51
|
Lysosome-Rich Enterocytes Mediate Protein Absorption in the Vertebrate Gut. Dev Cell 2019; 51:7-20.e6. [PMID: 31474562 PMCID: PMC6783362 DOI: 10.1016/j.devcel.2019.08.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/06/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
The guts of neonatal mammals and stomachless fish have a limited capacity for luminal protein digestion, which allows oral acquisition of antibodies and antigens. However, how dietary protein is absorbed during critical developmental stages when the gut is still immature is unknown. Here, we show that specialized intestinal cells, which we call lysosome-rich enterocytes (LREs), internalize dietary protein via receptor-mediated and fluid-phase endocytosis for intracellular digestion and trans-cellular transport. In LREs, we identify a conserved endocytic machinery, composed of the scavenger receptor complex Cubilin/Amnionless and Dab2, that is required for protein uptake by LREs and for growth and survival of larval zebrafish. Moreover, impairing LRE function in suckling mice, via conditional deletion of Dab2, leads to stunted growth and severe protein malnutrition reminiscent of kwashiorkor, a devastating human malnutrition syndrome. These findings identify digestive functions and conserved molecular mechanisms in LREs that are crucial for vertebrate growth and survival.
Collapse
|
52
|
Nowotschin S, Hadjantonakis AK, Campbell K. The endoderm: a divergent cell lineage with many commonalities. Development 2019; 146:146/11/dev150920. [PMID: 31160415 PMCID: PMC6589075 DOI: 10.1242/dev.150920] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endoderm is a progenitor tissue that, in humans, gives rise to the majority of internal organs. Over the past few decades, genetic studies have identified many of the upstream signals specifying endoderm identity in different model systems, revealing them to be divergent from invertebrates to vertebrates. However, more recent studies of the cell behaviours driving endodermal morphogenesis have revealed a surprising number of shared features, including cells undergoing epithelial-to-mesenchymal transitions (EMTs), collective cell migration, and mesenchymal-to-epithelial transitions (METs). In this Review, we highlight how cross-organismal studies of endoderm morphogenesis provide a useful perspective that can move our understanding of this fascinating tissue forward.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyra Campbell
- Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK .,Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
53
|
Murdoch CC, Espenschied ST, Matty MA, Mueller O, Tobin DM, Rawls JF. Intestinal Serum amyloid A suppresses systemic neutrophil activation and bactericidal activity in response to microbiota colonization. PLoS Pathog 2019; 15:e1007381. [PMID: 30845179 PMCID: PMC6405052 DOI: 10.1371/journal.ppat.1007381] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
The intestinal microbiota influences the development and function of myeloid lineages such as neutrophils, but the underlying molecular mechanisms are unresolved. Using gnotobiotic zebrafish, we identified the immune effector Serum amyloid A (Saa) as one of the most highly induced transcripts in digestive tissues following microbiota colonization. Saa is a conserved secreted protein produced in the intestine and liver with described effects on neutrophils in vitro, however its in vivo functions remain poorly defined. We engineered saa mutant zebrafish to test requirements for Saa on innate immunity in vivo. Zebrafish mutant for saa displayed impaired neutrophil responses to wounding but augmented clearance of pathogenic bacteria. At baseline, saa mutants exhibited moderate neutrophilia and altered neutrophil tissue distribution. Molecular and functional analyses of isolated neutrophils revealed that Saa suppresses expression of pro-inflammatory markers and bactericidal activity. Saa's effects on neutrophils depended on microbiota colonization, suggesting this protein mediates the microbiota's effects on host innate immunity. To test tissue-specific roles of Saa on neutrophil function, we over-expressed saa in the intestine or liver and found that sufficient to partially complement neutrophil phenotypes observed in saa mutants. These results indicate Saa produced by the intestine in response to microbiota serves as a systemic signal to neutrophils to restrict aberrant activation, decreasing inflammatory tone and bacterial killing potential while simultaneously enhancing their ability to migrate to wounds.
Collapse
Affiliation(s)
- Caitlin C. Murdoch
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Scott T. Espenschied
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Molly A. Matty
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Olaf Mueller
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
54
|
Lu Q, Bhattachan P, Dong B. Ascidian notochord elongation. Dev Biol 2018; 448:147-153. [PMID: 30458170 DOI: 10.1016/j.ydbio.2018.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 11/27/2022]
Abstract
The elongation of embryo and tissue is a key morphogenetic event in embryogenesis and organogenesis. Notochord, a typical chordate organ, undergoes elongation to perform its regulatory roles and to form the structural support in the embryo. Notochord elongation is morphologically similar across all chordates, but ascidian has evolved distinct molecular and cellular processes. Here, we summarize the current understanding of ascidian notochord elongation. We divide the process into three phases and discuss the underlying molecular mechanisms in each phase. In the first phase, the notochord converges and extends through invagination and mediolateral intercalation, and partially elongates to form a single diameter cell column along the anterior-posterior axis. In the second phase, a cytokinesis-like actomyosin ring is constructed at the equator of each cell and drives notochord to elongate approximately two-fold. The molecular composition and architecture of the ascidian notochord contractile ring are similar to that of the cytokinetic ring. However, the notochord contractile ring does not impose cell division but only drives cell elongation followed by disassembly. We discuss the self-organizing property of the circumferential actomyosin ring, and why it disassembles when certain notochord length is achieved. The similar ring structures are also present in the elongation process of other organs in evolutionarily divergent animals such as Drosophila and C. elegans. We hereby propose that actomyosin ring-based circumferential contraction is a common mechanism adopted in diverse systems to drive embryo and tissue elongation. In the third phase, the notochord experiences tubulogenesis and the endothelial-like cells crawl bi-directionally on the notochord sheath to further lengthen the notochord. In this review, we also discuss extracellular matrix proteins, notochord sheath, and surrounding tissues that may contribute to notochord integrity and morphogenesis.
