigenetic tumorigenesis. Through analysis of tumor methylomes, we discovered TET1 as a methylated target, and further confirmed its frequent downregulation/methylation in cell lines and primary tumors of multiple carcinomas and lymphomas, including nasopharyngeal, esophageal, gastric, colorectal, renal, breast and cervical carcinomas, as well as non-Hodgkin, Hodgkin and nasal natural killer/T-cell lymphomas, although all three TET family genes are ubiquitously expressed in normal tissues. Ectopic expression of TET1 catalytic domain suppressed colony formation and induced apoptosis of tumor cells of multiple tissue types, supporting its role as a broad bona fide tumor suppressor. Furthermore, TET1 catalytic domain possessed demethylase activity in cancer cells, being able to inhibit the CpG methylation of tumor suppressor gene (TSG) promoters and reactivate their expression, such as SLIT2, ZNF382 and HOXA9. As only infrequent mutations of TET1 have been reported, compared to TET2, epigenetic silencing therefore appears to be the dominant mechanism for TET1 inactivation in cancers, which also forms a feedback loop of CpG methylation during tumorigenesis.
Collapse
Affiliation(s)
- Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Chen Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Haitao Mao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Zhenfang Du
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Wai Yee Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Paul Murray
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Bing Luo
- Department of Medical Microbiology, Qingdao University Medical College, Shandong, China
| | - Anthony Tc Chan
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Tony Sk Mok
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Francis Kl Chan
- Institute of Digestive Disease and State Key Laboratory of Digestive Diseases, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Richard F Ambinder
- Johns Hopkins Singapore and Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, USA
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong.,Johns Hopkins Singapore and Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, USA
| |
Collapse
|
68
|
Schuermann D, Weber AR, Schär P. Active DNA demethylation by DNA repair: Facts and uncertainties. DNA Repair (Amst) 2016; 44:92-102. [PMID: 27247237 DOI: 10.1016/j.dnarep.2016.05.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pathways that control and modulate DNA methylation patterning in mammalian cells were poorly understood for a long time, although their importance in establishing and maintaining cell type-specific gene expression was well recognized. The discovery of proteins capable of converting 5-methylcytosine (5mC) to putative substrates for DNA repair introduced a novel and exciting conceptual framework for the investigation and ultimate discovery of molecular mechanisms of DNA demethylation. Against the prevailing notion that DNA methylation is a static epigenetic mark, it turned out to be dynamic and distinct mechanisms appear to have evolved to effect global and locus-specific DNA demethylation. There is compelling evidence that DNA repair, in particular base excision repair, contributes significantly to the turnover of 5mC in cells. By actively demethylating DNA, DNA repair supports the developmental establishment as well as the maintenance of DNA methylation landscapes and gene expression patterns. Yet, while the biochemical pathways are relatively well-established and reviewed, the biological context, function and regulation of DNA repair-mediated active DNA demethylation remains uncertain. In this review, we will thus summarize and critically discuss the evidence that associates active DNA demethylation by DNA repair with specific functional contexts including the DNA methylation erasure in the early embryo, the control of pluripotency and cellular differentiation, the maintenance of cell identity, and the nuclear reprogramming.
Collapse
Affiliation(s)
- David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Alain R Weber
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Primo Schär
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland.
| |
Collapse
|
69
|
Suzuki A, Hirasaki M, Hishida T, Wu J, Okamura D, Ueda A, Nishimoto M, Nakachi Y, Mizuno Y, Okazaki Y, Matsui Y, Izpisua Belmonte JC, Okuda A. Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells. Nat Commun 2016; 7:11056. [PMID: 27025988 PMCID: PMC4820925 DOI: 10.1038/ncomms11056] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/16/2016] [Indexed: 01/15/2023] Open
Abstract
Meiosis is a unique process that allows the generation of reproductive cells. It
remains largely unknown how meiosis is initiated in germ cells and why non-germline
cells do not undergo meiosis. We previously demonstrated that knockdown of
Max expression, a gene encoding a partner of MYC family proteins,
strongly activates expression of germ cell-related genes in ESCs. Here we find that
complete ablation of Max expression in ESCs results in profound cytological
changes reminiscent of cells undergoing meiotic cell division. Furthermore, our
analyses uncovers that Max expression is transiently attenuated in germ cells
undergoing meiosis in vivo and its forced reduction induces meiosis-like
cytological changes in cultured germline stem cells. Mechanistically, Max
depletion alterations are, in part, due to impairment of the function of an atypical
PRC1 complex (PRC1.6), in which MAX is one of the components. Our data highlight MAX
as a new regulator of meiotic onset. The mechanisms that trigger meiosis in germ cells and halt this
process in non-germline cells are unclear. Here, the authors show that knockout of
Max in embryonic stem cells results in meiotic onset in a mechanism that
involves the PRC1 complex.
Collapse
Affiliation(s)
- Ayumu Suzuki
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama 350-1241, Japan
| | - Masataka Hirasaki
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama 350-1241, Japan
| | - Tomoaki Hishida
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama 350-1241, Japan.,Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Jun Wu
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Daiji Okamura
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.,Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, No. 135, Guadalupe, 30107 Murcia, Spain
| | - Atsushi Ueda
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama 350-1241, Japan
| | - Masazumi Nishimoto
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama 350-1241, Japan
| | - Yutaka Nakachi
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama 350-1241, Japan.,Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama 350-1241, Japan
| | - Yosuke Mizuno
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama 350-1241, Japan
| | - Yasushi Okazaki
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama 350-1241, Japan.,Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama 350-1241, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.,Japan Agency for Medical Research and Development and Development-Core Research for Evolutionary Science and Technology (AMED-CREST), Tokyo 100-0004, Japan
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Akihiko Okuda
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama 350-1241, Japan
| |
Collapse
|
70
|
Chatterjee N, Yang J, Choi J. Differential genotoxic and epigenotoxic effects of graphene family nanomaterials (GFNs) in human bronchial epithelial cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 798-799:1-10. [PMID: 26994488 DOI: 10.1016/j.mrgentox.2016.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/08/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The widespread applications of graphene family nanomaterials (GFNs) raised the considerable concern over human health and environment. The cyto-genotoxic potentiality of GFNs has attracted much more attention, albeit the potential effects on the cellular epigenome remain largely unknown. The effects of GFNs on cellular genome were evaluated with single and double stranded DNA damage and DNA repair gene expressions while the effects on epigenome was accomplished by addressing the global DNA methylation and expression of DNA methylation machineries at non-cytotoxic to moderately cytotoxic doses in in vitro system. We used five different representatives of GFNs-pristine (GNP-Prist), carboxylated (GNP-COOH) and aminated (GNP-NH2) graphene nanoplatelets as well as single layer (SLGO) and few layer (FLGO) graphene oxide. The order of single stranded DNA damage was observed as GNP-Prist ≥ GNP-COOH>GNP-NH2≥FLGO>SLGO at 10mg/L and marked dose dependency was found in SLGO. The GFNs possibly caused genotoxicity by affecting nucleotide excision repair and non-homologus end joining repair systems. Besides, dose dependent increase in global DNA methylation (hypermethylation) were observed in SLGO/FLGO exposure and conversely, GNPs treatment caused hypomethylation following the order as GNP-COOH>GNP-NH2 ≥ GNP-Prist. The decrements of DNA methyltransferase (DNMT3B gene) and methyl-CpG binding domain protein (MBD1) genes were probably the cause of global hypomethylation induced by GNPs. Conversely, the de novo methylation through the up-regulation of DNMT3B and MBD1 genes gave rise to the global DNA hypermethylation in SLGO/FLGO treated cells. In general, the GFNs induced genotoxicity and alterations of global DNA methylation exhibited compounds type specificity with differential physico-chemical properties. Taken together, our study suggests that the GFNs could cause more subtle changes in gene expression programming by modulating DNA methylation status and this information would be helpful for their prospective use in biomedical field.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 130-743, Republic of Korea
| | - JiSu Yang
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 130-743, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 130-743, Republic of Korea.
