51
|
Kannan N, Tang VW. Synaptopodin couples epithelial contractility to α-actinin-4-dependent junction maturation. J Cell Biol 2016; 211:407-34. [PMID: 26504173 PMCID: PMC4621826 DOI: 10.1083/jcb.201412003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A novel tension-sensitive junctional protein, synaptopodin, can relay biophysical input from cellular actomyosin contractility to induce biochemical changes at cell–cell contacts, resulting in structural reorganization of the junctional complex and epithelial barrier maturation. The epithelial junction experiences mechanical force exerted by endogenous actomyosin activities and from interactions with neighboring cells. We hypothesize that tension generated at cell–cell adhesive contacts contributes to the maturation and assembly of the junctional complex. To test our hypothesis, we used a hydraulic apparatus that can apply mechanical force to intercellular junction in a confluent monolayer of cells. We found that mechanical force induces α-actinin-4 and actin accumulation at the cell junction in a time- and tension-dependent manner during junction development. Intercellular tension also induces α-actinin-4–dependent recruitment of vinculin to the cell junction. In addition, we have identified a tension-sensitive upstream regulator of α-actinin-4 as synaptopodin. Synaptopodin forms a complex containing α-actinin-4 and β-catenin and interacts with myosin II, indicating that it can physically link adhesion molecules to the cellular contractile apparatus. Synaptopodin depletion prevents junctional accumulation of α-actinin-4, vinculin, and actin. Knockdown of synaptopodin and α-actinin-4 decreases the strength of cell–cell adhesion, reduces the monolayer permeability barrier, and compromises cellular contractility. Our findings underscore the complexity of junction development and implicate a control process via tension-induced sequential incorporation of junctional components.
Collapse
Affiliation(s)
- Nivetha Kannan
- Program in Global Public Health, University of Illinois, Urbana-Champaign, Champaign, IL 61801
| | - Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Champaign, IL 61801
| |
Collapse
|
52
|
Abstract
Epithelial repair in the Drosophila embryo is achieved through 2 dynamic cytoskeletal machineries: a contractile actomyosin cable and actin-based cellular protrusions. Rho family small GTPases (Rho, Rac, and Cdc42) are cytoskeletal regulators that control both of these wound repair mechanisms. Cdc42 is necessary for cellular protrusions and, when absent, wounds are slow to repair and never completely close. Rac proteins accumulate at specific regions in the wound leading edge cells and Rac-deficient embryos exhibit slower repair kinetics. Mutants for both Rho1 and its effector Rok impair the ability of wounds to close by disrupting the leading-edge actin cable. Our studies highlight the importance of these proteins in wound repair and identify a downstream effector of Rho1 signaling in this process.
Collapse
Affiliation(s)
- Jeffrey M Verboon
- a Division of Basic Sciences; Fred Hutchinson Cancer Research Center ; Seattle , WA USA
| | | |
Collapse
|
53
|
Nunan R, Campbell J, Mori R, Pitulescu ME, Jiang WG, Harding KG, Adams RH, Nobes CD, Martin P. Ephrin-Bs Drive Junctional Downregulation and Actin Stress Fiber Disassembly to Enable Wound Re-epithelialization. Cell Rep 2015; 13:1380-1395. [PMID: 26549443 PMCID: PMC4660216 DOI: 10.1016/j.celrep.2015.09.085] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/12/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022] Open
Abstract
For a skin wound to successfully heal, the cut epidermal-edge cells have to migrate forward at the interface between scab and healthy granulation tissue. Much is known about how lead-edge cells migrate, but very little is known about the mechanisms that enable active participation by cells further back. Here we show that ephrin-B1 and its receptor EphB2 are both upregulated in vivo, just for the duration of repair, in the first 70 or so rows of epidermal cells, and this signal leads to downregulation of the molecular components of adherens and tight (but not desmosomal) junctions, leading to loosening between neighbors and enabling shuffle room among epidermal cells. Additionally, this signaling leads to the shutdown of actomyosin stress fibers in these same epidermal cells, which may act to release tension within the wound monolayer. If this signaling axis is perturbed, then disrupted healing is a consequence in mouse and man. Ephrin-B/EphBs are upregulated in the migrating wound epidermis in mouse and man Ephrin-B/EphB signaling drives junction loosening, thus enabling re-epithelialization Ephrin-B/EphB signaling also leads to dissolution of stress fibers and tension release In human chronic wounds ephrin-Bs are misregulated and may be a therapeutic target