Collapse
Affiliation(s)
- Qiongxuan Lu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Punit Bhattachan
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Dong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
55
|
Ovečka M, von Wangenheim D, Tomančák P, Šamajová O, Komis G, Šamaj J. Multiscale imaging of plant development by light-sheet fluorescence microscopy. NATURE PLANTS 2018; 4:639-650. [PMID: 30185982 DOI: 10.1038/s41477-018-0238-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/31/2018] [Indexed: 05/21/2023]
Abstract
Light-sheet fluorescence microscopy (LSFM) methods collectively represent the major breakthrough in developmental bio-imaging of living multicellular organisms. They are becoming a mainstream approach through the development of both commercial and custom-made LSFM platforms that are adjusted to diverse biological applications. Based on high-speed acquisition rates under conditions of low light exposure and minimal photo-damage of the biological sample, these methods provide ideal means for long-term and in-depth data acquisition during organ imaging at single-cell resolution. The introduction of LSFM methods into biology extended our understanding of pattern formation and developmental progress of multicellular organisms from embryogenesis to adult body. Moreover, LSFM imaging allowed the dynamic visualization of biological processes under almost natural conditions. Here, we review the most important, recent biological applications of LSFM methods in developmental studies of established and emerging plant model species, together with up-to-date methods of data editing and evaluation for modelling of complex biological processes. Recent applications in animal models push LSFM into the forefront of current bio-imaging approaches. Since LSFM is now the single most effective method for fast imaging of multicellular organisms, allowing quantitative analyses of their long-term development, its broader use in plant developmental biology will likely bring new insights.
Collapse
Affiliation(s)
- Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - Daniel von Wangenheim
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Pavel Tomančák
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
56
|
14-3-3εa directs the pulsatile transport of basal factors toward the apical domain for lumen growth in tubulogenesis. Proc Natl Acad Sci U S A 2018; 115:E8873-E8881. [PMID: 30158171 PMCID: PMC6156656 DOI: 10.1073/pnas.1808756115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ascidians have become a powerful model system in which to uncover basic mechanisms that govern body plan specification and elaboration. In particular, the ascidian notochord is a highly tractable model for tubulogenesis. Here, we use chemical genetics to identify roles for 14-3-3εa, and its binding partner ezrin/radixin/moesin (ERM), in tubulogenesis. Combining genetic and chemical perturbations with live cell imaging, we present evidence that 14-3-3εa–ERM interactions are required for tubulogenesis and that they act by promoting a directed cytoplasmic flow, previously uncharacterized, which carries lumen-associated components from the basal domain to the apical domain to feed lumen growth. Because many core components of this system are highly conserved, these results have broad implications for tubulogenesis in many other contexts. The Ciona notochord has emerged as a simple and tractable in vivo model for tubulogenesis. Here, using a chemical genetics approach, we identified UTKO1 as a selective small molecule inhibitor of notochord tubulogenesis. We identified 14-3-3εa protein as a direct binding partner of UTKO1 and showed that 14-3-3εa knockdown leads to failure of notochord tubulogenesis. We found that UTKO1 prevents 14-3-3εa from interacting with ezrin/radixin/moesin (ERM), which is required for notochord tubulogenesis, suggesting that interactions between 14-3-3εa and ERM play a key role in regulating the early steps of tubulogenesis. Using live imaging, we found that, as lumens begin to open between neighboring cells, 14-3-3εa and ERM are highly colocalized at the basal cortex where they undergo cycles of accumulation and disappearance. Interestingly, the disappearance of 14-3-3εa and ERM during each cycle is tightly correlated with a transient flow of 14-3-3εa, ERM, myosin II, and other cytoplasmic elements from the basal surface toward the lumen-facing apical domain, which is often accompanied by visible changes in lumen architecture. Both pulsatile flow and lumen formation are abolished in larvae treated with UTKO1, in larvae depleted of either 14-3-3εa or ERM, or in larvae expressing a truncated form of 14-3-3εa that lacks the ability to interact with ERM. These results suggest that 14-3-3εa and ERM interact at the basal cortex to direct pulsatile basal accumulation and basal–apical transport of factors that are essential for lumen formation. We propose that similar mechanisms may underlie or may contribute to lumen formation in tubulogenesis in other systems.
Collapse
|
57
|
Ding Y, Ma J, Langenbacher AD, Baek KI, Lee J, Chang CC, Hsu JJ, Kulkarni RP, Belperio J, Shi W, Ranjbarvaziri S, Ardehali R, Tintut Y, Demer LL, Chen JN, Fei P, Packard RRS, Hsiai TK. Multiscale light-sheet for rapid imaging of cardiopulmonary system. JCI Insight 2018; 3:e121396. [PMID: 30135307 PMCID: PMC6141183 DOI: 10.1172/jci.insight.121396] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ability to image tissue morphogenesis in real-time and in 3-dimensions (3-D) remains an optical challenge. The advent of light-sheet fluorescence microscopy (LSFM) has advanced developmental biology and tissue regeneration research. In this review, we introduce a LSFM system in which the illumination lens reshapes a thin light-sheet to rapidly scan across a sample of interest while the detection lens orthogonally collects the imaging data. This multiscale strategy provides deep-tissue penetration, high-spatiotemporal resolution, and minimal photobleaching and phototoxicity, allowing in vivo visualization of a variety of tissues and processes, ranging from developing hearts in live zebrafish embryos to ex vivo interrogation of the microarchitecture of optically cleared neonatal hearts. Here, we highlight multiple applications of LSFM and discuss several studies that have allowed better characterization of developmental and pathological processes in multiple models and tissues. These findings demonstrate the capacity of multiscale light-sheet imaging to uncover cardiovascular developmental and regenerative phenomena.