| |
Collapse
|
71
|
Han Y, Lin Q. [Research Progress of PR Domain Zinc Finger Protein 14]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:93-7. [PMID: 26903163 PMCID: PMC6015138 DOI: 10.3779/j.issn.1009-3419.2016.02.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
正性调节区锌指蛋白14(PR domain zinc finger protein 14, PRDM14)是PRDM家族中的重要成员,PRDM14基因对维持细胞的完整性和控制细胞的分化、生长及凋亡起着关键作用,在原始生殖细胞的形成、干细胞全能性的维持和其他组织器官的形成中都发挥了重要作用。PRDM14具有1个PR结构域和6个锌指结构,PRDM14参与了组蛋白的去乙酰化及甲基化过程,通过启动子区甲基化水平的改变参与肿瘤的形成。PRDM14异常甲基化能够引起染色质结构、DNA构象及DNA与蛋白质作用方式的改变,使基因的转录和表达受抑制,这些改变引起了肿瘤的发生、发展及转移。本文根据国内外发表的相关文献对PRDM14的研究现状进行综述。
Collapse
Affiliation(s)
- Yudong Han
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Qiang Lin
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| |
Collapse
|
72
|
Abstract
During mammalian embryonic development, the trophectoderm and primitive endoderm give rise to extraembryonic tissues, while the epiblast differentiates into all somatic lineages and the germline. Remarkably, only a few classes of signaling pathways induce the differentiation of these progenitor cells into diverse lineages. Accordingly, the functional outcome of a particular signal depends on the developmental competence of the target cells. Thus, developmental competence can be defined as the ability of a cell to integrate intrinsic and extrinsic cues to execute a specific developmental program toward a specific cell fate. Downstream of signaling, there is the combinatorial activity of transcription factors and their cofactors, which is modulated by the chromatin state of the target cells. Here, we discuss the concept of developmental competence, and the factors that regulate this state with reference to the specification of mammalian primordial germ cells.
Collapse
Affiliation(s)
- Ufuk Günesdogan
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
73
|
Peng L, Li Y, Xi Y, Li W, Li J, Lv R, Zhang L, Zou Q, Dong S, Luo H, Wu F, Yu W. MBD3L2 promotes Tet2 enzymatic activity for mediating 5-methylcytosine oxidation. J Cell Sci 2016; 129:1059-71. [PMID: 26769901 DOI: 10.1242/jcs.179044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/10/2016] [Indexed: 12/25/2022] Open
Abstract
Ten-eleven translocation (Tet) proteins are key players involved in the dynamic regulation of cytosine methylation and demethylation. Inactivating mutations of Tet2 are frequently found in human malignancies, highlighting the essential role of Tet2 in cellular transformation. However, the factors that control Tet enzymatic activity remain largely unknown. Here, we found that methyl-CpG-binding domain protein 3 (MBD3) and its homolog MBD3-like 2 (MBD3L2) can specifically modulate the enzymatic activity of Tet2 protein, but not Tet1 and Tet3 proteins, in converting 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC). Moreover, MBD3L2 is more effective than MBD3 in promoting Tet2 enzymatic activity through strengthening the binding affinity between Tet2 and the methylated DNA target. Further analysis revealed pronounced decreases in 5mC levels at MBD3L2 and Tet2 co-occupied genomic regions, most of which are promoter elements associated with either cancer-related genes or genes involved in the regulation of cellular metabolic processes. Our data add new insights into the regulation of Tet2 activity by MBD3 and MBD3L2, and into how that affects Tet2-mediated modulation of its target genes in cancer development. Thus, they have important applications in understanding how dysregulation of Tet2 might contribute to human malignancy.
Collapse
Affiliation(s)
- Lina Peng
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai 200032, China Key Laboratory of Ministry of Education, Department of Molecular Biology, Fudan University, 130 Dong-An Road, Shanghai 200032, China State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Yan Li
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai 200032, China Key Laboratory of Ministry of Education, Department of Molecular Biology, Fudan University, 130 Dong-An Road, Shanghai 200032, China State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Yanping Xi
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai 200032, China Key Laboratory of Ministry of Education, Department of Molecular Biology, Fudan University, 130 Dong-An Road, Shanghai 200032, China
| | - Wei Li
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai 200032, China Key Laboratory of Ministry of Education, Department of Molecular Biology, Fudan University, 130 Dong-An Road, Shanghai 200032, China
| | - Jin Li
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai 200032, China Key Laboratory of Ministry of Education, Department of Molecular Biology, Fudan University, 130 Dong-An Road, Shanghai 200032, China
| | - Ruitu Lv
- Laboratory of Epigenetics, School of Basic Medicine and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Biomedical Core Facility, School of Basic Medicine and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Qingping Zou
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai 200032, China Key Laboratory of Ministry of Education, Department of Molecular Biology, Fudan University, 130 Dong-An Road, Shanghai 200032, China
| | - Shihua Dong
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai 200032, China Key Laboratory of Ministry of Education, Department of Molecular Biology, Fudan University, 130 Dong-An Road, Shanghai 200032, China
| | - Huaibing Luo
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai 200032, China Key Laboratory of Ministry of Education, Department of Molecular Biology, Fudan University, 130 Dong-An Road, Shanghai 200032, China
| | - Feizhen Wu
- Laboratory of Epigenetics, School of Basic Medicine and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai 200032, China Key Laboratory of Ministry of Education, Department of Molecular Biology, Fudan University, 130 Dong-An Road, Shanghai 200032, China State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
74
|
Noor DAM, Jeyapalan JN, Alhazmi S, Carr M, Squibb B, Wallace C, Tan C, Cusack M, Hughes J, Reader T, Shipley J, Sheer D, Scotting PJ. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines. NPJ Genom Med 2016; 1:15009. [PMID: 29263807 PMCID: PMC5685295 DOI: 10.1038/npjgenmed.2015.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/09/2015] [Accepted: 11/06/2015] [Indexed: 01/13/2023] Open
Abstract
Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours’ biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription–quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.
