51
|
Liu Y, Li P, Fan L, Wu M. The nuclear transportation routes of membrane-bound transcription factors. Cell Commun Signal 2018; 16:12. [PMID: 29615051 PMCID: PMC5883603 DOI: 10.1186/s12964-018-0224-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Membrane-bound transcription factors (MTFs) are transcription factors (TFs) that are anchored in membranes in a dormant state. Activated by external or internal stimuli, MTFs are released from parent membranes and are transported to the nucleus. Existing research indicates that some plasma membrane (PM)-bound proteins and some endoplasmic reticulum (ER) membrane-bound proteins have the ability to enter the nucleus. Upon specific signal recognition cues, some PM-bound TFs undergo proteolytic cleavage to liberate the intracellular fragments that enter the nucleus to control gene transcription. However, lipid-anchored PM-bound proteins enter the nucleus in their full length for depalmitoylation. In addition, some PM-bound TFs exist as full-length proteins in cell nucleus via trafficking to the Golgi and the ER, where membrane-releasing mechanisms rely on endocytosis. In contrast, the ER membrane-bound TFs relocate to the nucleus directly or by trafficking to the Golgi. In both of these pathways, only the fragments of the ER membrane-bound TFs transit to the nucleus. Several different nuclear trafficking modes of MTFs are summarized in this review, providing an effective supplement to the mechanisms of signal transduction and gene regulation. Moreover, targeting intracellular movement pathways of disease-associated MTFs may significantly improve the survival of patients.
Collapse
Affiliation(s)
- Yang Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Li Fan
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
52
|
Application of Weighted Gene Co-expression Network Analysis for Data from Paired Design. Sci Rep 2018; 8:622. [PMID: 29330528 PMCID: PMC5766625 DOI: 10.1038/s41598-017-18705-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/15/2017] [Indexed: 11/09/2022] Open
Abstract
Investigating how genes jointly affect complex human diseases is important, yet challenging. The network approach (e.g., weighted gene co-expression network analysis (WGCNA)) is a powerful tool. However, genomic data usually contain substantial batch effects, which could mask true genomic signals. Paired design is a powerful tool that can reduce batch effects. However, it is currently unclear how to appropriately apply WGCNA to genomic data from paired design. In this paper, we modified the current WGCNA pipeline to analyse high-throughput genomic data from paired design. We illustrated the modified WGCNA pipeline by analysing the miRNA dataset provided by Shiah et al. (2014), which contains forty oral squamous cell carcinoma (OSCC) specimens and their matched non-tumourous epithelial counterparts. OSCC is the sixth most common cancer worldwide. The modified WGCNA pipeline identified two sets of novel miRNAs associated with OSCC, in addition to the existing miRNAs reported by Shiah et al. (2014). Thus, this work will be of great interest to readers of various scientific disciplines, in particular, genetic and genomic scientists as well as medical scientists working on cancer.
Collapse
|
53
|
Veloso FA. On the developmental self-regulatory dynamics and evolution of individuated multicellular organisms. J Theor Biol 2016; 417:84-99. [PMID: 28048969 DOI: 10.1016/j.jtbi.2016.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 12/20/2022]
Abstract
Changes in gene expression are thought to regulate the cell differentiation process intrinsically through complex epigenetic mechanisms. In fundamental terms, however, this assumed regulation refers only to the intricate propagation of changes in gene expression or else leads to non-explanatory regresses. The developmental self-regulatory dynamics and evolution of individuated multicellular organisms also lack a unified and falsifiable description. To fill this gap, I computationally analyzed publicly available high-throughput data of histone H3 post-translational modifications and mRNA abundance for different Homo sapiens, Mus musculus, and Drosophila melanogaster cell-type/developmental-period samples. My analysis of genomic regions adjacent to transcription start sites generated a profile from pairwise partial correlations between histone modifications controlling for the respective mRNA levels for each cell-type/developmental-period dataset. I found that these profiles, while explicitly uncorrelated with the respective transcriptional "identities" by construction, associate strongly with cell differentiation states. This association is not expected if cell differentiation is, in effect, regulated by epigenetic mechanisms. Based on these results, I propose a general, falsifiable theory of individuated multicellularity, which relies on the synergistic coupling across the extracellular space of two explicitly uncorrelated "self-organizing" systems constraining histone modification states at the same sites. This theory describes how the simplest multicellular individual-understood as an intrinsic, higher-order constraint-emerges from proliferating undifferentiated cells, and could explain the intrinsic regulation of gene transcriptional changes for cell differentiation and the evolution of individuated multicellular organisms.
Collapse
Affiliation(s)
- Felipe A Veloso
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
| |
Collapse
|
54
|
Buffry AD, Mendes CC, McGregor AP. The Functionality and Evolution of Eukaryotic Transcriptional Enhancers. ADVANCES IN GENETICS 2016; 96:143-206. [PMID: 27968730 DOI: 10.1016/bs.adgen.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enhancers regulate precise spatial and temporal patterns of gene expression in eukaryotes and, moreover, evolutionary changes in these modular cis-regulatory elements may represent the predominant genetic basis for phenotypic evolution. Here, we review approaches to identify and functionally analyze enhancers and their transcription factor binding sites, including assay for transposable-accessible chromatin-sequencing (ATAC-Seq) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, respectively. We also explore enhancer functionality, including how transcription factor binding sites combine to regulate transcription, as well as research on shadow and super enhancers, and how enhancers can act over great distances and even in trans. Finally, we discuss recent theoretical and empirical data on how transcription factor binding sites and enhancers evolve. This includes how the function of enhancers is maintained despite the turnover of transcription factor binding sites as well as reviewing studies where mutations in enhancers have been shown to underlie morphological change.
Collapse
Affiliation(s)
- A D Buffry
- Oxford Brookes University, Oxford, United Kingdom
| | - C C Mendes
- Oxford Brookes University, Oxford, United Kingdom
| | - A P McGregor
- Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
55
|
Abstract
Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly's tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism's natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones.
Collapse
|
56
|
Brkljacic J, Grotewold E. Combinatorial control of plant gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:31-40. [PMID: 27427484 DOI: 10.1016/j.bbagrm.2016.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/02/2023]
Abstract
Combinatorial gene regulation provides a mechanism by which relatively small numbers of transcription factors can control the expression of a much larger number of genes with finely tuned temporal and spatial patterns. This is achieved by transcription factors assembling into complexes in a combinatorial fashion, exponentially increasing the number of genes that they can target. Such an arrangement also increases the specificity and affinity for the cis-regulatory sequences required for accurate target gene expression. Superimposed on this transcription factor combinatorial arrangement is the increasing realization that histone modification marks expand the regulatory information, which is interpreted by histone readers and writers that are part of the regulatory apparatus. Here, we review the progress in these areas from the perspective of plant combinatorial gene regulation, providing examples of different regulatory solutions and comparing them to other metazoans. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Jelena Brkljacic
- Center for Applied Plant Sciences (CAPS),The Ohio State University, Columbus, OH 43210, USA
| | - Erich Grotewold
- Center for Applied Plant Sciences (CAPS),The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
57
|
Dresch JM, Zellers RG, Bork DK, Drewell RA. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome. GENE REGULATION AND SYSTEMS BIOLOGY 2016; 10:21-33. [PMID: 27330274 PMCID: PMC4907338 DOI: 10.4137/grsb.s38462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/17/2016] [Accepted: 04/28/2016] [Indexed: 01/14/2023]
Abstract
A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development.