Collapse
Affiliation(s)
- Yichen Ding
- Department of Medicine, David Geffen School of Medicine at UCLA, and
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Jianguo Ma
- Department of Medicine, David Geffen School of Medicine at UCLA, and
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
| | - Adam D. Langenbacher
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Kyung In Baek
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Juhyun Lee
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | | | - Jeffrey J. Hsu
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Rajan P. Kulkarni
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - John Belperio
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Reza Ardehali
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Yin Tintut
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Linda L. Demer
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Jau-Nian Chen
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Peng Fei
- Department of Medicine, David Geffen School of Medicine at UCLA, and
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | | | - Tzung K. Hsiai
- Department of Medicine, David Geffen School of Medicine at UCLA, and
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| |
Collapse
|
58
|
Riddle MR, Boesmans W, Caballero O, Kazwiny Y, Tabin CJ. Morphogenesis and motility of the Astyanax mexicanus gastrointestinal tract. Dev Biol 2018; 441:285-296. [PMID: 29883660 DOI: 10.1016/j.ydbio.2018.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 01/01/2023]
Abstract
Through the course of evolution, the gastrointestinal (GI) tract has been modified to maximize nutrient absorption, forming specialized segments that are morphologically and functionally distinct. Here we show that the GI tract of the Mexican tetra, Astyanax mexicanus, has distinct regions, exhibiting differences in morphology, motility, and absorption. We found that A. mexicanus populations adapted for life in subterranean caves exhibit differences in the GI segments compared to those adapted to surface rivers. Cave-adapted fish exhibit bi-directional churning motility in the stomach region that is largely absent in river-adapted fish. We investigated how this motility pattern influences intestinal transit of powdered food and live prey. We found that powdered food is more readily emptied from the cavefish GI tract. In contrast, the transit of live rotifers from the stomach region to the midgut occurs more slowly in cavefish compared to surface fish, consistent with the presence of churning motility. Differences in intestinal motility and transit likely reflect adaptation to unique food sources available to post-larval A. mexicanus in the cave and river environments. We found that cavefish grow more quickly than surface fish when fed ad libitum, suggesting that altered GI function may aid in nutrient consumption or absorption. We did not observe differences in enteric neuron density or smooth muscle organization between cavefish and surface fish. Altered intestinal motility in cavefish could instead be due to changes in the activity or patterning of the enteric nervous system. Exploring this avenue will lead to a better understanding of how the GI tract evolves to maximize energy assimilation from novel food sources.
Collapse
Affiliation(s)
- Misty R Riddle
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Werend Boesmans
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Olivya Caballero
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Ophthalmology, SUNY Downstate, Brooklyn, NY 11203, USA
| | - Youcef Kazwiny
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
59
|
Jewett CE, Prekeris R. Insane in the apical membrane: Trafficking events mediating apicobasal epithelial polarity during tube morphogenesis. Traffic 2018; 19:10.1111/tra.12579. [PMID: 29766620 PMCID: PMC6239989 DOI: 10.1111/tra.12579] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022]
Abstract
The creation of cellular tubes is one of the most vital developmental processes, resulting in the formation of most organ types. Cells have co-opted a number of different mechanisms for tube morphogenesis that vary among tissues and organisms; however, generation and maintenance of cell polarity is fundamental for successful lumenogenesis. Polarized membrane transport has emerged as a key driver not only for establishing individual epithelial cell polarity, but also for coordination of epithelial polarization during apical lumen formation and tissue morphogenesis. In recent years, much work has been dedicated to identifying membrane trafficking regulators required for lumenogenesis. In this review we will summarize the findings from the past couple of decades in defining the molecular machinery governing lumenogenesis both in 3D tissue culture models and during organ development in vivo.
Collapse
Affiliation(s)
- Cayla E. Jewett
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
60
|
Ding Y, Lee J, Hsu JJ, Chang CC, Baek KI, Ranjbarvaziri S, Ardehali R, Packard RRS, Hsiai TK. Light-Sheet Imaging to Elucidate Cardiovascular Injury and Repair. Curr Cardiol Rep 2018; 20:35. [PMID: 29574550 DOI: 10.1007/s11886-018-0979-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Real-time 3-dimensional (3-D) imaging of cardiovascular injury and regeneration remains challenging. We introduced a multi-scale imaging strategy that uses light-sheet illumination to enable applications of cardiovascular injury and repair in models ranging from zebrafish to rodent hearts. RECENT FINDINGS Light-sheet imaging enables rapid data acquisition with high spatiotemporal resolution and with minimal photo-bleaching or photo-toxicity. We demonstrated the capacity of this novel light-sheet approach for scanning a region of interest with specific fluorescence contrast, thereby providing axial and temporal resolution at the cellular level without stitching image columns or pivoting illumination beams during one-time imaging. This cutting-edge imaging technique allows for elucidating the differentiation of stem cells in cardiac regeneration, providing an entry point to discover novel micro-circulation phenomenon with clinical significance for injury and repair. These findings demonstrate the multi-scale applications of this novel light-sheet imaging strategy to advance research in cardiovascular development and regeneration.