Collapse
Affiliation(s)
- Dzul Azri Mohamed Noor
- School of Life Sciences, University of Nottingham, Nottingham, UK.,School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Jennie N Jeyapalan
- School of Life Sciences, University of Nottingham, Nottingham, UK.,The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, London, UK
| | - Safiah Alhazmi
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Matthew Carr
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Benjamin Squibb
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Claire Wallace
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Christopher Tan
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Martin Cusack
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Jaime Hughes
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Tom Reader
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Janet Shipley
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Denise Sheer
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, London, UK
| | - Paul J Scotting
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
75
|
Gerovska D, Araúzo-Bravo MJ. Does mouse embryo primordial germ cell activation start before implantation as suggested by single-cell transcriptomics dynamics? Mol Hum Reprod 2016; 22:208-25. [PMID: 26740066 DOI: 10.1093/molehr/gav072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022] Open
Abstract
STUDY HYPOTHESIS Does primordial germ cell (PGC) activation start before mouse embryo implantation, and does the possible regulation of the DNA (cytosine-5-)-methyltransferase 3-like (Dnmt3l) by transcription factor AP-2, gamma (TCFAP2C) have a role in this activation and in the primitive endoderm (PE)-epiblast (EPI) lineage specification? STUDY FINDING A burst of expression of PGC markers, such as Dppa3/Stella, Ifitm2/Fragilis, Fkbp6 and Prdm4, is observed from embryonic day (E) 3.25, and some of them, together with the late germ cell markers Zp3, Mcf2 and Morc1, become restricted to the EPI subpopulation at E4.5, while the dynamics analysis of the PE-EPI transitions in the single-cell data suggests that TCFAP2C transitorily represses Dnmt3l in EPI cells at E3.5 and such repression is withdrawn with reactivation of Dnmt3l expression in PE and EPI cells at E4.5. WHAT IS KNOWN ALREADY In the mouse preimplantation embryo, cells with the same phenotype take different fates based on the orchestration between topological clues (cell polarity, positional history and division orientation) and gene regulatory rules (at transcriptomics and epigenomics level), prompting the proposal of positional, stochastic and combined models explaining the specification mechanism. PGC specification starts at E6.0-6.5 post-implantation. In view of the important role of DNA methylation in developmental events, the cross-talk between some transcription factors and DNA methyltransferases is of particular relevance. TCFAP2C has a CpG DNA methylation motif that is not methylated in pluripotent cells and that could potentially bind on DNMT3L, the stimulatory DNA methyltransferase co-factor that assists in the process of de novo DNA methylation. Chromatin-immunoprecipitation analysis has demonstrated that Dnmt3l is indeed a target of TCFAP2C. STUDY DESIGN, SAMPLES/MATERIALS, METHODS We aimed to assess the timing of early preimplantation events and to understand better the segregation of the inner cell mass (ICM) into PE and EPI. We designed a single-cell transcriptomics dynamics computational study to identify markers of the PE-EPI bifurcation in ICM cells through searching for statistically significant (using the Student's t-test method) differently expressed genes (DEGs) between PE and EPI cells from E3.5 to E4.5. The DEGs common for E3.5 and E4.5 were used as the markers defining the steady states. We collected microarray and next-generation sequencing transcriptomics data from public databases from bulk populations and single cells from mice at E3.25, E3.5 and E4.5. The results are based on three independent single-cell transcriptomics data sets, with a fold change of 3 and P-value <0.01 for the DEG selection. MAIN RESULTS AND THE ROLE OF CHANCE The dynamics analysis revealed new transitory E3.5 and steady PE and EPI markers. Among the transitory E3.5 PE markers (Dnmt3l, Dusp4, Cpne8, Akap13, Dcaf12l1, Aaed1, B4galt6, BC100530, Rnpc3, Tfpi, Lgalsl, Ckap4 and Fbxl20), several (Dusp4, Akap13, Cpn8, Dcaf12l1 and Tfpi) are related to the extracellular regulated kinase pathway. We also identified new transitory E3.5 EPI markers (Sgk1, Mal, Ubxn2a, Atg16l2, Gm13102, Tcfap2c, Hexb, Slc1a1, Svip, Liph and Mier3), six new stable PE markers (Sdc4, Cpn1, Dkk1, Havcr1, F2r/Par1 and Slc7a6os) as well as three new stable EPI markers (Zp3, Mcf2 and Hexb), which are known to be late stage germ cell markers. We found that mouse PGC marker activation starts at least at E3.25 preimplantation. The transcriptomics dynamics analyses support the regulation of Dnmt3l expression by TCFAP2C. LIMITATIONS, REASONS FOR CAUTION Since the regulation of Dnmt3l by TCFAP2C is based on computational prediction of DNA methylation motifs, Chip-Seq and transcriptomics data, functional studies are required to validate this result. WIDER IMPLICATIONS OF THE FINDINGS We identified a collection of previously undescribed E3.5-specific PE and EPI markers, and new steady PE and EPI markers. Identification of these genes, many of which encode cell membrane proteins, will facilitate the isolation and characterization of early PE and EPI populations. Since it is so well established in the literature that mouse PGC specification is a post-implantation event, it was surprising for us to see activation of PGC markers as early as E3.25 preimplantation, and identify the newly found steady EPI markers as late germ cell markers. The discovery of such early activation of PGC markers has important implications in the derivation of germ cells from pluripotent cells (embryonic stem cells or induced pluripotent stem cells), since the initial stages of such derivation resemble early development. The early activation of PGC markers points out the difficulty of separating PGC cells from pluripotent populations. Collectively, our results suggest that the combining of the precision of single-cell omics data with dynamic analysis of time-series data can establish the timing of some developmental stages as earlier than previously thought. LARGE-SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This work was supported by grants DFG15/14 and DFG15/020 from Diputación Foral de Gipuzkoa (Spain), and grant II14/00016 from I + D + I National Plan 2013-2016 (Spain) and FEDER funds. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Daniela Gerovska
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, 20014 San Sebastián - Donostia, Spain
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, 20014 San Sebastián - Donostia, Spain IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
76
|
Maintenance of Self-Renewal and Pluripotency in J1 Mouse Embryonic Stem Cells through Regulating Transcription Factor and MicroRNA Expression Induced by PD0325901. Stem Cells Int 2015; 2016:1792573. [PMID: 26770202 PMCID: PMC4685126 DOI: 10.1155/2016/1792573] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/02/2015] [Accepted: 08/10/2015] [Indexed: 01/28/2023] Open
Abstract
Embryonic stem cells (ESCs) have the ability to grow indefinitely and retain their pluripotency in culture, and this self-renewal capacity is governed by several crucial molecular pathways controlled by specific regulatory genes and epigenetic modifications. It is reported that multiple epigenetic regulators, such as miRNA and pluripotency factors, can be tightly integrated into molecular pathways and cooperate to maintain self-renewal of ESCs. However, mouse ESCs in serum-containing medium seem to be heterogeneous due to the self-activating differentiation signal of MEK/ERK. Thus, to seek for the crucial miRNA and key regulatory genes that establish ESC properties in MEK/ERK pathway, we performed microarray analysis and small RNA deep-sequencing of J1 mESCs treated with or without PD0325901 (PD), a well-known inhibitor of MEK/ERK signal pathway, followed by verification of western blot analysis and quantitative real-time PCR verification; we found that PD regulated the transcript expressions related to self-renewal and differentiation and antagonized the action of retinoic acid- (RA-) induced differentiation. Moreover, PD can significantly modulate the expressions of multiple miRNAs that have crucial functions in ESC development. Overall, our results demonstrate that PD could enhance ESC self-renewal capacity both by key regulatory genes and ES cell-specific miRNA, which in turn influences ESC self-renewal and cellular differentiation.