Collapse
Affiliation(s)
- Robert Nunan
- Schools of Biochemistry and Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Jessica Campbell
- Schools of Biochemistry and Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Ryoichi Mori
- Schools of Biochemistry and Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK; Department of Pathology, Nagasaki University, Nagasaki 852-8523, Japan
| | - Mara E Pitulescu
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany; Faculty of Medicine, University of Muenster, 48149 Muenster, Germany
| | - Wen G Jiang
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Keith G Harding
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany; Faculty of Medicine, University of Muenster, 48149 Muenster, Germany
| | - Catherine D Nobes
- Schools of Biochemistry and Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Martin
- Schools of Biochemistry and Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK; School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| |
Collapse
|
54
|
Narciso C, Wu Q, Brodskiy P, Garston G, Baker R, Fletcher A, Zartman J. Patterning of wound-induced intercellular Ca(2+) flashes in a developing epithelium. Phys Biol 2015; 12:056005. [PMID: 26331891 DOI: 10.1088/1478-3975/12/5/056005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Differential mechanical force distributions are increasingly recognized to provide important feedback into the control of an organ's final size and shape. As a second messenger that integrates and relays mechanical information to the cell, calcium ions (Ca(2+)) are a prime candidate for providing important information on both the overall mechanical state of the tissue and resulting behavior at the individual-cell level during development. Still, how the spatiotemporal properties of Ca(2+) transients reflect the underlying mechanical characteristics of tissues is still poorly understood. Here we use an established model system of an epithelial tissue, the Drosophila wing imaginal disc, to investigate how tissue properties impact the propagation of Ca(2+) transients induced by laser ablation. The resulting intercellular Ca(2+) flash is found to be mediated by inositol 1,4,5-trisphosphate and depends on gap junction communication. Further, we find that intercellular Ca(2+) transients show spatially non-uniform characteristics across the proximal-distal axis of the larval wing imaginal disc, which exhibit a gradient in cell size and anisotropy. A computational model of Ca(2+) transients is employed to identify the principle factors explaining the spatiotemporal patterning dynamics of intercellular Ca(2+) flashes. The relative Ca(2+) flash anisotropy is principally explained by local cell shape anisotropy. Further, Ca(2+) velocities are relatively uniform throughout the wing disc, irrespective of cell size or anisotropy. This can be explained by the opposing effects of cell diameter and cell elongation on intercellular Ca(2+) propagation. Thus, intercellular Ca(2+) transients follow lines of mechanical tension at velocities that are largely independent of tissue heterogeneity and reflect the mechanical state of the underlying tissue.
Collapse
Affiliation(s)
- Cody Narciso
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 182 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Matsubayashi Y, Coulson-Gilmer C, Millard TH. Endocytosis-dependent coordination of multiple actin regulators is required for wound healing. J Cell Biol 2015. [PMID: 26216900 PMCID: PMC4523608 DOI: 10.1083/jcb.201411037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ability to heal wounds efficiently is essential for life. After wounding of an epithelium, the cells bordering the wound form dynamic actin protrusions and/or a contractile actomyosin cable, and these actin structures drive wound closure. Despite their importance in wound healing, the molecular mechanisms that regulate the assembly of these actin structures at wound edges are not well understood. In this paper, using Drosophila melanogaster embryos, we demonstrate that Diaphanous, SCAR, and WASp play distinct but overlapping roles in regulating actin assembly during wound healing. Moreover, we show that endocytosis is essential for wound edge actin assembly and wound closure. We identify adherens junctions (AJs) as a key target of endocytosis during wound healing and propose that endocytic remodeling of AJs is required to form "signaling centers" along the wound edge that control actin assembly. We conclude that coordination of actin assembly, AJ remodeling, and membrane traffic is required for the construction of a motile leading edge during wound healing.