Collapse
Affiliation(s)
- Yichen Ding
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Juhyun Lee
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.,Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Jeffrey J Hsu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Chih-Chiang Chang
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Kyung In Baek
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Sara Ranjbarvaziri
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Reza Ardehali
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - René R Sevag Packard
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Tzung K Hsiai
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA. .,Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA. .,Medical Engineering, California Institute of Technology, Pasadena, CA, 91106, USA.
| |
Collapse
|
61
|
Dasgupta A, Merkel M, Clark MJ, Jacob AE, Dawson JE, Manning ML, Amack JD. Cell volume changes contribute to epithelial morphogenesis in zebrafish Kupffer's vesicle. eLife 2018; 7:30963. [PMID: 29376824 PMCID: PMC5800858 DOI: 10.7554/elife.30963] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 01/26/2018] [Indexed: 02/07/2023] Open
Abstract
How epithelial cell behaviors are coordinately regulated to sculpt tissue architecture is a fundamental question in biology. Kupffer’s vesicle (KV), a transient organ with a fluid-filled lumen, provides a simple system to investigate the interplay between intrinsic cellular mechanisms and external forces during epithelial morphogenesis. Using 3-dimensional (3D) analyses of single cells we identify asymmetric cell volume changes along the anteroposterior axis of KV that coincide with asymmetric cell shape changes. Blocking ion flux prevents these cell volume changes and cell shape changes. Vertex simulations suggest cell shape changes do not depend on lumen expansion. Consistent with this prediction, asymmetric changes in KV cell volume and shape occur normally when KV lumen growth fails due to leaky cell adhesions. These results indicate ion flux mediates cell volume changes that contribute to asymmetric cell shape changes in KV, and that these changes in epithelial morphology are separable from lumen-generated forces.
Collapse
Affiliation(s)
- Agnik Dasgupta
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, United States
| | - Matthias Merkel
- Department of Physics, Syracuse University, Syracuse, United States
| | - Madeline J Clark
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, United States
| | - Andrew E Jacob
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, United States
| | | | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, United States
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, United States
| |
Collapse
|
62
|
Li Y, Miao X, Chen T, Yi X, Wang R, Zhao H, Lee SMY, Wang X, Zheng Y. Zebrafish as a visual and dynamic model to study the transport of nanosized drug delivery systems across the biological barriers. Colloids Surf B Biointerfaces 2017; 156:227-235. [PMID: 28544957 DOI: 10.1016/j.colsurfb.2017.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/29/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
With the wide application of nanotechnology to drug delivery systems, a simple, dynamic and visual in vivo model for high-throughput screening of novel formulations with fluorescence markers across biological barriers is desperately needed. In vitro cell culture models have been widely used, although they are far from a complimentary in vivo system. Mammalian animal models are common predictive models to study transport, but they are costly and time consuming. Zebrafish (Danio rerio), a small vertebrate model, have the potential to be developed as an "intermediate" model for quick evaluations. Based on our previously established coumarin 6 nanocrystals (C6-NCs), which have two different sizes, the present study investigates the transportation of C6-NCs across four biological barriers, including the chorion, blood brain barrier (BBB), blood retinal barrier (BRB) and gastrointestinal (GI) barrier, using zebrafish embryos and larvae as in vivo models. The biodistribution and elimination of C6 from different organs were quantified in adult zebrafish. The results showed that compared to 200nm C6-NCs, 70nm C6-NCs showed better permeability across these biological barriers. A FRET study suggested that intact C6-NCs together with the free dissolved form of C6 were absorbed into the larval zebrafish. More C6 was accumulated in different organs after incubation with small sized NCs via lipid raft-mediated endocytosis in adult zebrafish, which is consistent with the findings from in vitro cell monolayers and the zebrafish larvae model. C6-NCs could be gradually eliminated in each organ over time. This study demonstrated the successful application of zebrafish as a simple and dynamic model to simultaneously assess the transport of nanosized drug delivery systems across several biological barriers and biodistribution in different organs, especially in the brain, which could be used for central nervous system (CNS) drug and delivery system screening.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiaoqing Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Tongkai Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiang Yi
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
63
|
Sculpting the labyrinth: Morphogenesis of the developing inner ear. Semin Cell Dev Biol 2017; 65:47-59. [DOI: 10.1016/j.semcdb.2016.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/26/2016] [Accepted: 09/25/2016] [Indexed: 01/23/2023]
|
64
|
Ding Y, Lee J, Ma J, Sung K, Yokota T, Singh N, Dooraghi M, Abiri P, Wang Y, Kulkarni RP, Nakano A, Nguyen TP, Fei P, Hsiai TK. Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution. Sci Rep 2017; 7:42209. [PMID: 28165052 PMCID: PMC5292685 DOI: 10.1038/srep42209] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/03/2017] [Indexed: 12/24/2022] Open
Abstract
Light-sheet fluorescence microscopy (LSFM) serves to advance developmental research and regenerative medicine. Coupled with the paralleled advances in fluorescence-friendly tissue clearing technique, our cardiac LSFM enables dual-sided illumination to rapidly uncover the architecture of murine hearts over 10 by 10 by 10 mm3 in volume; thereby allowing for localizing progenitor differentiation to the cardiomyocyte lineage and AAV9-mediated expression of exogenous transmembrane potassium channels with high contrast and resolution. Without the steps of stitching image columns, pivoting the light-sheet and sectioning the heart mechanically, we establish a holistic strategy for 3-dimentional reconstruction of the "digital murine heart" to assess aberrant cardiac structures as well as the spatial distribution of the cardiac lineages in neonates and ion-channels in adults.