Collapse
|
77
|
Nady N, Gupta A, Ma Z, Swigut T, Koide A, Koide S, Wysocka J. ETO family protein Mtgr1 mediates Prdm14 functions in stem cell maintenance and primordial germ cell formation. eLife 2015; 4:e10150. [PMID: 26523391 PMCID: PMC4749557 DOI: 10.7554/elife.10150] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/01/2015] [Indexed: 01/15/2023] Open
Abstract
Prdm14 is a sequence-specific transcriptional regulator of embryonic stem cell (ESC) pluripotency and primordial germ cell (PGC) formation. It exerts its function, at least in part, through repressing genes associated with epigenetic modification and cell differentiation. Here, we show that this repressive function is mediated through an ETO-family co-repressor Mtgr1, which tightly binds to the pre-SET/SET domains of Prdm14 and co-occupies its genomic targets in mouse ESCs. We generated two monobodies, synthetic binding proteins, targeting the Prdm14 SET domain and demonstrate their utility, respectively, in facilitating crystallization and structure determination of the Prdm14-Mtgr1 complex, or as genetically encoded inhibitor of the Prdm14-Mtgr1 interaction. Structure-guided point mutants and the monobody abrogated the Prdm14-Mtgr1 association and disrupted Prdm14's function in mESC gene expression and PGC formation in vitro. Altogether, our work uncovers the molecular mechanism underlying Prdm14-mediated repression and provides renewable reagents for studying and controlling Prdm14 functions. DOI:http://dx.doi.org/10.7554/eLife.10150.001 In animals, there are many different types of cells that perform different roles. For example, stem cells divide to produce new cells that may then become other types of cells such as muscle or skin cells. Most stem cells can only produce a limited range of other cell types, except for a subset known as ‘pluripotent’ stem cells that can give rise to cells of any type in the body. A protein called Prdm14 helps to keep stem cells in a pluripotent state. In mouse embryos, Prdm14 binds to and represses particular genes that promote a process by which the stem cells can change into other cell types. If Prdm14 is missing from pluripotent stem cells, these cells become more sensitive to signals that encourage them to become other types of cells, which can lead to the loss of pluripotency. Prdm14 contains a region called the SET domain. In other proteins, this domain can alter how DNA is packaged to help switch particular genes on or off. However, such activity has not been found for the SET domain of Prdm14, raising questions about how it actually works. Here, Nady, Gupta et al. show that Prdm14 tightly interacts with a protein called Mtgr1, which belongs to a family of proteins known to be involved in leukemia. The loss of Mtgr1 also leads to the loss of pluripotency in mouse stem cells and disrupts the formation of reproductive stem cells. Furthermore, Mtgr1 binds to the same genes as Prdm14. Next, Nady, Gupta et al. made synthetic proteins, termed monobodies, that bind to the Prdm14 SET domain. One such monobody enabled the authors to determine the three-dimensional structure of Prdm1 and Mtgr1, which revealed that the SET domain of Prdm14 has many points of contact with Mtgr1. Importantly, interaction between the two partners is crucial for these proteins to maintain pluripotency and promote the production of reproductive stem cells. Altogether, these findings identify Mtgr1 as a key binding partner of Prdm14 in pluripotent stem cells and uncover a role for the SET domain in this interaction. A future challenge will be to understand the roles of these proteins in leukemia and other diseases. DOI:http://dx.doi.org/10.7554/eLife.10150.002
Collapse
Affiliation(s)
- Nataliya Nady
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Ankit Gupta
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Ziyang Ma
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Akiko Koide
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Shohei Koide
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States.,National Institute of Environmental Health Sciences, , United States.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
78
|
Low Shear Stress Inhibited Endothelial Cell Autophagy Through TET2 Downregulation. Ann Biomed Eng 2015; 44:2218-27. [PMID: 26493943 DOI: 10.1007/s10439-015-1491-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022]
Abstract
Low shear stress plays a crucial role in the initiation and progression of atherosclerotic lesions. However, the detailed mechanisms of these processes remain unclear. In this study, the effect of low shear stress on endothelial cell autophagy and its potential mechanism were investigated. Results showed autophagy dysfunction and ten-eleven translocation 2 (TET2) protein downregulation during atherosclerotic lesion progression. Autophagic markers BECLIN 1 and LC3II/LC3I under low shear stress (5 dyne/cm(2)) obviously decreased compared with those under physiological shear stress (15 dyne/cm(2)), whereas autophagic substrate p62 increased. TET2 expression was also downregulated under low shear stress. Endothelial cell autophagy was improved with TET2 overexpression but was impaired by TET2 siRNA treatment. Moreover, TET2 overexpression upregulated the expression of endothelial cell nitric oxide synthase (eNOS) and downregulated the expression of endothelin-1 (ET-1). TET2 siRNA further attenuated eNOS expression and stimulated ET-1 expression. Overall, the results showed that low shear stress downregulated endothelial cell autophagy by impaired TET2 expression, which might contribute to the atherogenic process.
Collapse
|
79
|
Okashita N, Sakashita N, Ito K, Mitsuya A, Suwa Y, Seki Y. PRDM14 maintains pluripotency of embryonic stem cells through TET-mediated active DNA demethylation. Biochem Biophys Res Commun 2015; 466:138-45. [DOI: 10.1016/j.bbrc.2015.08.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 08/23/2015] [Indexed: 12/21/2022]
|
80
|
Veazey KJ, Parnell SE, Miranda RC, Golding MC. Dose-dependent alcohol-induced alterations in chromatin structure persist beyond the window of exposure and correlate with fetal alcohol syndrome birth defects. Epigenetics Chromatin 2015; 8:39. [PMID: 26421061 PMCID: PMC4587584 DOI: 10.1186/s13072-015-0031-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/15/2015] [Indexed: 01/16/2023] Open
Abstract
Background In recent years, we have come to recognize that a multitude of in utero exposures have the capacity to induce the development of congenital and metabolic defects. As most of these encounters manifest their effects beyond the window of exposure, deciphering the mechanisms of teratogenesis is incredibly difficult. For many agents, altered epigenetic programming has become suspect in transmitting the lasting signature of exposure leading to dysgenesis. However, while several chemicals can perturb chromatin structure acutely, for many agents (particularly alcohol) it remains unclear if these modifications represent transient responses to exposure or heritable lesions leading to pathology. Results Here, we report that mice encountering an acute exposure to alcohol on gestational Day-7 exhibit significant alterations in chromatin structure (histone 3 lysine 9 dimethylation, lysine 9 acetylation, and lysine 27 trimethylation) at Day-17, and that these changes strongly correlate with the development of craniofacial and central nervous system defects. Using a neural cortical stem cell model, we find that the epigenetic changes arising as a consequence of alcohol exposure are heavily dependent on the gene under investigation, the dose of alcohol encountered, and that the signatures arising acutely differ significantly from those observed after a 4-day recovery period. Importantly, the changes observed post-recovery are consistent with those modeled in vivo, and associate with alterations in transcripts encoding multiple homeobox genes directing neurogenesis. Unexpectedly, we do not observe a correlation between alcohol-induced changes in chromatin structure and alterations in transcription. Interestingly, the majority of epigenetic changes observed occur in marks associated with repressive chromatin structure, and we identify correlative disruptions in transcripts encoding Dnmt1, Eed, Ehmt2 (G9a), EzH2, Kdm1a, Kdm4c, Setdb1, Sod3, Tet1 and Uhrf1. Conclusions These observations suggest that the immediate and long-term impacts of alcohol exposure on chromatin structure are distinct, and hint at the existence of a possible coordinated
epigenetic response to ethanol during development. Collectively, our results indicate that alcohol-induced modifications to chromatin structure persist beyond the window of exposure, and likely contribute to the development of fetal alcohol syndrome-associated congenital abnormalities. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0031-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kylee J Veazey