Collapse
Affiliation(s)
- Jacqueline M. Dresch
- Department of Mathematics and Computer Science, Clark University, Worcester, MA, USA
| | - Rowan G. Zellers
- Computer Science Department, Harvey Mudd College, Claremont, CA, USA
- Mathematics Department, Harvey Mudd College, Claremont, CA, USA
| | - Daniel K. Bork
- Computer Science Department, Harvey Mudd College, Claremont, CA, USA
- Mathematics Department, Harvey Mudd College, Claremont, CA, USA
| | | |
Collapse
|
58
|
Hulsey CD, Fraser GJ, Meyer A. Biting into the Genome to Phenome Map: Developmental Genetic Modularity of Cichlid Fish Dentitions. Integr Comp Biol 2016; 56:373-88. [DOI: 10.1093/icb/icw059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
59
|
Abstract
Eric Harris Davidson was a unique and creative intellectual force who grappled with the diversity of developmental processes used by animal embryos and wrestled them into an intelligible set of principles, then spent his life translating these process elements into molecularly definable terms through the architecture of gene regulatory networks. He took speculative risks in his theoretical writing but ran a highly organized, rigorous experimental program that yielded an unprecedentedly full characterization of a developing organism. His writings created logical order and a framework for mechanism from the complex phenomena at the heart of advanced multicellular organism development. This is a reminiscence of intellectual currents in his work as observed by the author through the last 30-35 years of Davidson's life.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
60
|
Aguilar-Hidalgo D, Becerra-Alonso D, García-Morales D, Casares F. Toward a study of gene regulatory constraints to morphological evolution of the Drosophila ocellar region. Dev Genes Evol 2016; 226:221-33. [PMID: 27038024 PMCID: PMC4896973 DOI: 10.1007/s00427-016-0541-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
Abstract
The morphology and function of organs depend on coordinated changes in gene expression during development. These changes are controlled by transcription factors, signaling pathways, and their regulatory interactions, which are represented by gene regulatory networks (GRNs). Therefore, the structure of an organ GRN restricts the morphological and functional variations that the organ can experience—its potential morphospace. Therefore, two important questions arise when studying any GRN: what is the predicted available morphospace and what are the regulatory linkages that contribute the most to control morphological variation within this space. Here, we explore these questions by analyzing a small “three-node” GRN model that captures the Hh-driven regulatory interactions controlling a simple visual structure: the ocellar region of Drosophila. Analysis of the model predicts that random variation of model parameters results in a specific non-random distribution of morphological variants. Study of a limited sample of drosophilids and other dipterans finds a correspondence between the predicted phenotypic range and that found in nature. As an alternative to simulations, we apply Bayesian networks methods in order to identify the set of parameters with the largest contribution to morphological variation. Our results predict the potential morphological space of the ocellar complex and identify likely candidate processes to be responsible for ocellar morphological evolution using Bayesian networks. We further discuss the assumptions that the approach we have taken entails and their validity.
Collapse
Affiliation(s)
- Daniel Aguilar-Hidalgo
- CABD (Andalusian Centre for Developmental Biology), CSIC-UPO-JA, Campus Universidad Pablo de Olavide, 41013, Seville, Spain. .,Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187, Dresden, Germany.
| | | | - Diana García-Morales
- CABD (Andalusian Centre for Developmental Biology), CSIC-UPO-JA, Campus Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Fernando Casares
- CABD (Andalusian Centre for Developmental Biology), CSIC-UPO-JA, Campus Universidad Pablo de Olavide, 41013, Seville, Spain.
| |
Collapse
|
61
|
Shi T, Peng W, Yan J, Cai H, Lan X, Lei C, Bai Y, Chen H. A novel 17 bp indel in the <i>SMAD3</i> gene alters transcription level, contributing to phenotypic traits in Chinese cattle. Arch Anim Breed 2016. [DOI: 10.5194/aab-59-151-2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. SMAD3, the messenger of the transforming growth factor beta (TGF-β) signaling pathway, plays essential roles in myogenesis and osteogenesis and may relate to the regulation of body weight. In this study, a 17 bp indel (NC_007308: g.101893_101909insGAGGATGAGTGCTCCAG) in intron3 of the SMAD3 gene was detected in four Chinese cattle breeds (Qinchuan, Jiaxian, Nanyang and Caoyuan) by using DNA pool sequencing, and its effects on gene expression and growth traits were analyzed in Qinchuan and Caoyuan cattle. The results showed that the indel locus was significantly associated with SMAD3 transcriptional levels where II genotypes had a higher value than DD genotypes in Qinchuan (QC) cattle muscle tissue (P < 0.05). In addition, the locus was strongly associated with chest girth, chest width, rump length, hucklebone width and body weight in 2-year-old QC cattle (P < 0.05) and body weight (12 months), body height (18 months) and chest girth (18 months) in Caoyuan cattle (P < 0.5). To the best of our knowledge, this is the first evidence of the association between SMAD3 indel and cattle phenotype, and it may contribute to understanding the function of the indel, which could be a promising marker for beef cattle breeding.
Collapse
|
62
|
|
63
|
Crocker J, Noon EPB, Stern DL. The Soft Touch: Low-Affinity Transcription Factor Binding Sites in Development and Evolution. Curr Top Dev Biol 2016; 117:455-69. [PMID: 26969995 DOI: 10.1016/bs.ctdb.2015.11.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transcription factor proteins regulate gene expression by binding to specific DNA regions. Most studies of transcription factor binding sites have focused on the highest affinity sites for each factor. There is abundant evidence, however, that binding sites with a range of affinities, including very low affinities, are critical to gene regulation. Here, we present the theoretical and experimental evidence for the importance of low-affinity sites in gene regulation and development. We also discuss the implications of the widespread use of low-affinity sites in eukaryotic genomes for robustness, precision, specificity, and evolution of gene regulation.
Collapse
Affiliation(s)
- Justin Crocker
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Ella Preger-Ben Noon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.
| |
Collapse
|
64
|
Nocedal I, Johnson AD. How Transcription Networks Evolve and Produce Biological Novelty. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 80:265-74. [PMID: 26657905 DOI: 10.1101/sqb.2015.80.027557] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rewiring of gene regulatory networks over evolutionary timescales produces changes in the patterns of gene expression and is a major source of diversity among species. Yet the molecular mechanisms underlying evolutionary rewiring are only beginning to be understood. Here, we discuss recent analyses in ascomycete yeasts that have revealed several general principles of network rewiring. Specifically, we discuss how transcription networks can maintain a functional output despite changes in mechanism, how specific types of constraints alter available evolutionary trajectories, and how regulatory rewiring can ultimately lead to phenotypic novelty. We also argue that the structure and "logic" of extant gene regulatory networks can largely be accounted for by constraints that shape their evolutionary trajectories.
Collapse
Affiliation(s)
- Isabel Nocedal
- Departments of Microbiology and Immunology and of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Alexander D Johnson
- Departments of Microbiology and Immunology and of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| |
Collapse
|
65
|
Kleftogiannis D, Kalnis P, Bajic VB. Progress and challenges in bioinformatics approaches for enhancer identification. Brief Bioinform 2015; 17:967-979. [PMID: 26634919 PMCID: PMC5142011 DOI: 10.1093/bib/bbv101] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/22/2015] [Indexed: 12/20/2022] Open
Abstract
Enhancers are cis-acting DNA elements that play critical roles in distal regulation of gene expression. Identifying enhancers is an important step for understanding distinct gene expression programs that may reflect normal and pathogenic cellular conditions. Experimental identification of enhancers is constrained by the set of conditions used in the experiment. This requires multiple experiments to identify enhancers, as they can be active under specific cellular conditions but not in different cell types/tissues or cellular states. This has opened prospects for computational prediction methods that can be used for high-throughput identification of putative enhancers to complement experimental approaches. Potential functions and properties of predicted enhancers have been catalogued and summarized in several enhancer-oriented databases. Because the current methods for the computational prediction of enhancers produce significantly different enhancer predictions, it will be beneficial for the research community to have an overview of the strategies and solutions developed in this field. In this review, we focus on the identification and analysis of enhancers by bioinformatics approaches. First, we describe a general framework for computational identification of enhancers, present relevant data types and discuss possible computational solutions. Next, we cover over 30 existing computational enhancer identification methods that were developed since 2000. Our review highlights advantages, limitations and potentials, while suggesting pragmatic guidelines for development of more efficient computational enhancer prediction methods. Finally, we discuss challenges and open problems of this topic, which require further consideration.
Collapse
|
66
|
Stampfel G, Kazmar T, Frank O, Wienerroither S, Reiter F, Stark A. Transcriptional regulators form diverse groups with context-dependent regulatory functions. Nature 2015; 528:147-51. [PMID: 26550828 DOI: 10.1038/nature15545] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 09/02/2015] [Indexed: 12/25/2022]
Abstract
One of the most important questions in biology is how transcription factors (TFs) and cofactors control enhancer function and thus gene expression. Enhancer activation usually requires combinations of several TFs, indicating that TFs function synergistically and combinatorially. However, while TF binding has been extensively studied, little is known about how combinations of TFs and cofactors control enhancer function once they are bound. It is typically unclear which TFs participate in combinatorial enhancer activation, whether different TFs form functionally distinct groups, or if certain TFs might substitute for each other in defined enhancer contexts. Here we assess the potential regulatory contributions of TFs and cofactors to combinatorial enhancer control with enhancer complementation assays. We recruited GAL4-DNA-binding-domain fusions of 812 Drosophila TFs and cofactors to 24 enhancer contexts and measured enhancer activities by 82,752 luciferase assays in S2 cells. Most factors were functional in at least one context, yet their contributions differed between contexts and varied from repression to activation (up to 289-fold) for individual factors. Based on functional similarities across contexts, we define 15 groups of TFs that differ in developmental functions and protein sequence features. Similar TFs can substitute for each other, enabling enhancer re-engineering by exchanging TF motifs, and TF-cofactor pairs cooperate during enhancer control and interact physically. Overall, we show that activators and repressors can have diverse regulatory functions that typically depend on the enhancer context. The systematic functional characterization of TFs and cofactors should further our understanding of combinatorial enhancer control and gene regulation.