Collapse
Affiliation(s)
- Yichen Ding
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
- Department of Bioengineering, School of Engineering & Applied Sciences, UCLA, Los Angeles, CA 90095, USA
| | - Juhyun Lee
- Department of Bioengineering, School of Engineering & Applied Sciences, UCLA, Los Angeles, CA 90095, USA
| | - Jianguo Ma
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Kevin Sung
- Department of Bioengineering, School of Engineering & Applied Sciences, UCLA, Los Angeles, CA 90095, USA
| | - Tomohiro Yokota
- Departments of Anesthesiology, Physiology and Medicine, Cardiovascular Research Laboratories, UCLA, Los Angeles, CA 90095, USA
| | - Neha Singh
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Mojdeh Dooraghi
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Parinaz Abiri
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
- Department of Bioengineering, School of Engineering & Applied Sciences, UCLA, Los Angeles, CA 90095, USA
| | - Yibin Wang
- Departments of Anesthesiology, Physiology and Medicine, Cardiovascular Research Laboratories, UCLA, Los Angeles, CA 90095, USA
| | - Rajan P. Kulkarni
- Department of Bioengineering, School of Engineering & Applied Sciences, UCLA, Los Angeles, CA 90095, USA
- Division of Dermatology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Atsushi Nakano
- Department of Molecular, Cellular and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA
| | - Thao P. Nguyen
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Peng Fei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Tzung K. Hsiai
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
- Department of Bioengineering, School of Engineering & Applied Sciences, UCLA, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
65
|
Abstract
Although the zebrafish was initially developed as a model system to study embryonic development, it has gained increasing attention as an advantageous system to investigate human diseases, including intestinal disorders. Zebrafish embryos develop rapidly, and their digestive system is fully functional and visible by 5days post fertilization. There is a large degree of homology between the intestine of zebrafish and higher vertebrate organisms in terms of its cellular composition and function as both a digestive and immune organ. Furthermore, molecular pathways regulating injury and immune responses are highly conserved. In this chapter, we provide an overview of studies addressing developmental and physiological processes relevant to human intestinal disease. These studies include those related to congenital disorders, host-microbiota interactions, inflammatory diseases, motility disorders, and intestinal cancer. We also highlight the utility of zebrafish to functionally validate candidate genes identified through mutational analyses and genome-wide association studies, and discuss methodologies to investigate the intestinal biology that are unique to zebrafish.
Collapse
Affiliation(s)
- X Zhao
- University of Pennsylvania, Philadelphia, PA, United States
| | - M Pack
- University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
66
|
Gays D, Hess C, Camporeale A, Ala U, Provero P, Mosimann C, Santoro MM. An exclusive cellular and molecular network governs intestinal smooth muscle cell differentiation in vertebrates. Development 2017; 144:464-478. [PMID: 28049660 DOI: 10.1242/dev.133926] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/09/2016] [Indexed: 12/19/2022]
Abstract
Intestinal smooth muscle cells (iSMCs) are a crucial component of the adult gastrointestinal tract and support intestinal differentiation, peristalsis and epithelial homeostasis during development. Despite these crucial roles, the origin of iSMCs and the mechanisms responsible for their differentiation and function remain largely unknown in vertebrates. Here, we demonstrate that iSMCs arise from the lateral plate mesoderm (LPM) in a stepwise process. Combining pharmacological and genetic approaches, we show that TGFβ/Alk5 signaling drives the LPM ventral migration and commitment to an iSMC fate. The Alk5-dependent induction of zeb1a and foxo1a is required for this morphogenetic process: zeb1a is responsible for driving LPM migration around the gut, whereas foxo1a regulates LPM predisposition to iSMC differentiation. We further show that TGFβ, zeb1a and foxo1a are tightly linked together by miR-145 In iSMC-committed cells, TGFβ induces the expression of miR-145, which in turn is able to downregulate zeb1a and foxo1a The absence of miR-145 results in only a slight reduction in the number of iSMCs, which still express mesenchymal genes but fail to contract. Together, our data uncover a cascade of molecular events that govern distinct morphogenetic steps during the emergence and differentiation of vertebrate iSMCs.
Collapse
Affiliation(s)
- Dafne Gays
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin 10126, Italy
| | - Christopher Hess
- Institute of Molecular Life Sciences (IMLS), University of Zürich, Zürich 8057, Switzerland
| | - Annalisa Camporeale
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin 10126, Italy
| | - Ugo Ala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin 10126, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin 10126, Italy
| | - Christian Mosimann
- Institute of Molecular Life Sciences (IMLS), University of Zürich, Zürich 8057, Switzerland
| | - Massimo M Santoro
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin 10126, Italy .,Vesalius Research Center, VIB-KUL, Leuven 3000, Belgium
| |
Collapse
|
67
|
Prkci is required for a non-autonomous signal that coordinates cell polarity during cavitation. Dev Biol 2016; 416:82-97. [PMID: 27312576 DOI: 10.1016/j.ydbio.2016.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 11/23/2022]
Abstract
Polarized epithelia define boundaries, spaces, and cavities within organisms. Cavitation, a process by which multicellular hollow balls or tubes are produced, is typically associated with the formation of organized epithelia. In order for these epithelial layers to form, cells must ultimately establish a distinct apical-basal polarity. Atypical PKCs have been proposed to be required for apical-basal polarity in diverse species. Here we show that while cells null for the Prkci isozyme exhibit some polarity characteristics, they fail to properly segregate apical-basal proteins, form a coordinated ectodermal epithelium, or participate in normal cavitation. A failure to cavitate could be due to an overgrowth of interior cells or to an inability of interior cells to die. Null cells however, do not have a marked change in proliferation rate and are still capable of undergoing cell death, suggesting that alterations in these processes are not the predominant cause of the failed cavitation. Overexpression of BMP4 or EZRIN can partially rescue the phenotype possibly by promoting cell death, polarity, and differentiation. However, neither is sufficient to provide the required cues to generate a polarized epithelium and fully rescue cavitation. Interestingly, when wildtype and Prkci(-/-) ES cells are mixed together, a polarized ectodermal epithelium forms and cavitation is rescued, likely due to the ability of wildtype cells to produce non-autonomous polarity cues. We conclude that Prkci is not required for cells to respond to these cues, though it is required to produce them. Together these findings indicate that environmental cues can facilitate the formation of polarized epithelia and that cavitation requires the proper coordination of multiple basic cellular processes including proliferation, differentiation, cell death, and apical-basal polarization.