Collapse
Affiliation(s)
- Yutaka Matsubayashi
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Camilla Coulson-Gilmer
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Tom H Millard
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| |
Collapse
|
56
|
Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol 2015; 173:370-8. [PMID: 26175283 PMCID: PMC4671308 DOI: 10.1111/bjd.13954] [Citation(s) in RCA: 630] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2015] [Indexed: 12/12/2022]
Abstract
Summary A considerable understanding of the fundamental cellular and molecular mechanisms underpinning healthy acute wound healing has been gleaned from studying various animal models, and we are now unravelling the mechanisms that lead to chronic wounds and pathological healing including fibrosis. A small cut will normally heal in days through tight orchestration of cell migration and appropriate levels of inflammation, innervation and angiogenesis. Major surgeries may take several weeks to heal and leave behind a noticeable scar. At the extreme end, chronic wounds – defined as a barrier defect that has not healed in 3 months – have become a major therapeutic challenge throughout the Western world and will only increase as our populations advance in age, and with the increasing incidence of diabetes, obesity and vascular disorders. Here we describe the clinical problems and how, through better dialogue between basic researchers and clinicians, we may extend our current knowledge to enable the development of novel potential therapeutic treatments. What's already known about this topic? What does this study add?
Collapse
Affiliation(s)
- P Martin
- Schools of Biochemistry and Physiology & Pharmacology, University of Bristol, Bristol, U.K.,School of Medicine, University of Cardiff, Cardiff, U.K
| | - R Nunan
- School of Medicine, University of Cardiff, Cardiff, U.K
| |
Collapse
|
57
|
Wyatt TPJ, Harris AR, Lam M, Cheng Q, Bellis J, Dimitracopoulos A, Kabla AJ, Charras GT, Baum B. Emergence of homeostatic epithelial packing and stress dissipation through divisions oriented along the long cell axis. Proc Natl Acad Sci U S A 2015; 112:5726-31. [PMID: 25908119 PMCID: PMC4426437 DOI: 10.1073/pnas.1420585112] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell division plays an important role in animal tissue morphogenesis, which depends, critically, on the orientation of divisions. In isolated adherent cells, the orientation of mitotic spindles is sensitive to interphase cell shape and the direction of extrinsic mechanical forces. In epithelia, the relative importance of these two factors is challenging to assess. To do this, we used suspended monolayers devoid of ECM, where divisions become oriented following a stretch, allowing the regulation and function of epithelial division orientation in stress relaxation to be characterized. Using this system, we found that divisions align better with the long, interphase cell axis than with the monolayer stress axis. Nevertheless, because the application of stretch induces a global realignment of interphase long axes along the direction of extension, this is sufficient to bias the orientation of divisions in the direction of stretch. Each division redistributes the mother cell mass along the axis of division. Thus, the global bias in division orientation enables cells to act collectively to redistribute mass along the axis of stretch, helping to return the monolayer to its resting state. Further, this behavior could be quantitatively reproduced using a model designed to assess the impact of autonomous changes in mitotic cell mechanics within a stretched monolayer. In summary, the propensity of cells to divide along their long axis preserves epithelial homeostasis by facilitating both stress relaxation and isotropic growth without the need for cells to read or transduce mechanical signals.