- Room 338 VMA, 4466 TAMU, Department of Veterinary Physiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466 USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies and Department of Cell Biology and Physiology, School of Medicine, CB# 7178, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Rajesh C Miranda
- Texas A&M Health Sciences Center, Texas A&M University, 8441 State Highway 47, Clinical Building 1, Suite 3100, Bryan, TX 77807 USA
| | - Michael C Golding
- Room 338 VMA, 4466 TAMU, Department of Veterinary Physiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466 USA
| |
Collapse
|
81
|
Martínez-Arroyo AM, Míguez-Forján JM, Remohí J, Pellicer A, Medrano JV. Understanding Mammalian Germ Line Development with In Vitro Models. Stem Cells Dev 2015; 24:2101-13. [DOI: 10.1089/scd.2015.0060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ana M. Martínez-Arroyo
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
| | - Jose M. Míguez-Forján
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
| | - Jose Remohí
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
| | - Antonio Pellicer
- Fundación Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Jose V. Medrano
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
- Fundación Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
82
|
Nätt D, Johansson I, Faresjö T, Ludvigsson J, Thorsell A. High cortisol in 5-year-old children causes loss of DNA methylation in SINE retrotransposons: a possible role for ZNF263 in stress-related diseases. Clin Epigenetics 2015; 7:91. [PMID: 26339299 PMCID: PMC4559301 DOI: 10.1186/s13148-015-0123-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/07/2015] [Indexed: 12/21/2022] Open
Abstract
Background Childhood stress leads to increased risk of many adult diseases, such as major depression and cardiovascular disease. Studies show that adults with experienced childhood stress have specific epigenetic changes, but to understand the pathways that lead to disease, we also need to study the epigenetic link prospectively in children. Results Here, we studied a homogenous group of 48 5-year-old children. By combining hair cortisol measurements (a well-documented biomarker for chronic stress), with whole-genome DNA-methylation sequencing, we show that high cortisol associates with a genome-wide decrease in DNA methylation and targets short interspersed nuclear elements (SINEs; a type of retrotransposon) and genes important for calcium transport: phenomena commonly affected in stress-related diseases and in biological aging. More importantly, we identify a zinc-finger transcription factor, ZNF263, whose binding sites where highly overrepresented in regions experiencing methylation loss. This type of zinc-finger protein has previously shown to be involved in the defense against retrotransposons. Conclusions Our results show that stress in preschool children leads to changes in DNA methylation similar to those seen in biological aging. We suggest that this may affect future disease susceptibility by alterations in the epigenetic mechanisms that keep retrotransposons dormant. Future treatments for stress- and age-related diseases may therefore seek to target zinc-finger proteins that epigenetically control retrotransposon reactivation, such as ZNF263. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0123-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Nätt
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linkoping University, Linkoping, 58183 Sweden
| | - Ingela Johansson
- Department of Clinical and Experimental Medicine, Division of Pediatrics, Linkoping University, Linkoping, 58183 Sweden
| | - Tomas Faresjö
- Department of Medicine and Health Sciences, Community Medicine/General Practice, Linkoping University, Linkoping, 58183 Sweden
| | - Johnny Ludvigsson
- Department of Clinical and Experimental Medicine, Division of Pediatrics, Linkoping University, Linkoping, 58183 Sweden
| | - Annika Thorsell
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linkoping University, Linkoping, 58183 Sweden
| |
Collapse
|
83
|
Li D, Guo B, Wu H, Tan L, Lu Q. TET Family of Dioxygenases: Crucial Roles and Underlying Mechanisms. Cytogenet Genome Res 2015; 146:171-80. [PMID: 26302812 DOI: 10.1159/000438853] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 11/19/2022] Open
Abstract
DNA methylation plays an important role in the epigenetic regulation of mammalian gene expression. TET (ten-eleven translocation) proteins, newly discovered demethylases, have sparked great interest since their discovery. TET proteins catalyze 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in 3 consecutive Fe(II)- and 2-oxoglutarate (2-OG)-dependent oxidation reactions. TET proteins dynamically regulate global or locus-specific 5-methylcytosine and/or 5-hydroxymethylcytosine levels by facilitating active DNA demethylation. In fact, in addition to their role as methylcytosine dioxygenases, TET proteins are closely related to histone modification, interact with metabolic enzymes as well as other proteins, and cooperate in transcriptional regulation. In this review, we summarize the recent progress in this exciting field, highlighting the molecular mechanism by which TET enzymes regulate gene expression and their functions in health and disease. We also discuss the therapeutic potential of targeting TET proteins and aberrant DNA modifications.
Collapse
Affiliation(s)
- Duo Li
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | |
Collapse
|
84
|
Moen EL, Mariani CJ, Zullow H, Jeff-Eke M, Litwin E, Nikitas JN, Godley LA. New themes in the biological functions of 5-methylcytosine and 5-hydroxymethylcytosine. Immunol Rev 2015; 263:36-49. [PMID: 25510270 DOI: 10.1111/imr.12242] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) play a critical role in development and normal physiology. Alterations in 5-mC and 5-hmC patterns are common events in hematopoietic neoplasms. In this review, we begin by emphasizing the importance of 5-mC, 5-hmC, and their enzymatic modifiers in hematological malignancies. Then, we discuss the functions of 5-mC and 5-hmC at distinct genic contexts, including promoter regions, gene bodies, intron-exon boundaries, alternative promoters, and intragenic microRNAs. Recent advances in technology have allowed for the study of 5-mC and 5-hmC independently and specifically permitting distinction between the bases that show them to have transcriptional effects that vary by their location relative to gene structure. We extend these observations to their functions at enhancers and transcription factor binding sites. We discuss dietary influences on 5-mC and 5-hmC levels and summarize the literature on the effects of folate and vitamin C on 5-mC and 5-hmC, respectively. Finally, we discuss how these new themes in the functions of 5-mC and 5-hmC will likely influence the broader research field of epigenetics.
Collapse
Affiliation(s)
- Erika L Moen
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA; Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Grosser C, Wagner N, Grothaus K, Horsthemke B. Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells. Epigenetics 2015; 10:819-33. [PMID: 26186463 DOI: 10.1080/15592294.2015.1073879] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The TET family of dioxygenases (TET1/2/3) can convert 5-methylcytosine (5 mC) into 5-hydroxymethylcytosine (5 hmC) and has been shown to be involved in active and passive DNA demethylation. Here, we demonstrate that altering TET dioxygenase levels within physiological range can affect DNA methylation dynamics of HEK293 cells. Overexpression of TET1 increased global 5 hmC levels and was accompanied by mild DNA demethylation of promoters, gene bodies and CpG islands. Conversely, the simultaneous knockdown of TET1, TET2, and TET3 led to decreased global 5 hmC levels and mild DNA hypermethylation of above-mentioned regions. The methylation changes observed in the overexpression and knockdown studies were mostly non-reciprocal and occurred with different preference depending on endogenous methylation and gene expression levels. Single-nucleotide 5 hmC profiling performed on a genome-wide scale revealed that TET1 overexpression induced 5 mC oxidation without a distribution bias among genetic elements and structures. Detailed analysis showed that this oxidation was related to endogenous 5 hmC levels. In addition, our results support the notion that the effects of TET1 overexpression on gene expression are generally unrelated to its catalytic activity.