Collapse
Affiliation(s)
- Gerald Stampfel
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Tomáš Kazmar
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Olga Frank
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Sebastian Wienerroither
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Franziska Reiter
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| |
Collapse
|
67
|
Sauria ME, Phillips-Cremins JE, Corces VG, Taylor J. HiFive: a tool suite for easy and efficient HiC and 5C data analysis. Genome Biol 2015; 16:237. [PMID: 26498826 PMCID: PMC5410870 DOI: 10.1186/s13059-015-0806-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/14/2015] [Indexed: 01/18/2023] Open
Abstract
The chromatin interaction assays 5C and HiC have advanced our understanding of genomic spatial organization, but analysis approaches for these data are limited by usability and flexibility. The HiFive tool suite provides efficient data handling and a variety of normalization approaches for easy, fast analysis and method comparison. Integration of MPI-based parallelization allows scalability and rapid processing time. In addition to single-command analysis of an entire experiment from mapped reads to interaction values, HiFive has been integrated into the open-source, web-based platform Galaxy to connect users with computational resources and a graphical interface. HiFive is open-source software available from http://taylorlab.org/software/hifive/.
Collapse
Affiliation(s)
- Michael Eg Sauria
- Departments of Biology and Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | - Victor G Corces
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - James Taylor
- Departments of Biology and Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
68
|
Clifford J, Adami C. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively. Phys Biol 2015; 12:056004. [PMID: 26331781 DOI: 10.1088/1478-3975/12/5/056004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.
Collapse
Affiliation(s)
- Jacob Clifford
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA. BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
69
|
Sayasith K, Sirois J. Molecular characterization of a disintegrin and metalloprotease-17 (ADAM17) in granulosa cells of bovine preovulatory follicles. Mol Cell Endocrinol 2015; 411:49-57. [PMID: 25917455 DOI: 10.1016/j.mce.2015.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 11/29/2022]
Abstract
A disintegrin and metalloprotease-17 (ADAM17) is thought to play a key role in the release of soluble and active epiregulin (EREG) and amphiregulin (AREG) in ovarian follicles but its transcriptional regulation in follicular cells remains largely unknown. The objectives of this study were to characterize the regulation of ADAM17 transcripts in bovine follicles prior to ovulation and to investigate its transcriptional control in bovine granulosa cells. To study the regulation of ADAM17 transcripts, RT-PCR analyses were performed using total RNA extracted from bovine follicles collected between 0 h and 24 h post-hCG. Results showed that levels of ADAM17 mRNA were low prior to hCG (0 h), markedly and transiently increased 6-12 h post-hCG (P <0.05), and returned to low baseline levels at 24 h post-hCG in granulosa and theca interna cells of preovulatory follicles. To determine the transcriptional control of ADAM17 expression, primary cultures of bovine granulosa cells were used. Forskolin (FSK) stimulation induced a pattern of ADAM17 mRNA up-regulation in vitro similar to that observed by hCG in vivo. 5'-Deletion mutagenesis studies identified a minimal region of the bovine ADAM17 promoter containing basal and FSK-inducible activities, which were dependent on the presence of a consensus AP1 cis-element. Electrophoretic mobility shift assays revealed an interaction between AP1 and the trans-acting factor Fra2. Chromatin immunoprecipitation assays confirmed an endogenous interaction between Fra2 and the ADAM17 promoter in granulosa cell cultures. FSK-inducible ADAM17 promoter activity and mRNA expression were suppressed by PKA and ERK1/2 inhibitors but not by a p38MAPK inhibitor, pointing to the importance of PKA and ERK1/2 signaling pathways in the up-regulation of bovine ADAM17 mRNA. Collectively, these findings describe the gonadotropin/FSK-dependent up-regulation of ADAM17 transcripts in bovine preovulatory follicles and unravel for the first time some of the molecular mechanisms involved in ADAM17 gene expression in granulosa cells of a monoovulatory species.
Collapse
Affiliation(s)
- Khampoun Sayasith
- Centre de Recherche en Reproduction Animale, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 7C6, Canada.
| | - Jean Sirois
- Centre de Recherche en Reproduction Animale, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 7C6, Canada
| |
Collapse
|
70
|
Guo WC, Liu XP, Fu KY, Shi JF, Lü FG, Li GQ. Functions of nuclear receptor HR3 during larval-pupal molting in Leptinotarsa decemlineata (Say) revealed by in vivo RNA interference. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:23-33. [PMID: 26005119 DOI: 10.1016/j.ibmb.2015.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/12/2015] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
Our previous results revealed that RNA interference-aided knockdown of Leptinotarsa decemlineata FTZ-F1 (LdFTZ-F1) reduced 20E titer, and impaired pupation. In this study, we characterized a putative LdHR3 gene, an early-late 20E-response gene upstream of LdFTZ-F1. Within the first, second and third larval instars, three expression peaks of LdHR3 occurred just before the molt. In the fourth (final) larval instar 80 h after ecdysis and prepupal stage 3 days after burying into soil, two LdHR3 peaks occurred. The LdHR3 expression peaks coincide with the peaks of circulating 20E level. In vitro midgut culture and in vivo bioassay revealed that 20E and an ecdysteroid agonist halofenozide (Hal) enhanced LdHR3 expression in the final larval instars. Conversely, a decrease in 20E by feeding a double-stranded RNA (dsRNA) against an ecdysteroidogenesis gene Ldshd repressed the expression. Moreover, Hal rescued the transcript levels in the Ldshd-silenced larvae. Thus, 20E peaks activate the expression of LdHR3. Furthermore, ingesting dsRNA against LdHR3 successfully knocked down the target gene, and impaired pupation. Finally, knockdown of LdHR3 upregulated the transcription of three ecdysteroidogenesis genes (Ldphm, Lddib and Ldshd), increased 20E titer, and activated the expression of two 20E-response genes (LdEcR and LdFTZ-F1). Thus, LdHR3 functions in regulation of pupation in the Colorado potato beetle.
Collapse
Affiliation(s)
- Wen-Chao Guo
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Xin-Ping Liu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kai-Yun Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ji-Feng Shi
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng-Gong Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
71
|
STARR-seq - principles and applications. Genomics 2015; 106:145-150. [PMID: 26072434 DOI: 10.1016/j.ygeno.2015.06.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/19/2015] [Accepted: 06/08/2015] [Indexed: 12/21/2022]
Abstract
Differential gene expression is the basis for cell type diversity in multicellular organisms and the driving force of development and differentiation. It is achieved by cell type-specific transcriptional enhancers, which are genomic DNA sequences that activate the transcription of their target genes. Their identification and characterization is fundamental to our understanding of gene regulation. Features that are associated with enhancer activity, such as regulatory factor binding or histone modifications can predict the location of enhancers. Nonetheless, enhancer activity can only be assessed by transcriptional reporter assays. Over the past years massively parallel reporter assays have been developed for large scale testing of enhancers. In this review we focus on the principles and applications of STARR-seq, a functional assay that quantifies enhancer strengths in complex candidate libraries and thus allows activity-based enhancer identification in entire genomes. We explain how STARR-seq works, discuss current uses and give an outlook to future applications.
Collapse
|
72
|
Systematic discovery of cofactor motifs from ChIP-seq data by SIOMICS. Methods 2015; 79-80:47-51. [DOI: 10.1016/j.ymeth.2014.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/19/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
|
73
|
Gordon KL, Arthur RK, Ruvinsky I. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence. PLoS Genet 2015; 11:e1005268. [PMID: 26020930 PMCID: PMC4447282 DOI: 10.1371/journal.pgen.1005268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 05/09/2015] [Indexed: 11/28/2022] Open
Abstract
Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. To explore the phylogenetic limits of conservation of cis-regulatory elements, we used transgenesis to test the functions of enhancers of four genes from several species spanning the phylum Nematoda. While we found a striking degree of functional conservation among the examined cis elements, their DNA sequences lacked apparent conservation with the C. elegans orthologs. In fact, sequence similarity between C. elegans and the distantly related nematodes was no greater than would be expected by chance. Short motifs, similar to known regulatory sequences in C. elegans, can be detected in most of the cis elements. When tested, some of these sites appear to mediate regulatory function. However, they seem to have originated through motif turnover, rather than to have been preserved from a common ancestor. Our results suggest that gene regulatory networks are broadly conserved in the phylum Nematoda, but this conservation persists despite substantial reorganization of regulatory elements and could not be detected using naïve comparisons of sequence similarity.