Collapse
Affiliation(s)
- Tom P J Wyatt
- Center for Mathematics, Physics, and Engineering in the Life Sciences and Experimental Biology, Medical Research Council's Laboratory for Molecular Cell Biology, London Centre for Nanotechnology, University College London, London, WC1H 0AH, United Kingdom
| | - Andrew R Harris
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, United Kingdom; Bioengineering, University of California, Berkeley, CA 94720
| | - Maxine Lam
- Medical Research Council's Laboratory for Molecular Cell Biology
| | - Qian Cheng
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom; and
| | - Julien Bellis
- Medical Research Council's Laboratory for Molecular Cell Biology, Centre de Recherche de Biochimie Macromoléculaire, 34293 Montpellier, France
| | - Andrea Dimitracopoulos
- Center for Mathematics, Physics, and Engineering in the Life Sciences and Experimental Biology, Medical Research Council's Laboratory for Molecular Cell Biology
| | - Alexandre J Kabla
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom; and
| | - Guillaume T Charras
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, United Kingdom; Department of Cell and Developmental Biology, and Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom;
| | - Buzz Baum
- Medical Research Council's Laboratory for Molecular Cell Biology, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
58
|
Xu S, Chisholm AD. C. elegans epidermal wounding induces a mitochondrial ROS burst that promotes wound repair. Dev Cell 2015; 31:48-60. [PMID: 25313960 DOI: 10.1016/j.devcel.2014.08.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 06/10/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide are generated at wound sites and act as long-range signals in wound healing. The roles of other ROS in wound repair are little explored. Here, we reveal a cytoprotective role for mitochondrial ROS (mtROS) in Caenorhabditis elegans skin wound healing. We show that skin wounding causes local production of mtROS superoxide at the wound site. Inhibition of mtROS levels by mitochondrial superoxide-specific antioxidants blocks actin-based wound closure, whereas elevation of mtROS promotes wound closure and enhances survival of mutant animals defective in wound healing. mtROS act downstream of wound-triggered Ca(2+) influx. We find that the mitochondrial calcium uniporter MCU-1 is essential for rapid mitochondrial Ca(2+) uptake and mtROS production after wounding. mtROS can promote wound closure by local inhibition of Rho GTPase activity via a redox-sensitive motif. These findings delineate a pathway acting via mtROS that promotes cytoskeletal responses in wound healing.
Collapse
Affiliation(s)
- Suhong Xu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
59
|
Abstract
The cellular and molecular mechanisms underpinning tissue repair and its failure to heal are still poorly understood, and current therapies are limited. Poor wound healing after trauma, surgery, acute illness, or chronic disease conditions affects millions of people worldwide each year and is the consequence of poorly regulated elements of the healthy tissue repair response, including inflammation, angiogenesis, matrix deposition, and cell recruitment. Failure of one or several of these cellular processes is generally linked to an underlying clinical condition, such as vascular disease, diabetes, or aging, which are all frequently associated with healing pathologies. The search for clinical strategies that might improve the body's natural repair mechanisms will need to be based on a thorough understanding of the basic biology of repair and regeneration. In this review, we highlight emerging concepts in tissue regeneration and repair, and provide some perspectives on how to translate current knowledge into viable clinical approaches for treating patients with wound-healing pathologies.
Collapse
Affiliation(s)
- Sabine A Eming
- Department of Dermatology, University of Cologne, Cologne 50937, Germany. Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany. Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne 50931, Germany.
| | - Paul Martin
- Schools of Biochemistry and Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK. School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
60
|
Biggs LC, Goudy SL, Dunnwald M. Palatogenesis and cutaneous repair: A two-headed coin. Dev Dyn 2014; 244:289-310. [PMID: 25370680 DOI: 10.1002/dvdy.24224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The reparative mechanism that operates following post-natal cutaneous injury is a fundamental survival function that requires a well-orchestrated series of molecular and cellular events. At the end, the body will have closed the hole using processes like cellular proliferation, migration, differentiation and fusion. RESULTS These processes are similar to those occurring during embryogenesis and tissue morphogenesis. Palatogenesis, the formation of the palate from two independent palatal shelves growing towards each other and fusing, intuitively, shares many similarities with the closure of a cutaneous wound from the two migrating epithelial fronts. CONCLUSIONS In this review, we summarize the current information on cutaneous development, wound healing, palatogenesis and orofacial clefting and propose that orofacial clefting and wound healing are conserved processes that share common pathways and gene regulatory networks.