Collapse
Affiliation(s)
- Christian Grosser
- a Institute of Human Genetics; University Hospital Essen; University Duisburg-Essen ; Essen , Germany
| | | | | | | |
Collapse
|
86
|
Abstract
Pluripotency is the remarkable capacity of a single cell to engender all the specialized cell types of an adult organism. This property can be captured indefinitely through derivation of self-renewing embryonic stem cells (ESCs), which represent an invaluable platform to investigate cell fate decisions and disease. Recent advances have revealed that manipulation of distinct signaling cues can render ESCs in a uniform "ground state" of pluripotency, which more closely recapitulates the pluripotent naive epiblast. Here we discuss the extrinsic and intrinsic regulatory principles that underpin the nature of pluripotency and consider the emerging spectrum of pluripotent states.
Collapse
Affiliation(s)
- Jamie A Hackett
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 1QN, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 1QN, UK.
| |
Collapse
|
87
|
Kulinski TM, Casari MRT, Guenzl PM, Wenzel D, Andergassen D, Hladik A, Datlinger P, Farlik M, Theussl HC, Penninger JM, Knapp S, Bock C, Barlow DP, Hudson QJ. Imprinted expression in cystic embryoid bodies shows an embryonic and not an extra-embryonic pattern. Dev Biol 2015; 402:291-305. [PMID: 25912690 PMCID: PMC4454777 DOI: 10.1016/j.ydbio.2015.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 04/08/2015] [Accepted: 04/16/2015] [Indexed: 12/24/2022]
Abstract
A large subset of mammalian imprinted genes show extra-embryonic lineage (EXEL) specific imprinted expression that is restricted to placental trophectoderm lineages and to visceral yolk sac endoderm (ysE). Isolated ysE provides a homogenous in vivo model of a mid-gestation extra-embryonic tissue to examine the mechanism of EXEL-specific imprinted gene silencing, but an in vitro model of ysE to facilitate more rapid and cost-effective experiments is not available. Reports indicate that ES cells differentiated into cystic embryoid bodies (EBs) contain ysE, so here we investigate if cystic EBs model ysE imprinted expression. The imprinted expression pattern of cystic EBs is shown to resemble fetal liver and not ysE. To investigate the reason for this we characterized the methylome and transcriptome of cystic EBs in comparison to fetal liver and ysE, by whole genome bisulphite sequencing and RNA-seq. Cystic EBs show a fetal liver pattern of global hypermethylation and low expression of repeats, while ysE shows global hypomethylation and high expression of IAPEz retroviral repeats, as reported for placenta. Transcriptome analysis confirmed that cystic EBs are more similar to fetal liver than ysE and express markers of early embryonic endoderm. Genome-wide analysis shows that ysE shares epigenetic and repeat expression features with placenta. Contrary to previous reports, we show that cystic EBs do not contain ysE, but are more similar to the embryonic endoderm of fetal liver. This explains why cystic EBs reproduce the imprinted expression seen in the embryo but not that seen in the ysE.
Collapse
Affiliation(s)
- Tomasz M Kulinski
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - M Rita T Casari
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Philipp M Guenzl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Daniel Wenzel
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| | - Daniel Andergassen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Anastasiya Hladik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria; Department of Medicine 1, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - H-Christian Theussl
- IMP/IMBA Transgenic Service, Institute of Molecular Pathology (IMP), Dr. Bohr Gasse 7, 1030 Vienna, Austria.
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| | - Sylvia Knapp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria; Department of Medicine 1, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Denise P Barlow
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Quanah J Hudson
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| |
Collapse
|
88
|
Abstract
Abstract
DNA modification, methylation of cytosine (5mC), and oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) can have profound effects on genome function in animals. These modifications are intricately involved in DNA methylation reprograming dynamics during mammalian development. Together, they contribute to cell lineage restriction and maintenance, while also undergoing dynamic changes during cellular transitions and induced reprograming. The last five years have seen an intense research focus on enzymatic DNA demethylation, triggered by the discovery of 5hmC and Tet dioxygenases. In this review, we evaluate recent findings that have provided new insights into the mechanisms underlying DNA demethylation and its effect on developmental regulation.
Collapse
Affiliation(s)
- Guo-Liang Xu
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiemin Wong
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
89
|
Integrative Analysis of the Acquisition of Pluripotency in PGCs Reveals the Mutually Exclusive Roles of Blimp-1 and AKT Signaling. Stem Cell Reports 2015; 5:111-24. [PMID: 26050930 PMCID: PMC4618250 DOI: 10.1016/j.stemcr.2015.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 12/19/2022] Open
Abstract
Primordial germ cells (PGCs) are lineage-restricted unipotent cells that can dedifferentiate into pluripotent embryonic germ cells (EGCs). Here we performed whole-transcriptome analysis during the conversion of PGCs into EGCs, a process by which cells acquire pluripotency. To examine the molecular mechanism underlying this conversion, we focused on Blimp-1 and Akt, which are involved in PGC specification and dedifferentiation, respectively. Blimp-1 overexpression in embryonic stem cells suppressed the expression of downstream targets of the pluripotency network. Conversely, Blimp-1 deletion in PGCs accelerated their dedifferentiation into pluripotent EGCs, illustrating that Blimp-1 is a pluripotency gatekeeper protein in PGCs. AKT signaling showed a synergistic effect with basic fibroblast growth factor plus 2i+A83 treatment on EGC formation. AKT played a major role in suppressing genes regulated by MBD3. From these results, we defined the distinct functions of Blimp-1 and Akt and provided mechanistic insights into the acquisition of pluripotency in PGCs.
Collapse
|
90
|
Abstract
The inheritance of epigenetic marks, in particular DNA methylation, provides a molecular memory that ensures faithful commitment to transcriptional programs during mammalian development. Epigenetic reprogramming results in global hypomethylation of the genome together with a profound loss of memory, which underlies naive pluripotency. Such global reprogramming occurs in primordial germ cells, early embryos, and embryonic stem cells where reciprocal molecular links connect the methylation machinery to pluripotency. Priming for differentiation is initiated upon exit from pluripotency, and we propose that epigenetic mechanisms create diversity of transcriptional states, which help with symmetry breaking during cell fate decisions and lineage commitment.
Collapse
Affiliation(s)
- Heather J Lee
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Timothy A Hore
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
91
|
Fan L, Jiang J, Gao J, Song H, Liu J, Yang L, Li Z, Chen Y, Zhang Q, Wang X. Identification and Characterization of a PRDM14 Homolog in Japanese Flounder (Paralichthys olivaceus). Int J Mol Sci 2015; 16:9097-118. [PMID: 25915026 PMCID: PMC4463580 DOI: 10.3390/ijms16059097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 11/27/2022] Open
Abstract
PRDM14 is a PR (PRDI-BF1-RIZ1 homologous) domain protein with six zinc fingers and essential roles in genome-wide epigenetic reprogramming. This protein is required for the establishment of germ cells and the maintenance of the embryonic stem cell ground state. In this study, we cloned the full-length cDNA and genomic DNA of the Paralichthys olivaceus prdm14 (Po-prdm14) gene and isolated the 5' regulatory region of Po-prdm14 by whole-genome sequencing. Peptide sequence alignment, gene structure analysis, and phylogenetic analysis revealed that Po-PRDM14 was homologous to mammalian PRDM14. Results of real-time quantitative polymerase chain reaction amplification (RT-qPCR) and in situ hybridization (ISH) in embryos demonstrated that Po-prdm14 was highly expressed between the morula and late gastrula stages, with its expression peaking in the early gastrula stage. Relatively low expression of Po-prdm14 was observed in the other developmental stages. ISH of gonadal tissues revealed that the transcripts were located in the nucleus of the oocytes in the ovaries but only in the spermatogonia and not the spermatocytes in the testes. We also presume that the Po-prdm14 transcription factor binding sites and their conserved binding region among vertebrates. The combined results suggest that Po-PRDM14 has a conserved function in teleosts and mammals.