Collapse
Affiliation(s)
- Kacy L. Gordon
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (KLG); (IR)
| | - Robert K. Arthur
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya Ruvinsky
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (KLG); (IR)
| |
Collapse
|
74
|
|
75
|
|
76
|
Liu L, Jin G, Zhou X. Modeling the relationship of epigenetic modifications to transcription factor binding. Nucleic Acids Res 2015; 43:3873-85. [PMID: 25820421 PMCID: PMC4417166 DOI: 10.1093/nar/gkv255] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/19/2022] Open
Abstract
Transcription factors (TFs) and epigenetic modifications play crucial roles in the regulation of gene expression, and correlations between the two types of factors have been discovered. However, methods for quantitatively studying the correlations remain limited. Here, we present a computational approach to systematically investigating how epigenetic changes in chromatin architectures or DNA sequences relate to TF binding. We implemented statistical analyses to illustrate that epigenetic modifications are predictive of TF binding affinities, without the need of sequence information. Intriguingly, by considering genome locations relative to transcription start sites (TSSs) or enhancer midpoints, our analyses show that different locations display various relationship patterns. For instance, H3K4me3, H3k9ac and H3k27ac contribute more in the regions near TSSs, whereas H3K4me1 and H3k79me2 dominate in the regions far from TSSs. DNA methylation plays relatively important roles when close to TSSs than in other regions. In addition, the results show that epigenetic modification models for the predictions of TF binding affinities are cell line-specific. Taken together, our study elucidates highly coordinated, but location- and cell type-specific relationships between epigenetic modifications and binding affinities of TFs.
Collapse
Affiliation(s)
- Liang Liu
- Center for Bioinformatics and Systems Biology, Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Guangxu Jin
- Center for Bioinformatics and Systems Biology, Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Xiaobo Zhou
- Center for Bioinformatics and Systems Biology, Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
77
|
Suryamohan K, Halfon MS. Identifying transcriptional cis-regulatory modules in animal genomes. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:59-84. [PMID: 25704908 PMCID: PMC4339228 DOI: 10.1002/wdev.168] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/04/2014] [Accepted: 11/16/2014] [Indexed: 11/08/2022]
Abstract
UNLABELLED Gene expression is regulated through the activity of transcription factors (TFs) and chromatin-modifying proteins acting on specific DNA sequences, referred to as cis-regulatory elements. These include promoters, located at the transcription initiation sites of genes, and a variety of distal cis-regulatory modules (CRMs), the most common of which are transcriptional enhancers. Because regulated gene expression is fundamental to cell differentiation and acquisition of new cell fates, identifying, characterizing, and understanding the mechanisms of action of CRMs is critical for understanding development. CRM discovery has historically been challenging, as CRMs can be located far from the genes they regulate, have few readily identifiable sequence characteristics, and for many years were not amenable to high-throughput discovery methods. However, the recent availability of complete genome sequences and the development of next-generation sequencing methods have led to an explosion of both computational and empirical methods for CRM discovery in model and nonmodel organisms alike. Experimentally, CRMs can be identified through chromatin immunoprecipitation directed against TFs or histone post-translational modifications, identification of nucleosome-depleted 'open' chromatin regions, or sequencing-based high-throughput functional screening. Computational methods include comparative genomics, clustering of known or predicted TF-binding sites, and supervised machine-learning approaches trained on known CRMs. All of these methods have proven effective for CRM discovery, but each has its own considerations and limitations, and each is subject to a greater or lesser number of false-positive identifications. Experimental confirmation of predictions is essential, although shortcomings in current methods suggest that additional means of validation need to be developed. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Kushal Suryamohan
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Marc S. Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
- Molecular and Cellular Biology Department and Program in Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
78
|
Zheng Y, Li X, Hu H. PreDREM: a database of predicted DNA regulatory motifs from 349 human cell and tissue samples. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav007. [PMID: 25725063 PMCID: PMC4343075 DOI: 10.1093/database/bav007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PreDREM is a database of DNA regulatory motifs and motifs modules predicted from DNase I hypersensitive sites in 349 human cell and tissue samples. It contains 845–1325 predicted motifs in each sample, which result in a total of 2684 non-redundant motifs. In comparison with seven large collections of known motifs, more than 84% of the 2684 predicted motifs are similar to the known motifs, and 54–76% of the known motifs are similar to the predicted motifs. PreDREM also stores 43 663–20 13 288 motif modules in each sample, which provide the cofactor motifs of each predicted motif. Compared with motifs of known interacting transcription factor (TF) pairs in eight resources, on average, 84% of motif pairs corresponding to known interacting TF pairs are included in the predicted motif modules. Through its web interface, PreDREM allows users to browse motif information by tissues, datasets, individual non-redundant motifs, etc. Users can also search motifs, motif modules, instances of motifs and motif modules in given genomic regions, tissue or cell types a motif occurs, etc. PreDREM thus provides a useful resource for the understanding of cell- and tissue-specific gene regulation in the human genome. Database URL:http://server.cs.ucf.edu/predrem/.
Collapse
Affiliation(s)
- Yiyu Zheng
- Department of Electrical Engineering and Computer Science and Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Xiaoman Li
- Department of Electrical Engineering and Computer Science and Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Haiyan Hu
- Department of Electrical Engineering and Computer Science and Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
79
|
Braun E. The unforeseen challenge: from genotype-to-phenotype in cell populations. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:036602. [PMID: 25719211 DOI: 10.1088/0034-4885/78/3/036602] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biological cells present a paradox, in that they show simultaneous stability and flexibility, allowing them to adapt to new environments and to evolve over time. The emergence of stable cell states depends on genotype-to-phenotype associations, which essentially reflect the organization of gene regulatory modes. The view taken here is that cell-state organization is a dynamical process in which the molecular disorder manifests itself in a macroscopic order. The genome does not determine the ordered cell state; rather, it participates in this process by providing a set of constraints on the spectrum of regulatory modes, analogous to boundary conditions in physical dynamical systems. We have developed an experimental framework, in which cell populations are exposed to unforeseen challenges; novel perturbations they had not encountered before along their evolutionary history. This approach allows an unbiased view of cell dynamics, uncovering the potential of cells to evolve and develop adapted stable states. In the last decade, our experiments have revealed a coherent set of observations within this framework, painting a picture of the living cell that in many ways is not aligned with the conventional one. Of particular importance here, is our finding that adaptation of cell-state organization is essentially an efficient exploratory dynamical process rather than one founded on random mutations. Based on our framework, a set of concepts underlying cell-state organization-exploration evolving by global, non-specific, dynamics of gene activity-is presented here. These concepts have significant consequences for our understanding of the emergence and stabilization of a cell phenotype in diverse biological contexts. Their implications are discussed for three major areas of biological inquiry: evolution, cell differentiation and cancer. There is currently no unified theoretical framework encompassing the emergence of order, a stable state, in the living cell. Hopefully, the integrated picture described here will provide a modest contribution towards a physics theory of the cell.
Collapse
Affiliation(s)
- Erez Braun
- Department of Physics and Network Biology Research Laboratories, Technion, Haifa 32000, Israel
| |
Collapse
|
80
|
Synergistic regulatory networks mediated by microRNAs and transcription factors under drought, heat and salt stresses in Oryza Sativa spp. Gene 2015; 555:127-39. [DOI: 10.1016/j.gene.2014.10.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/12/2014] [Accepted: 10/26/2014] [Indexed: 01/16/2023]
|
81
|
Zheng Y, Li X, Hu H. Comprehensive discovery of DNA motifs in 349 human cells and tissues reveals new features of motifs. Nucleic Acids Res 2015; 43:74-83. [PMID: 25505144 PMCID: PMC4288161 DOI: 10.1093/nar/gku1261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 01/15/2023] Open
Abstract
Comprehensive motif discovery under experimental conditions is critical for the global understanding of gene regulation. To generate a nearly complete list of human DNA motifs under given conditions, we employed a novel approach to de novo discover significant co-occurring DNA motifs in 349 human DNase I hypersensitive site datasets. We predicted 845 to 1325 motifs in each dataset, for a total of 2684 non-redundant motifs. These 2684 motifs contained 54.02 to 75.95% of the known motifs in seven large collections including TRANSFAC. In each dataset, we also discovered 43 663 to 2 013 288 motif modules, groups of motifs with their binding sites co-occurring in a significant number of short DNA regions. Compared with known interacting transcription factors in eight resources, the predicted motif modules on average included 84.23% of known interacting motifs. We further showed new features of the predicted motifs, such as motifs enriched in proximal regions rarely overlapped with motifs enriched in distal regions, motifs enriched in 5' distal regions were often enriched in 3' distal regions, etc. Finally, we observed that the 2684 predicted motifs classified the cell or tissue types of the datasets with an accuracy of 81.29%. The resources generated in this study are available at http://server.cs.ucf.edu/predrem/.