Collapse
|
68
|
Navis A, Nelson CM. Pulling together: Tissue-generated forces that drive lumen morphogenesis. Semin Cell Dev Biol 2016; 55:139-47. [PMID: 26778757 PMCID: PMC4903947 DOI: 10.1016/j.semcdb.2016.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022]
Abstract
Mechanical interactions are essential for bending and shaping tissues during morphogenesis. A common feature of nearly all internal organs is the formation of a tubular network consisting of an epithelium that surrounds a central lumen. Lumen formation during organogenesis requires precisely coordinated mechanical and biochemical interactions. Whereas many genetic regulators of lumen formation have been identified, relatively little is known about the mechanical cues that drive lumen morphogenesis. Lumens can be shaped by a variety of physical behaviors including wrapping a sheet of cells around a hollow core, rearranging cells to expose a lumenal cavity, or elongating a tube via cell migration, though many of the details underlying these movements remain poorly understood. It is essential to define how forces generated by individual cells cooperate to produce the tissue-level forces that drive organogenesis. Transduction of mechanical forces relies on several conserved processes including the contraction of cytoskeletal networks or expansion of lumens through increased fluid pressure. The morphogenetic events that drive lumen formation serve as a model for similar mechanical processes occurring throughout development. To understand how lumenal networks arise, it will be essential to investigate how biochemical and mechanical processes integrate to generate complex structures from comparatively simple interactions.
Collapse
Affiliation(s)
- Adam Navis
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
69
|
Lobert VH, Mouradov D, Heath JK. Focusing the Spotlight on the Zebrafish Intestine to Illuminate Mechanisms of Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:411-37. [PMID: 27165364 DOI: 10.1007/978-3-319-30654-4_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colorectal cancer, encompassing colon and rectal cancer, arises from the epithelial lining of the large bowel. It is most prevalent in Westernised societies and is increasing in frequency as the world becomes more industrialised. Unfortunately, metastatic colorectal cancer is not cured by chemotherapy and the annual number of deaths caused by colorectal cancer, currently 700,000, is expected to rise. Our understanding of the contribution that genetic mutations make to colorectal cancer, although incomplete, is reasonably well advanced. However, it has only recently become widely appreciated that in addition to the ongoing accumulation of genetic mutations, chronic inflammation also plays a critical role in the initiation and progression of this disease. While a robust and tractable genetic model of colorectal cancer in zebrafish, suitable for pre-clinical studies, is not yet available, the identification of genes required for the rapid proliferation of zebrafish intestinal epithelial cells during development has highlighted a number of essential genes that could be targeted to disable colorectal cancer cells. Moreover, appreciation of the utility of zebrafish to study intestinal inflammation is on the rise. In particular, zebrafish provide unique opportunities to investigate the impact of genetic and environmental factors on the integrity of intestinal epithelial barrier function. With currently available tools, the interplay between epigenetic regulators, intestinal injury, microbiota composition and innate immune cell mobilisation can be analysed in exquisite detail. This provides excellent opportunities to define critical events that could potentially be targeted therapeutically. Further into the future, the use of zebrafish larvae as hosts for xenografts of human colorectal cancer tissue, while still in its infancy, holds great promise that zebrafish could one day provide a practical, preclinical personalized medicine platform for the rapid assessment of the metastatic potential and drug-sensitivity of patient-derived cancers.
Collapse
Affiliation(s)
- Viola H Lobert
- Development and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.,Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379, Oslo, Norway
| | - Dmitri Mouradov
- Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Joan K Heath
- Development and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
70
|
Kim M, M Shewan A, Ewald AJ, Werb Z, Mostov KE. p114RhoGEF governs cell motility and lumen formation during tubulogenesis through a ROCK-myosin-II pathway. J Cell Sci 2015; 128:4317-27. [PMID: 26483385 DOI: 10.1242/jcs.172361] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023] Open
Abstract
Tubulogenesis is fundamental to the development of many epithelial organs. Although lumen formation in cysts has received considerable attention, less is known about lumenogenesis in tubes. Here, we utilized tubulogenesis induced by hepatocyte growth factor (HGF) in MDCK cells, which form tubes enclosing a single lumen. We report the mechanism that controls tubular lumenogenesis and limits each tube to a single lumen. Knockdown of p114RhoGEF (also known as ARHGEF18), a guanine nucleotide exchange factor for RhoA, did not perturb the early stages of tubulogenesis induced by HGF. However, this knockdown impaired later stages of tubulogenesis, resulting in multiple lumens in a tube. Inhibition of Rho kinase (ROCK) or myosin IIA, which are downstream of RhoA, led to formation of multiple lumens. We studied lumen formation by live-cell imaging, which revealed that inhibition of this pathway blocked cell movement, suggesting that cell movement is necessary for consolidating multiple lumens into a single lumen. Lumen formation in tubules is mechanistically quite different from lumenogenesis in cysts. Thus, we demonstrate a new pathway that regulates directed cell migration and formation of a single lumen during epithelial tube morphogenesis.