Collapse
Affiliation(s)
- Lin Fan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Jiajun Jiang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Jinning Gao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Huayu Song
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Likun Yang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Zan Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Yan Chen
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| |
Collapse
|
92
|
Suganya R, Chakraborty A, Miriyala S, Hazra TK, Izumi T. Suppression of oxidative phosphorylation in mouse embryonic fibroblast cells deficient in apurinic/apyrimidinic endonuclease. DNA Repair (Amst) 2015; 27:40-8. [PMID: 25645679 PMCID: PMC4845732 DOI: 10.1016/j.dnarep.2015.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/19/2014] [Accepted: 01/08/2015] [Indexed: 12/26/2022]
Abstract
The mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is an essential DNA repair/gene regulatory protein. Decrease of APE1 in cells by inducible shRNA knockdown or by conditional gene knockout caused apoptosis. Here we succeeded in establishing a unique mouse embryonic fibroblast (MEF) line expressing APE1 at a level far lower than those achieved with shRNA knockdown. The cells, named MEF(la) (MEF(lowAPE1)), were hypersensitive to methyl methanesulfonate (MMS), and showed little activity for repairing AP-sites and MMS induced DNA damage. While these results were consistent with the essential role of APE1 in repair of AP sites, the MEF(la) cells grew normally and the basal activation of poly(ADP-ribose) polymerases in MEF(la) was lower than that in the wild-type MEF (MEF(wt)), indicating the low DNA damage stress in MEF(la) under the normal growth condition. Oxidative phosphorylation activity in MEF(la) was lower than in MEF(wt), while the glycolysis rates in MEF(la) were higher than in MEF(wt). In addition, we observed decreased intracellular oxidative stress in MEF(la). These results suggest that cells with low APE1 reversibly suppress mitochondrial respiration and thereby reduce DNA damage stress and increases the cell viability.
Collapse
Affiliation(s)
- Rangaswamy Suganya
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, TX 77555, USA
| | - Sumitra Miriyala
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 USA; Department of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport, LA 71130 USA
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch, TX 77555, USA
| | - Tadahide Izumi
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 USA.
| |
Collapse
|
93
|
Audano M, Ferrari A, Fiorino E, Kuenzl M, Caruso D, Mitro N, Crestani M, De Fabiani E. Energizing Genetics and Epi-genetics: Role in the Regulation of Mitochondrial Function. Curr Genomics 2015; 15:436-56. [PMID: 25646072 PMCID: PMC4311388 DOI: 10.2174/138920291506150106151119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/11/2014] [Accepted: 11/18/2014] [Indexed: 12/15/2022] Open
Abstract
Energy metabolism and mitochondrial function hold a core position in cellular homeostasis. Oxidative metabolism is regulated at multiple levels, ranging from gene transcription to allosteric modulation. To accomplish the fine tuning of these multiple regulatory circuits, the nuclear and mitochondrial compartments are tightly and reciprocally controlled. The fact that nuclear encoded factors, PPARγ coactivator 1α and mitochondrial transcription factor A, play pivotal roles in the regulation of oxidative metabolism and mitochondrial biogenesis is paradigmatic of this crosstalk. Here we provide an updated survey of the genetic and epigenetic mechanisms involved in the control of energy metabolism and mitochondrial function. Chromatin dynamics highly depends on post-translational modifications occurring at specific amino acids in histone proteins and other factors associated to nuclear DNA. In addition to the well characterized enzymes responsible for histone methylation/demethylation and acetylation/deacetylation, other factors have gone on the "metabolic stage". This is the case of the new class of α-ketoglutarate-regulated demethylases (Jumonji C domain containing demethylases) and of the NAD+-dependent deacetylases, also known as sirtuins. Moreover, unexpected features of the machineries involved in mitochondrial DNA (mtDNA) replication and transcription, mitochondrial RNA processing and maturation have recently emerged. Mutations or defects of any component of these machineries profoundly affect mitochondrial activity and oxidative metabolism. Finally, recent evidences support the importance of mtDNA packaging in replication and transcription. These observations, along with the discovery that non-classical CpG islands present in mtDNA undergo methylation, indicate that epigenetics also plays a role in the regulation of the mitochondrial genome function.
Collapse
Affiliation(s)
- Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Alessandra Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Erika Fiorino
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Martin Kuenzl
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| |
Collapse
|
94
|
Bogomazova AN, Vassina EM, Goryachkovskaya TN, Popik VM, Sokolov AS, Kolchanov NA, Lagarkova MA, Kiselev SL, Peltek SE. No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation. Sci Rep 2015; 5:7749. [PMID: 25582954 PMCID: PMC4291560 DOI: 10.1038/srep07749] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/08/2014] [Indexed: 02/07/2023] Open
Abstract
Terahertz (THz) radiation was proposed recently for use in various applications, including medical imaging and security scanners. However, there are concerns regarding the possible biological effects of non-ionising electromagnetic radiation in the THz range on cells. Human embryonic stem cells (hESCs) are extremely sensitive to environmental stimuli, and we therefore utilised this cell model to investigate the non-thermal effects of THz irradiation. We studied DNA damage and transcriptome responses in hESCs exposed to narrow-band THz radiation (2.3 THz) under strict temperature control. The transcription of approximately 1% of genes was subtly increased following THz irradiation. Functional annotation enrichment analysis of differentially expressed genes revealed 15 functional classes, which were mostly related to mitochondria. Terahertz irradiation did not induce the formation of γH2AX foci or structural chromosomal aberrations in hESCs. We did not observe any effect on the mitotic index or morphology of the hESCs following THz exposure.