Collapse
Affiliation(s)
- Yiyu Zheng
- Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Xiaoman Li
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Haiyan Hu
- Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
82
|
Crocker J, Abe N, Rinaldi L, McGregor AP, Frankel N, Wang S, Alsawadi A, Valenti P, Plaza S, Payre F, Mann RS, Stern DL. Low affinity binding site clusters confer hox specificity and regulatory robustness. Cell 2014; 160:191-203. [PMID: 25557079 DOI: 10.1016/j.cell.2014.11.041] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/11/2014] [Accepted: 11/13/2014] [Indexed: 11/26/2022]
Abstract
In animals, Hox transcription factors define regional identity in distinct anatomical domains. How Hox genes encode this specificity is a paradox, because different Hox proteins bind with high affinity in vitro to similar DNA sequences. Here, we demonstrate that the Hox protein Ultrabithorax (Ubx) in complex with its cofactor Extradenticle (Exd) bound specifically to clusters of very low affinity sites in enhancers of the shavenbaby gene of Drosophila. These low affinity sites conferred specificity for Ubx binding in vivo, but multiple clustered sites were required for robust expression when embryos developed in variable environments. Although most individual Ubx binding sites are not evolutionarily conserved, the overall enhancer architecture-clusters of low affinity binding sites-is maintained and required for enhancer function. Natural selection therefore works at the level of the enhancer, requiring a particular density of low affinity Ubx sites to confer both specific and robust expression.
Collapse
Affiliation(s)
- Justin Crocker
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Namiko Abe
- Columbia University Medical Center, 701 West 168(th) Street, HHSC 1104, New York, NY 10032, USA
| | - Lucrezia Rinaldi
- Columbia University Medical Center, 701 West 168(th) Street, HHSC 1104, New York, NY 10032, USA
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Nicolás Frankel
- Departamento de Ecología, Genética y Evolución, IEGEBA-CONICET, Facultad, de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad, Universitaria, Pabellón 2, 1428 Buenos Aires, Argentina
| | - Shu Wang
- New Jersey Neuroscience Institute, 65 James Street, Edison, NJ 08820, USA
| | - Ahmad Alsawadi
- Centre de Biologie du Développement, Université de Toulouse, UPS, 31062 Cedex 9, France; CNRS, UMR5547, Centre de Biologie du Développement, Toulouse, 31062 Cedex 9, France
| | - Philippe Valenti
- Centre de Biologie du Développement, Université de Toulouse, UPS, 31062 Cedex 9, France; CNRS, UMR5547, Centre de Biologie du Développement, Toulouse, 31062 Cedex 9, France
| | - Serge Plaza
- Centre de Biologie du Développement, Université de Toulouse, UPS, 31062 Cedex 9, France; CNRS, UMR5547, Centre de Biologie du Développement, Toulouse, 31062 Cedex 9, France
| | - François Payre
- Centre de Biologie du Développement, Université de Toulouse, UPS, 31062 Cedex 9, France; CNRS, UMR5547, Centre de Biologie du Développement, Toulouse, 31062 Cedex 9, France
| | - Richard S Mann
- Columbia University Medical Center, 701 West 168(th) Street, HHSC 1104, New York, NY 10032, USA.
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
83
|
Ravel C, Fiquet S, Boudet J, Dardevet M, Vincent J, Merlino M, Michard R, Martre P. Conserved cis-regulatory modules in promoters of genes encoding wheat high-molecular-weight glutenin subunits. FRONTIERS IN PLANT SCIENCE 2014; 5:621. [PMID: 25429295 PMCID: PMC4228979 DOI: 10.3389/fpls.2014.00621] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/21/2014] [Indexed: 05/19/2023]
Abstract
The concentration and composition of the gliadin and glutenin seed storage proteins (SSPs) in wheat flour are the most important determinants of its end-use value. In cereals, the synthesis of SSPs is predominantly regulated at the transcriptional level by a complex network involving at least five cis-elements in gene promoters. The high-molecular-weight glutenin subunits (HMW-GS) are encoded by two tightly linked genes located on the long arms of group 1 chromosomes. Here, we sequenced and annotated the HMW-GS gene promoters of 22 electrophoretic wheat alleles to identify putative cis-regulatory motifs. We focused on 24 motifs known to be involved in SSP gene regulation. Most of them were identified in at least one HMW-GS gene promoter sequence. A common regulatory framework was observed in all the HMW-GS gene promoters, as they shared conserved cis-regulatory modules (CCRMs) including all the five motifs known to regulate the transcription of SSP genes. This common regulatory framework comprises a composite box made of the GATA motifs and GCN4-like Motifs (GLMs) and was shown to be functional as the GLMs are able to bind a bZIP transcriptional factor SPA (Storage Protein Activator). In addition to this regulatory framework, each HMW-GS gene promoter had additional motifs organized differently. The promoters of most highly expressed x-type HMW-GS genes contain an additional box predicted to bind R2R3-MYB transcriptional factors. However, the differences in annotation between promoter alleles could not be related to their level of expression. In summary, we identified a common modular organization of HMW-GS gene promoters but the lack of correlation between the cis-motifs of each HMW-GS gene promoter and their level of expression suggests that other cis-elements or other mechanisms regulate HMW-GS gene expression.
Collapse
Affiliation(s)
- Catherine Ravel
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Samuel Fiquet
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Julie Boudet
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Mireille Dardevet
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Jonathan Vincent
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Marielle Merlino
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Robin Michard
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Pierre Martre
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| |
Collapse
|
84
|
Sayasith K, Sirois J, Lussier JG. Expression and regulation of regulator of G-protein signaling protein-2 (RGS2) in equine and bovine follicles prior to ovulation: molecular characterization of RGS2 transactivation in bovine granulosa cells. Biol Reprod 2014; 91:139. [PMID: 25339105 DOI: 10.1095/biolreprod.114.121186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The luteinizing hormone preovulatory surge stimulates several signal pathways essential for ovulation, and the regulator of G-protein signaling protein-2 (RGS2) is thought to be involved in this process. The objectives of this study were to characterize the regulation of RGS2 transcripts in equine and bovine follicles prior to ovulation and to determine its transcriptional control in bovine granulosa cells. To assess the regulation of equine RGS2 prior to ovulation, RT-PCR was performed using total RNA extracted from equine follicles collected at various times after human chorionic gonadotropin (hCG) injection. Results showed that RGS2 mRNA levels were very low at 0 h but markedly increased 12-39 h post-hCG (P < 0.05). In the bovine species, results revealed that RGS2 mRNA levels were low in small and dominant follicles and in ovulatory follicles obtained at 0 h, but markedly increased in ovulatory follicles 6-24 h post-hCG (P < 0.05). To study the molecular control of RGS2 expression, primary cultures of bovine granulosa cells were used. Stimulation with forskolin induced an up-regulation of RGS2 mRNA in vitro. Studies using 5'-deletion mutants identified a minimal region containing full-length basal and forskolin-inducible RGS2 promoter activities. Site-directed mutagenesis indicated that these activities were dependent on CRE and ETS1 cis-elements. Electrophoretic mobility shift assays confirmed the involvement of these elements and revealed their interactions with CREB1 and ETS1 proteins. Chromatin immunoprecipitation assays confirmed endogenous interactions of these proteins with the RGS2 promoter in granulosa cells. Forskolin-inducible RGS2 promoter activity and mRNA expression were markedly decreased by PKA and ERK1/2 inhibitors, and treatment with an antagonist of PGR (RU486) and inhibitors of PTGS2 (NS398) and EGFR (PD153035) blocked the forskolin-dependent RGS2 transcript expression, suggesting the importance of RGS2 in ovulation. Collectively, this study reports for the first time the gonadotropin-dependent up-regulation of RGS2 in equine and bovine preovulatory follicles and presents some of the regulatory controls involved in RGS2 gene expression in granulosa cells.