Collapse
Affiliation(s)
- Minji Kim
- Department of Anatomy, University of California, San Francisco, CA 94158, USA
| | - Annette M Shewan
- School of Chemistry & Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew J Ewald
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, CA 94158, USA
| | - Keith E Mostov
- Department of Anatomy, University of California, San Francisco, CA 94158, USA Department of Biochemistry/Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
71
|
Blasky AJ, Mangan A, Prekeris R. Polarized protein transport and lumen formation during epithelial tissue morphogenesis. Annu Rev Cell Dev Biol 2015; 31:575-91. [PMID: 26359775 DOI: 10.1146/annurev-cellbio-100814-125323] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the major challenges in biology is to explain how complex tissues and organs arise from the collective action of individual polarized cells. The best-studied model of this process is the cross talk between individual epithelial cells during their polarization to form the multicellular epithelial lumen during tissue morphogenesis. Multiple mechanisms of apical lumen formation have been proposed. Some epithelial lumens form from preexisting polarized epithelial structures. However, de novo lumen formation from nonpolarized cells has recently emerged as an important driver of epithelial tissue morphogenesis, especially during the formation of small epithelial tubule networks. In this review, we discuss the latest findings regarding the mechanisms and regulation of de novo lumen formation in vitro and in vivo.
Collapse
Affiliation(s)
- Alex J Blasky
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045;
| | - Anthony Mangan
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045;
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045;
| |
Collapse
|
72
|
Abstract
Insulin-producing β cells within the vertebrate fetal pancreas acquire their fate in a step-wise manner. Whereas the intrinsic factors dictating the transcriptional or epigenetic status of pancreatic lineages have been intensely examined, less is known about cell-cell interactions that might constitute a niche for the developing β cell lineage. It is becoming increasingly clear that understanding and recapitulating these steps may instruct in vitro differentiation of embryonic stem cells and/or therapeutic regeneration. Indeed, directed differentiation techniques have improved since transitioning from 2D to 3D cultures, suggesting that the 3D microenvironment in which β cells are born is critical. However, to date, it remains unknown whether the changing architecture of the pancreatic epithelium impacts the fate of cells therein. An emerging challenge in the field is to elucidate how progenitors are allocated during key events, such as the stratification and subsequent resolution of the pre-pancreatic epithelium, as well as the formation of lumens and branches. Here, we assess the progenitor epithelium and examine how it might influence the emergence of pancreatic multipotent progenitors (MPCs), which give rise to β cells and other pancreatic lineages.
Collapse
Affiliation(s)
- Leilani Marty-Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas (LMS,OC)
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas (LMS,OC)
| |
Collapse
|
73
|
Marjoram L, Bagnat M. Infection, Inflammation and Healing in Zebrafish: Intestinal Inflammation. CURRENT PATHOBIOLOGY REPORTS 2015; 3:147-153. [PMID: 26236567 PMCID: PMC4520400 DOI: 10.1007/s40139-015-0079-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inflammatory bowel diseases (IBD), which include Crohn’s disease and ulcerative colitis, contribute to significant morbidity and mortality globally. Despite an increase in incidence, IBD onset is still poorly understood. Mouse models of IBD recapitulate several aspects of human disease, but limited accessibility for live imaging and the lack of forward genetics highlight the need for new model systems for disease onset characterization. Zebrafish represent a powerful platform to model IBD using forward and reverse genetics, live imaging of transgenic lines and physiological assays. In this review, we address current models of IBD in zebrafish and newly developed reagents available for future studies.
Collapse
Affiliation(s)
- Lindsay Marjoram
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-4899,
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, Tel: 919-681-9268 ,
| |
Collapse
|
74
|
Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubular organs. Nat Cell Biol 2015; 17:241-50. [PMID: 25706235 DOI: 10.1038/ncb3106] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 01/09/2015] [Indexed: 02/07/2023]
Abstract
Epithelial organs develop through tightly coordinated events of cell proliferation and differentiation in which endocytosis plays a major role. Despite recent advances, how endocytosis regulates the development of vertebrate organs is still unknown. Here we describe a mechanism that facilitates the apical availability of endosomal SNARE receptors for epithelial morphogenesis through the developmental upregulation of plasmolipin (pllp) in a highly endocytic segment of the zebrafish posterior midgut. The protein PLLP (Pllp in fish) recruits the clathrin adaptor EpsinR to sort the SNARE machinery of the endolysosomal pathway into the subapical compartment, which is a switch for polarized endocytosis. Furthermore, PLLP expression induces apical Crumbs internalization and the activation of the Notch signalling pathway, both crucial steps in the acquisition of cell polarity and differentiation of epithelial cells. We thus postulate that differential apical endosomal SNARE sorting is a mechanism that regulates epithelial patterning.