Collapse
Affiliation(s)
- A. N. Bogomazova
- Vavilov Institute of General Genetics RAS, Moscow, Russia
- Skoltech Center for Stem Cell Research, Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia
| | - E. M. Vassina
- Vavilov Institute of General Genetics RAS, Moscow, Russia
- Skoltech Center for Stem Cell Research, Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia
| | | | - V. M. Popik
- Budker Institute of Nucleic Physics SB RAS, Novosibirsk, Russia
| | | | | | - M. A. Lagarkova
- Vavilov Institute of General Genetics RAS, Moscow, Russia
- Scientific Research Institute of Physical-Chemical Medicine, Moscow, Russia
- Skoltech Center for Stem Cell Research, Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia
| | - S. L. Kiselev
- Vavilov Institute of General Genetics RAS, Moscow, Russia
- Skoltech Center for Stem Cell Research, Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia
| | - S. E. Peltek
- Institute of Cytology and Genetics RAS, Novosibirsk, Russia
| |
Collapse
|
95
|
Liyanage VRB, Jarmasz JS, Murugeshan N, Del Bigio MR, Rastegar M, Davie JR. DNA modifications: function and applications in normal and disease States. BIOLOGY 2014; 3:670-723. [PMID: 25340699 PMCID: PMC4280507 DOI: 10.3390/biology3040670] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022]
Abstract
Epigenetics refers to a variety of processes that have heritable effects on gene expression programs without changes in DNA sequence. Key players in epigenetic control are chemical modifications to DNA, histone, and non-histone chromosomal proteins, which establish a complex regulatory network that controls genome function. Methylation of DNA at the fifth position of cytosine in CpG dinucleotides (5-methylcytosine, 5mC), which is carried out by DNA methyltransferases, is commonly associated with gene silencing. However, high resolution mapping of DNA methylation has revealed that 5mC is enriched in exonic nucleosomes and at intron-exon junctions, suggesting a role of DNA methylation in the relationship between elongation and RNA splicing. Recent studies have increased our knowledge of another modification of DNA, 5-hydroxymethylcytosine (5hmC), which is a product of the ten-eleven translocation (TET) proteins converting 5mC to 5hmC. In this review, we will highlight current studies on the role of 5mC and 5hmC in regulating gene expression (using some aspects of brain development as examples). Further the roles of these modifications in detection of pathological states (type 2 diabetes, Rett syndrome, fetal alcohol spectrum disorders and teratogen exposure) will be discussed.
Collapse
Affiliation(s)
- Vichithra R B Liyanage
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Jessica S Jarmasz
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Nanditha Murugeshan
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Marc R Del Bigio
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
96
|
Contrasting transcriptome landscapes of rabbit pluripotent stem cells in vitro and in vivo. Anim Reprod Sci 2014; 149:67-79. [DOI: 10.1016/j.anireprosci.2014.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/26/2014] [Indexed: 01/25/2023]
|
97
|
Ficz G, Gribben JG. Loss of 5-hydroxymethylcytosine in cancer: cause or consequence? Genomics 2014; 104:352-7. [PMID: 25179374 DOI: 10.1016/j.ygeno.2014.08.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 12/19/2022]
Abstract
Discovery of the enzymatic activity that catalyses oxidation of 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC) mediated by the MLL (KMT2A) fusion partner TET1 has sparked intense research to understand the role this new DNA modification has in cancer. An unambiguous picture has emerged where tumours are depleted of 5hmC compared to corresponding normal tissue, but it is not known whether lack of 5hmC is a cause or a consequence of tumourigenesis. Experimental data reveals a dual tumour-suppressive and oncogenic role for TET proteins. Tet2 mutations are drivers in haematological malignancies but Tet1 had an oncogenic role in MLL-rearranged leukaemia, where Tet1 is overexpressed. Overexpression of Tet2 in melanoma cells re-established the 5hmC landscape and suppressed cancer progression but inhibiting Tet1 in non-transformed cells did not initiate cellular transformation. In this review we summarise recent findings that have shaped the current understanding on the role 5hmC plays in cancer.
Collapse
Affiliation(s)
- Gabriella Ficz
- Centre for Haemato-Oncology, Barts Cancer Institute, EC1M 6BQ London, UK.
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, EC1M 6BQ London, UK
| |
Collapse
|
98
|
Hahn MA, Szabó PE, Pfeifer GP. 5-Hydroxymethylcytosine: a stable or transient DNA modification? Genomics 2014; 104:314-23. [PMID: 25181633 DOI: 10.1016/j.ygeno.2014.08.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 12/16/2022]
Abstract
The DNA base 5-hydroxymethylcytosine (5hmC) is produced by enzymatic oxidation of 5-methylcytosine (5mC) by 5mC oxidases (the Tet proteins). Since 5hmC is recognized poorly by DNA methyltransferases, DNA methylation may be lost at 5hmC sites during DNA replication. In addition, 5hmC can be oxidized further by Tet proteins and converted to 5-formylcytosine and 5-carboxylcytosine, two bases that can be removed from DNA by base excision repair. The completed pathway represents a replication-independent DNA demethylation cycle. However, the DNA base 5hmC is also known to be rather stable and occurs at substantial levels, for example in the brain, suggesting that it represents an epigenetic mark by itself that may regulate chromatin structure and transcription. Focusing on a few well-studied tissues and developmental stages, we discuss the opposing views of 5hmC as a transient intermediate in DNA demethylation and as a modified DNA base with an instructive role.
Collapse
Affiliation(s)
- Maria A Hahn
- Beckman Research Institute, City of Hope, Duarte CA 91010, USA
| | - Piroska E Szabó
- Beckman Research Institute, City of Hope, Duarte CA 91010, USA
| | - Gerd P Pfeifer
- Beckman Research Institute, City of Hope, Duarte CA 91010, USA.
| |
Collapse
|
99
|
Roper SJ, Chrysanthou S, Senner CE, Sienerth A, Gnan S, Murray A, Masutani M, Latos P, Hemberger M. ADP-ribosyltransferases Parp1 and Parp7 safeguard pluripotency of ES cells. Nucleic Acids Res 2014; 42:8914-27. [PMID: 25034692 PMCID: PMC4132717 DOI: 10.1093/nar/gku591] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem (ES) cells are in a dynamic equilibrium of distinct functional states, characterized by the heterogeneous expression of critical pluripotency factors and regulated by a spectrum of reversible histone modifications. Maintenance of this equilibrium is a hallmark of pluripotency. Here we find that the ADP-ribosyltransferases Parp1 and Parp7 play a critical role in safeguarding this state by occupying key pluripotency genes, notably Nanog, Pou5f1, Sox2, Stella, Tet1 and Zfp42, thereby protecting them from progressive epigenetic repression. In the absence of either Parp1 or Parp7, or upon inhibition of the ADP-ribosylating activity, ES cells exhibit a decrease in ground state pluripotency as they cannot maintain the typical heterogeneity characteristic of the metastable state. As a consequence, they display a higher propensity to differentiate. These findings place Parp1 and Parp7 at the genetic-epigenetic interface of pluripotency networks, fine-tuning the transcriptional heterogeneity and thereby determining the developmental plasticity of ES cells.
Collapse
Affiliation(s)
- Stephen J Roper
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Stephanie Chrysanthou
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Claire E Senner
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Arnold Sienerth
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Stefano Gnan
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Alexander Murray
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Mitsuko Masutani
- Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Paulina Latos
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Myriam Hemberger
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| |
Collapse
|
100
|
Abstract
Methylation of the fifth carbon of cytosine was the first epigenetic modification to be discovered in DNA. Recently, three new DNA modifications have come to light: hydroxymethylcytosine, formylcytosine, and carboxylcytosine, all generated by oxidation of methylcytosine by Ten Eleven Translocation (TET) enzymes. These modifications can initiate full DNA demethylation, but they are also likely to participate, like methylcytosine, in epigenetic signalling per se. A scenario is emerging in which coordinated regulation at multiple levels governs the participation of TETs in a wide range of physiological functions, sometimes via a mechanism unrelated to their enzymatic activity. Although still under construction, a sophisticated picture is rapidly forming where, according to the function to be performed, TETs ensure epigenetic marking to create specific landscapes, and whose improper build-up can lead to diseases such as cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Benjamin Delatte
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Rachel Deplus
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|