Collapse
Affiliation(s)
- Khampoun Sayasith
- Centre de recherche en reproduction animale and the Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jean Sirois
- Centre de recherche en reproduction animale and the Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jacques G Lussier
- Centre de recherche en reproduction animale and the Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
85
|
Navarro C, Lopez FJ, Cano C, Garcia-Alcalde F, Blanco A. CisMiner: genome-wide in-silico cis-regulatory module prediction by fuzzy itemset mining. PLoS One 2014; 9:e108065. [PMID: 25268582 PMCID: PMC4182448 DOI: 10.1371/journal.pone.0108065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/25/2014] [Indexed: 01/18/2023] Open
Abstract
Eukaryotic gene control regions are known to be spread throughout non-coding DNA sequences which may appear distant from the gene promoter. Transcription factors are proteins that coordinately bind to these regions at transcription factor binding sites to regulate gene expression. Several tools allow to detect significant co-occurrences of closely located binding sites (cis-regulatory modules, CRMs). However, these tools present at least one of the following limitations: 1) scope limited to promoter or conserved regions of the genome; 2) do not allow to identify combinations involving more than two motifs; 3) require prior information about target motifs. In this work we present CisMiner, a novel methodology to detect putative CRMs by means of a fuzzy itemset mining approach able to operate at genome-wide scale. CisMiner allows to perform a blind search of CRMs without any prior information about target CRMs nor limitation in the number of motifs. CisMiner tackles the combinatorial complexity of genome-wide cis-regulatory module extraction using a natural representation of motif combinations as itemsets and applying the Top-Down Fuzzy Frequent- Pattern Tree algorithm to identify significant itemsets. Fuzzy technology allows CisMiner to better handle the imprecision and noise inherent to regulatory processes. Results obtained for a set of well-known binding sites in the S. cerevisiae genome show that our method yields highly reliable predictions. Furthermore, CisMiner was also applied to putative in-silico predicted transcription factor binding sites to identify significant combinations in S. cerevisiae and D. melanogaster, proving that our approach can be further applied genome-wide to more complex genomes. CisMiner is freely accesible at: http://genome2.ugr.es/cisminer. CisMiner can be queried for the results presented in this work and can also perform a customized cis-regulatory module prediction on a query set of transcription factor binding sites provided by the user.
Collapse
Affiliation(s)
- Carmen Navarro
- Department of Computer Science and AI, University of Granada, Granada, Spain
| | - Francisco J. Lopez
- Andalusian Human Genome Sequencing Centre (CASEGH), Medical Genome Project (MGP), Sevilla, Spain
| | - Carlos Cano
- Department of Computer Science and AI, University of Granada, Granada, Spain
| | | | - Armando Blanco
- Department of Computer Science and AI, University of Granada, Granada, Spain
| |
Collapse
|
86
|
Stolfi A, Lowe EK, Racioppi C, Ristoratore F, Brown CT, Swalla BJ, Christiaen L. Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians. eLife 2014; 3:e03728. [PMID: 25209999 PMCID: PMC4356046 DOI: 10.7554/elife.03728] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/05/2014] [Indexed: 12/13/2022] Open
Abstract
Ascidians present a striking dichotomy between conserved phenotypes and divergent genomes: embryonic cell lineages and gene expression patterns are conserved between distantly related species. Much research has focused on Ciona or Halocynthia spp. but development in other ascidians remains poorly characterized. In this study, we surveyed the multipotent myogenic B7.5 lineage in Molgula spp. Comparisons to the homologous lineage in Ciona revealed identical cell division and fate specification events that result in segregation of larval, cardiac, and pharyngeal muscle progenitors. Moreover, the expression patterns of key regulators are conserved, but cross-species transgenic assays uncovered incompatibility, or ‘unintelligibility’, of orthologous cis-regulatory sequences between Molgula and Ciona. These sequences drive identical expression patterns that are not recapitulated in cross-species assays. We show that this unintelligibility is likely due to changes in both cis- and trans-acting elements, hinting at widespread and frequent turnover of regulatory mechanisms underlying otherwise conserved aspects of ascidian embryogenesis. DOI:http://dx.doi.org/10.7554/eLife.03728.001 When two species have features that look similar, this may be because the features arise by the same processes during development. Other features may look similar yet develop by different mechanisms. ‘Developmental system drift’ refers to the process where a physical feature remains unaltered during evolution, but the underlying pathway that controls its development is changed. However, to date, there have been only a few experimental studies that support this idea. Ascidians—also commonly known as sea squirts—are vase-like marine creatures, which start off as tadpole-like larvae that swim around until they find a place to settle down and attach themselves. Once attached, the sea squirts lose the ability to swim and start feeding, typically by filtering material out of the seawater. Sea squirts and their close relatives are the invertebrates (animals without backbones) that are most closely related to all vertebrates (animals with backbones), including humans. Furthermore, although different species of sea squirt have almost identical embryos, their genomes are very different. Stolfi et al. have now studied whether developmental system drift may have occurred during the evolution of ascidians, by analyzing different species of sea squirt named Molgula and Ciona. Stolfi et al. compared the genomes of Molgula and Ciona and studied the expression of genes in the cells that give rise to the heart and the muscles of the head. As an embryo develops, specific genes are switched on or off, and these patterns of gene activation were broadly identical in the two species of sea squirt examined. Enhancers are sequences of DNA that control when and how a gene is switched on. Given the similarities between the development of heart and head muscle cells in the different sea squirts, Stolfi et al. looked to see if the mechanisms of gene expression, and therefore the enhancers, were also conserved. Unexpectedly, this was not the case. When enhancers from Molgula were introduced into Ciona (and vice versa), these sequences were unable to switch on gene expression—thus enhancers from one sea squirt species could not function in the other. Stolfi et al. conclude that the developmental systems may have drifted considerably during evolution of the sea squirts, in spite of their nearly identical embryos. This reinforces the view that different paths can lead to the formation of similar physical features. DOI:http://dx.doi.org/10.7554/eLife.03728.002
Collapse
Affiliation(s)
- Alberto Stolfi
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Elijah K Lowe
- Department of Computer Science and Engineering, Michigan State University, East Lansing, United States
| | - Claudia Racioppi
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Filomena Ristoratore
- Cellular and Developmental Biology Laboratory, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - C Titus Brown
- Department of Computer Science and Engineering, Michigan State University, East Lansing, United States
| | - Billie J Swalla
- Department of Biology, University of Washington, Seattle, United States
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| |
Collapse
|
87
|
Drewell RA, Nevarez MJ, Kurata JS, Winkler LN, Li L, Dresch JM. Deciphering the combinatorial architecture of a Drosophila homeotic gene enhancer. Mech Dev 2014; 131:68-77. [PMID: 24514265 DOI: 10.1016/j.mod.2013.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 01/20/2023]
Abstract
In Drosophila, the 330 kb bithorax complex regulates cellular differentiation along the anterior–posterior axis during development in the thorax and abdomen and is comprised of three homeotic genes: Ultrabithorax, abdominal-A, and Abdominal-B. The expression of each of these genes is in turn controlled through interactions between transcription factors and a number of cis-regulatory modules in the neighboring intergenic regions. In this study, we examine how the sequence architecture of transcription factor binding sites mediates the functional activity of one of these cis-regulatory modules. Using computational, mathematical modeling and experimental molecular genetic approaches we investigate the IAB7b enhancer, which regulates Abdominal-B expression specifically in the presumptive seventh and ninth abdominal segments of the early embryo. A cross-species comparison of the IAB7b enhancer reveals an evolutionarily conserved signature motif containing two FUSHI-TARAZU activator transcription factor binding sites. We find that the transcriptional repressors KNIRPS, KRUPPEL and GIANT are able to restrict reporter gene expression to the posterior abdominal segments, using different molecular mechanisms including short-range repression and competitive binding. Additionally, we show the functional importance of the spacing between the two FUSHI-TARAZU binding sites and discuss the potential importance of cooperativity for transcriptional activation. Our results demonstrate that the transcriptional output of the IAB7b cis-regulatory module relies on a complex set of combinatorial inputs mediated by specific transcription factor binding and that the sequence architecture at this enhancer is critical to maintain robust regulatory function.