Collapse
|
75
|
Epigenetic control of intestinal barrier function and inflammation in zebrafish. Proc Natl Acad Sci U S A 2015; 112:2770-5. [PMID: 25730872 DOI: 10.1073/pnas.1424089112] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intestinal epithelium forms a barrier protecting the organism from microbes and other proinflammatory stimuli. The integrity of this barrier and the proper response to infection requires precise regulation of powerful immune homing signals such as tumor necrosis factor (TNF). Dysregulation of TNF leads to inflammatory bowel diseases (IBD), but the mechanism controlling the expression of this potent cytokine and the events that trigger the onset of chronic inflammation are unknown. Here, we show that loss of function of the epigenetic regulator ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1) in zebrafish leads to a reduction in tnfa promoter methylation and the induction of tnfa expression in intestinal epithelial cells (IECs). The increase in IEC tnfa levels is microbe-dependent and results in IEC shedding and apoptosis, immune cell recruitment, and barrier dysfunction, consistent with chronic inflammation. Importantly, tnfa knockdown in uhrf1 mutants restores IEC morphology, reduces cell shedding, and improves barrier function. We propose that loss of epigenetic repression and TNF induction in the intestinal epithelium can lead to IBD onset.
Collapse
|
76
|
Navis A, Bagnat M. Developing pressures: fluid forces driving morphogenesis. Curr Opin Genet Dev 2015; 32:24-30. [PMID: 25698116 PMCID: PMC4470832 DOI: 10.1016/j.gde.2015.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/27/2015] [Indexed: 11/26/2022]
Abstract
Over several decades genetic studies have unraveled many molecular mechanisms that underlie the signaling networks guiding morphogenesis, but the mechanical forces at work remain much less well understood. Accumulation of fluid within a luminal space can generate outward hydrostatic pressure capable of shaping morphogenesis at several scales, ranging from individual organs to the entire vertebrate body-plan. Here, we focus on recent work that uncovered mechanical roles for fluid secretion during morphogenesis. Identifying the roles and regulation of fluid secretion will be instrumental for understanding the mechanics of morphogenesis as well as many human diseases of complex genetic and environmental origin including secretory diarrheas and scoliosis.
Collapse
Affiliation(s)
- Adam Navis
- Department of Cell Biology, Duke University Medical Center, 333B Nanaline Duke Bldg., Box 3709, Durham, NC, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, 333B Nanaline Duke Bldg., Box 3709, Durham, NC, USA.
| |
Collapse
|
77
|
Navis A, Bagnat M. Loss of cftr function leads to pancreatic destruction in larval zebrafish. Dev Biol 2015; 399:237-48. [PMID: 25592226 DOI: 10.1016/j.ydbio.2014.12.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 12/14/2022]
Abstract
The development and function of many internal organs requires precisely regulated fluid secretion. A key regulator of vertebrate fluid secretion is an anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Loss of CFTR function leads to defects in fluid transport and cystic fibrosis (CF), a complex disease characterized by a loss of fluid secretion and mucus buildup in many organs including the lungs, liver, and pancreas. Several animal models including mouse, ferret and pig have been generated to investigate the pathophysiology of CF. However, these models have limited accessibility to early processes in the development of CF and are not amenable for forward genetic or chemical screens. Here, we show that Cftr is expressed and localized to the apical membrane of the zebrafish pancreatic duct and that loss of cftr function leads to destruction of the exocrine pancreas and a cystic fibrosis phenotype that mirrors human disease. Our analyses reveal that the cftr mutant pancreas initially develops normally, then rapidly loses pancreatic tissue during larval life, reflecting pancreatic disease in CF. Altogether, we demonstrate that the cftr mutant zebrafish is a powerful new model for pancreatitis and pancreatic destruction in CF. This accessible model will allow more detailed investigation into the mechanisms that drive CF of the pancreas and facilitate development of new therapies to treat the disease.
Collapse
Affiliation(s)
- Adam Navis
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
78
|
Nedvetsky PI, Emmerson E, Finley JK, Ettinger A, Cruz-Pacheco N, Prochazka J, Haddox CL, Northrup E, Hodges C, Mostov KE, Hoffman MP, Knox SM. Parasympathetic innervation regulates tubulogenesis in the developing salivary gland. Dev Cell 2014; 30:449-62. [PMID: 25158854 DOI: 10.1016/j.devcel.2014.06.012] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 04/25/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022]
Abstract
A fundamental question in development is how cells assemble to form a tubular network during organ formation. In glandular organs, tubulogenesis is a multistep process requiring coordinated proliferation, polarization and reorganization of epithelial cells to form a lumen, and lumen expansion. Although it is clear that epithelial cells possess an intrinsic ability to organize into polarized structures, the mechanisms coordinating morphogenetic processes during tubulogenesis are poorly understood. Here, we demonstrate that parasympathetic nerves regulate tubulogenesis in the developing salivary gland. We show that vasoactive intestinal peptide (VIP) secreted by the innervating ganglia promotes ductal growth, leads to the formation of a contiguous lumen, and facilitates lumen expansion through a cyclic AMP/protein kinase A (cAMP/PKA)-dependent pathway. Furthermore, we provide evidence that lumen expansion is independent of apoptosis and involves the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated Cl(-) channel. Thus, parasympathetic innervation coordinates multiple steps in tubulogenesis during organogenesis.
Collapse
Affiliation(s)
- Pavel I Nedvetsky
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elaine Emmerson
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer K Finley
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andreas Ettinger
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noel Cruz-Pacheco
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jan Prochazka
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Candace L Haddox
- National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Emily Northrup
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Craig Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Keith E Mostov
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew P Hoffman
- National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Sarah M Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|