Collapse
Affiliation(s)
- Leah C Biggs
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
61
|
Wells AR, Zou RS, Tulu US, Sokolow AC, Crawford JM, Edwards GS, Kiehart DP. Complete canthi removal reveals that forces from the amnioserosa alone are sufficient to drive dorsal closure in Drosophila. Mol Biol Cell 2014; 25:3552-68. [PMID: 25253724 PMCID: PMC4230616 DOI: 10.1091/mbc.e14-07-1190] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Drosophila's dorsal closure provides an excellent model system with which to analyze biomechanical processes during morphogenesis. During native closure, the amnioserosa, flanked by two lateral epidermal sheets, forms an eye-shaped opening with canthi at each corner. The dynamics of amnioserosa cells and actomyosin purse strings in the leading edges of epidermal cells promote closure, whereas the bulk of the lateral epidermis opposes closure. Canthi maintain purse string curvature (necessary for their dorsalward forces), and zipping at the canthi shortens leading edges, ensuring a continuous epithelium at closure completion. We investigated the requirement for intact canthi during closure with laser dissection approaches. Dissection of one or both canthi resulted in tissue recoil and flattening of each purse string. After recoil and a temporary pause, closure resumed at approximately native rates until slowing near the completion of closure. Thus the amnioserosa alone can drive closure after dissection of one or both canthi, requiring neither substantial purse string curvature nor zipping during the bulk of closure. How the embryo coordinates multiple, large forces (each of which is orders of magnitude greater than the net force) during native closure and is also resilient to multiple perturbations are key extant questions.
Collapse
Affiliation(s)
| | - Roger S Zou
- Department of Biology, Duke University, Durham, NC 27708
| | - U Serdar Tulu
- Department of Biology, Duke University, Durham, NC 27708
| | - Adam C Sokolow
- Department of Physics, Duke University, Durham, NC 27708
| | | | | | | |
Collapse
|
62
|
Richardson RJ, Hammond NL, Coulombe PA, Saloranta C, Nousiainen HO, Salonen R, Berry A, Hanley N, Headon D, Karikoski R, Dixon MJ. Periderm prevents pathological epithelial adhesions during embryogenesis. J Clin Invest 2014; 124:3891-900. [PMID: 25133425 DOI: 10.1172/jci71946] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/03/2014] [Indexed: 12/13/2022] Open
Abstract
Appropriate development of stratified, squamous, keratinizing epithelia, such as the epidermis and oral epithelia, generates an outer protective permeability barrier that prevents water loss, entry of toxins, and microbial invasion. During embryogenesis, the immature ectoderm initially consists of a single layer of undifferentiated, cuboidal epithelial cells that stratifies to produce an outer layer of flattened periderm cells of unknown function. Here, we determined that periderm cells form in a distinct pattern early in embryogenesis, exhibit highly polarized expression of adhesion complexes, and are shed from the outer surface of the embryo late in development. Mice carrying loss-of-function mutations in the genes encoding IFN regulatory factor 6 (IRF6), IκB kinase-α (IKKα), and stratifin (SFN) exhibit abnormal epidermal development, and we determined that mutant animals exhibit dysfunctional periderm formation, resulting in abnormal intracellular adhesions. Furthermore, tissue from a fetus with cocoon syndrome, a lethal disorder that results from a nonsense mutation in IKKA, revealed an absence of periderm. Together, these data indicate that periderm plays a transient but fundamental role during embryogenesis by acting as a protective barrier that prevents pathological adhesion between immature, adhesion-competent epithelia. Furthermore, this study suggests that failure of periderm formation underlies a series of devastating birth defects, including popliteal pterygium syndrome, cocoon syndrome, and Bartsocas-Papas syndrome.
Collapse
|
63
|
Razzell W, Wood W, Martin P. Recapitulation of morphogenetic cell shape changes enables wound re-epithelialisation. J Cell Sci 2014. [DOI: 10.1242/jcs.154773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|