Collapse
|
88
|
A gene regulatory network controls the binary fate decision of rod and bipolar cells in the vertebrate retina. Dev Cell 2014; 30:513-27. [PMID: 25155555 PMCID: PMC4304698 DOI: 10.1016/j.devcel.2014.07.018] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/16/2014] [Accepted: 07/21/2014] [Indexed: 12/12/2022]
Abstract
Gene regulatory networks (GRNs) regulate critical events during development. In complex tissues, such as the mammalian central nervous system (CNS), networks likely provide the complex regulatory interactions needed to direct the specification of the many CNS cell types. Here, we dissect a GRN that regulates a binary fate decision between two siblings in the murine retina, the rod photoreceptor and bipolar interneuron. The GRN centers on Blimp1, one of the transcription factors (TFs) that regulates the rod versus bipolar cell fate decision. We identified a cis-regulatory module (CRM), B108, that mimics Blimp1 expression. Deletion of genomic B108 by CRISPR/Cas9 in vivo using electroporation abolished the function of Blimp1. Otx2 and RORβ were found to regulate Blimp1 expression via B108, and Blimp1 and Otx2 were shown to form a negative feedback loop that regulates the level of Otx2, which regulates the production of the correct ratio of rods and bipolar cells.
Collapse
|
89
|
Kiani NA, Kaderali L. Dynamic probabilistic threshold networks to infer signaling pathways from time-course perturbation data. BMC Bioinformatics 2014; 15:250. [PMID: 25047753 PMCID: PMC4133630 DOI: 10.1186/1471-2105-15-250] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Network inference deals with the reconstruction of molecular networks from experimental data. Given N molecular species, the challenge is to find the underlying network. Due to data limitations, this typically is an ill-posed problem, and requires the integration of prior biological knowledge or strong regularization. We here focus on the situation when time-resolved measurements of a system's response after systematic perturbations are available. RESULTS We present a novel method to infer signaling networks from time-course perturbation data. We utilize dynamic Bayesian networks with probabilistic Boolean threshold functions to describe protein activation. The model posterior distribution is analyzed using evolutionary MCMC sampling and subsequent clustering, resulting in probability distributions over alternative networks. We evaluate our method on simulated data, and study its performance with respect to data set size and levels of noise. We then use our method to study EGF-mediated signaling in the ERBB pathway. CONCLUSIONS Dynamic Probabilistic Threshold Networks is a new method to infer signaling networks from time-series perturbation data. It exploits the dynamic response of a system after external perturbation for network reconstruction. On simulated data, we show that the approach outperforms current state of the art methods. On the ERBB data, our approach recovers a significant fraction of the known interactions, and predicts novel mechanisms in the ERBB pathway.
Collapse
Affiliation(s)
- Narsis A Kiani
- Technische Universität Dresden, Medical Faculty Carl Gustav Carus, Institute for Medical Informatics and Biometry, Fetscherstr, 74, 01307 Dresden, Germany.
| | | |
Collapse
|
90
|
Do JH. Transcriptional regulation analysis in a neurotoxin-induced apoptosis of human neuroblastoma SH-EP cells with a state space model. BIOCHIP JOURNAL 2014. [DOI: 10.1007/s13206-014-8209-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
91
|
Claussnitzer M, Dankel SN, Klocke B, Grallert H, Glunk V, Berulava T, Lee H, Oskolkov N, Fadista J, Ehlers K, Wahl S, Hoffmann C, Qian K, Rönn T, Riess H, Müller-Nurasyid M, Bretschneider N, Schroeder T, Skurk T, Horsthemke B, Spieler D, Klingenspor M, Seifert M, Kern MJ, Mejhert N, Dahlman I, Hansson O, Hauck SM, Blüher M, Arner P, Groop L, Illig T, Suhre K, Hsu YH, Mellgren G, Hauner H, Laumen H. Leveraging cross-species transcription factor binding site patterns: from diabetes risk loci to disease mechanisms. Cell 2014; 156:343-58. [PMID: 24439387 DOI: 10.1016/j.cell.2013.10.058] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 09/05/2013] [Accepted: 10/30/2013] [Indexed: 10/25/2022]
Abstract
Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms.
Collapse
Affiliation(s)
- Melina Claussnitzer
- Chair of Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany; Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany and Technische Universität München, 85350 Freising-Weihenstephan, Germany; Hebrew SeniorLife Institute for Aging Research, Harvard Medical School, Boston, MA 02131, USA.
| | - Simon N Dankel
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; K.G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, 5021 Bergen, Norway
| | | | - Harald Grallert
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Viktoria Glunk
- Chair of Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany; Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany and Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Tea Berulava
- Institut für Humangenetik, Universitätsklinikum Essen, Universität-Duisburg-Essen, 45147 Essen, Germany
| | - Heekyoung Lee
- Chair of Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany; Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany and Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Nikolay Oskolkov
- Diabetes and Endocrinology Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
| | - Joao Fadista
- Diabetes and Endocrinology Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
| | - Kerstin Ehlers
- Chair of Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany; Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany and Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Simone Wahl
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Christoph Hoffmann
- Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Chair of Molecular Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany
| | - Kun Qian
- Chair of Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany; Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany and Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Tina Rönn
- Diabetes and Endocrinology Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
| | - Helene Riess
- Department of Internal Medicine II-Cardiology, University of Ulm Medical Center, 89081 Ulm, Germany; Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany; Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | | | - Timm Schroeder
- Research Unit Stem Cell Dynamics, Helmholtz Center Munich-German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Thomas Skurk
- Chair of Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany; Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Else Kröner-Fresenius-Center for Nutritional Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität-Duisburg-Essen, 45147 Essen, Germany
| | | | - Derek Spieler
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, German Research Center for Environmental Health, Germany; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Martin Klingenspor
- Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Chair of Molecular Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany
| | | | - Michael J Kern
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Niklas Mejhert
- Department of Medicine, Karolinska Institutet, Center for Endocrinology and Metabolism, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Ingrid Dahlman
- Department of Medicine, Karolinska Institutet, Center for Endocrinology and Metabolism, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Ola Hansson
- Diabetes and Endocrinology Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
| | - Stefanie M Hauck
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Peter Arner
- Department of Medicine, Karolinska Institutet, Center for Endocrinology and Metabolism, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Leif Groop
- Diabetes and Endocrinology Research Unit, Department of Clinical Sciences, Lund University, Malmö 20502, Sweden
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Hanover Unified Biobank, Hanover Medical School, 30625 Hanover, Germany
| | - Karsten Suhre
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Yi-Hsiang Hsu
- Hebrew SeniorLife Institute for Aging Research, Harvard Medical School, Boston, MA 02131, USA; Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA 02115, USA
| | - Gunnar Mellgren
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; K.G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, 5021 Bergen, Norway
| | - Hans Hauner
- Chair of Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany; Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany and Technische Universität München, 85350 Freising-Weihenstephan, Germany; Else Kröner-Fresenius-Center for Nutritional Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Helmut Laumen
- Chair of Nutritional Medicine, Technische Universität München, Else Kröner-Fresenius-Center for Nutritional Medicine, 85350 Freising-Weihenstephan, Germany; Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany and Technische Universität München, 85350 Freising-Weihenstephan, Germany; Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany.
| |
Collapse
|
92
|
Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet 2014; 15:272-86. [PMID: 24614317 DOI: 10.1038/nrg3682] [Citation(s) in RCA: 960] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular development, morphology and function are governed by precise patterns of gene expression. These are established by the coordinated action of genomic regulatory elements known as enhancers or cis-regulatory modules. More than 30 years after the initial discovery of enhancers, many of their properties have been elucidated; however, despite major efforts, we only have an incomplete picture of enhancers in animal genomes. In this Review, we discuss how properties of enhancer sequences and chromatin are used to predict enhancers in genome-wide studies. We also cover recently developed high-throughput methods that allow the direct testing and identification of enhancers on the basis of their activity. Finally, we discuss recent technological advances and current challenges in the field of regulatory genomics.
Collapse
|
93
|
H3K4me2 reliably defines transcription factor binding regions in different cells. Genomics 2014; 103:222-8. [DOI: 10.1016/j.ygeno.2014.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/25/2014] [Accepted: 02/01/2014] [Indexed: 12/11/2022]
|
94
|
Rogers WA, Grover S, Stringer SJ, Parks J, Rebeiz M, Williams TM. A survey of the trans-regulatory landscape for Drosophila melanogaster abdominal pigmentation. Dev Biol 2014; 385:417-32. [DOI: 10.1016/j.ydbio.2013.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/07/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
|
95
|
Ding J, Hu H, Li X. SIOMICS: a novel approach for systematic identification of motifs in ChIP-seq data. Nucleic Acids Res 2013; 42:e35. [PMID: 24322294 PMCID: PMC3950686 DOI: 10.1093/nar/gkt1288] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The identification of transcription factor binding motifs is important for the study of gene transcriptional regulation. The chromatin immunoprecipitation (ChIP), followed by massive parallel sequencing (ChIP-seq) experiments, provides an unprecedented opportunity to discover binding motifs. Computational methods have been developed to identify motifs from ChIP-seq data, while at the same time encountering several problems. For example, existing methods are often not scalable to the large number of sequences obtained from ChIP-seq peak regions. Some methods heavily rely on well-annotated motifs even though the number of known motifs is limited. To simplify the problem, de novo motif discovery methods often neglect underrepresented motifs in ChIP-seq peak regions. To address these issues, we developed a novel approach called SIOMICS to de novo discover motifs from ChIP-seq data. Tested on 13 ChIP-seq data sets, SIOMICS identified motifs of many known and new cofactors. Tested on 13 simulated random data sets, SIOMICS discovered no motif in any data set. Compared with two recently developed methods for motif discovery, SIOMICS shows advantages in terms of speed, the number of known cofactor motifs predicted in experimental data sets and the number of false motifs predicted in random data sets. The SIOMICS software is freely available at http://eecs.ucf.edu/∼xiaoman/SIOMICS/SIOMICS.html.
Collapse
Affiliation(s)
- Jun Ding
- Department of Electric Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA and Burnett School of Biomedical Science, University of Central Florida, Orlando, FL 32816, USA
| | | | | |
Collapse
|
96
|
Proteasome, but not autophagy, disruption results in severe eye and wing dysmorphia: a subunit- and regulator-dependent process in Drosophila. PLoS One 2013; 8:e80530. [PMID: 24282550 PMCID: PMC3839973 DOI: 10.1371/journal.pone.0080530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/14/2013] [Indexed: 12/19/2022] Open
Abstract
Proteasome-dependent and autophagy-mediated degradation of eukaryotic cellular proteins represent the two major proteostatic mechanisms that are critically implicated in a number of signaling pathways and cellular processes. Deregulation of functions engaged in protein elimination frequently leads to development of morbid states and diseases. In this context, and through the utilization of GAL4/UAS genetic tool, we herein examined the in vivo contribution of proteasome and autophagy systems in Drosophila eye and wing morphogenesis. By exploiting the ability of GAL4-ninaE. GMR and P{GawB}BxMS1096 genetic drivers to be strongly and preferentially expressed in the eye and wing discs, respectively, we proved that proteasomal integrity and ubiquitination proficiency essentially control fly’s eye and wing development. Indeed, subunit- and regulator-specific patterns of severe organ dysmorphia were obtained after the RNAi-induced downregulation of critical proteasome components (Rpn1, Rpn2, α5, β5 and β6) or distinct protein-ubiquitin conjugators (UbcD6, but not UbcD1 and UbcD4). Proteasome deficient eyes presented with either rough phenotypes or strongly dysmorphic shapes, while transgenic mutant wings were severely folded and carried blistered structures together with loss of vein differentiation. Moreover, transgenic fly eyes overexpressing the UBP2-yeast deubiquitinase enzyme were characterized by an eyeless-like phenotype. Therefore, the proteasome/ubiquitin proteolytic activities are undoubtedly required for the normal course of eye and wing development. In contrast, the RNAi-mediated downregulation of critical Atg (1, 4, 7, 9 and 18) autophagic proteins revealed their non-essential, or redundant, functional roles in Drosophila eye and wing formation under physiological growth conditions, since their reduced expression levels could only marginally disturb wing’s, but not eye’s, morphogenetic organization and architecture. However, Atg9 proved indispensable for the maintenance of structural integrity of adult wings in aged flies. In toto, our findings clearly demonstrate the gene-specific fundamental contribution of proteasome, but not autophagy, in invertebrate eye and wing organ development.
Collapse
|
97
|
Parallel evolution of chordate cis-regulatory code for development. PLoS Genet 2013; 9:e1003904. [PMID: 24282393 PMCID: PMC3836708 DOI: 10.1371/journal.pgen.1003904] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
Urochordates are the closest relatives of vertebrates and at the larval stage, possess a characteristic bilateral chordate body plan. In vertebrates, the genes that orchestrate embryonic patterning are in part regulated by highly conserved non-coding elements (CNEs), yet these elements have not been identified in urochordate genomes. Consequently the evolution of the cis-regulatory code for urochordate development remains largely uncharacterised. Here, we use genome-wide comparisons between C. intestinalis and C. savignyi to identify putative urochordate cis-regulatory sequences. Ciona conserved non-coding elements (ciCNEs) are associated with largely the same key regulatory genes as vertebrate CNEs. Furthermore, some of the tested ciCNEs are able to activate reporter gene expression in both zebrafish and Ciona embryos, in a pattern that at least partially overlaps that of the gene they associate with, despite the absence of sequence identity. We also show that the ability of a ciCNE to up-regulate gene expression in vertebrate embryos can in some cases be localised to short sub-sequences, suggesting that functional cross-talk may be defined by small regions of ancestral regulatory logic, although functional sub-sequences may also be dispersed across the whole element. We conclude that the structure and organisation of cis-regulatory modules is very different between vertebrates and urochordates, reflecting their separate evolutionary histories. However, functional cross-talk still exists because the same repertoire of transcription factors has likely guided their parallel evolution, exploiting similar sets of binding sites but in different combinations. Vertebrates share many aspects of early development with our closest chordate ancestors, the tunicates. However, whilst the repertoire of genes that orchestrate development is essentially the same in the two lineages, the genomic code that regulates these genes appears to be very different, even though it is highly conserved within vertebrates themselves. Using comparative genomics, we have identified a parallel developmental code in tunicates and confirmed that this code, despite a lack of sequence conservation, associates with a similar repertoire of genes. However, the organisation of the code spatially is very different in the two lineages, strongly suggesting that most of it arose independently in vertebrates and tunicates, and in most cases lacking any direct sequence ancestry. We have assayed elements of the tunicate code, and found that at least some of them can regulate gene expression in zebrafish embryos. Our results suggest that regulatory code has arisen independently in different animal lineages but possesses some common functionality because its evolution has been driven by a similar cohort of developmental transcription factors. Our work helps illuminate how complex, stable gene regulatory networks evolve and become fixed within lineages.
Collapse
|
98
|
Abstract
This unit describes a feeder-free protocol for deriving induced pluripotent stem cells (iPSCs) from human fibroblasts by transfection of synthetic mRNA. The reprogramming of somatic cells requires transient expression of a set of transcription factors that collectively activate an endogenous gene regulatory network specifying the pluripotent phenotype. The necessary ectopic factor expression was first effected using retroviruses; however, as viral integration into the genome is problematic for cell therapy applications, the use of footprint-free vectors such as mRNA is increasingly preferred. Strong points of the mRNA approach include high efficiency, rapid kinetics, and obviation of a clean-up phase to purge the vector. Still, the method is relatively laborious and has, up to now, involved the use of feeder cells, which brings drawbacks including poor applicability to clinically oriented iPSC derivation. Using the methods described here, mRNA reprogramming can be performed without feeders at much-reduced labor and material costs relative to established protocols.
Collapse
|
99
|
Diermeier SD, Németh A, Rehli M, Grummt I, Längst G. Chromatin-specific regulation of mammalian rDNA transcription by clustered TTF-I binding sites. PLoS Genet 2013; 9:e1003786. [PMID: 24068958 PMCID: PMC3772059 DOI: 10.1371/journal.pgen.1003786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/26/2013] [Indexed: 12/04/2022] Open
Abstract
Enhancers and promoters often contain multiple binding sites for the same transcription factor, suggesting that homotypic clustering of binding sites may serve a role in transcription regulation. Here we show that clustering of binding sites for the transcription termination factor TTF-I downstream of the pre-rRNA coding region specifies transcription termination, increases the efficiency of transcription initiation and affects the three-dimensional structure of rRNA genes. On chromatin templates, but not on free rDNA, clustered binding sites promote cooperative binding of TTF-I, loading TTF-I to the downstream terminators before it binds to the rDNA promoter. Interaction of TTF-I with target sites upstream and downstream of the rDNA transcription unit connects these distal DNA elements by forming a chromatin loop between the rDNA promoter and the terminators. The results imply that clustered binding sites increase the binding affinity of transcription factors in chromatin, thus influencing the timing and strength of DNA-dependent processes. The sequence-specific binding of proteins to regulatory regions controls gene expression. Binding sites for transcription factors are rather short and present several million times in large genomes. However, only a small number of these binding sites are functionally important. How proteins can discriminate and select their functional regions is not clear, to date. Regulatory loci like gene promoters and enhancers commonly comprise multiple binding sites for either one factor or a combination of several DNA binding proteins, allowing efficient factor recruitment. We studied the cluster of TTF-I binding sites downstream of the rRNA gene and identified that cooperative binding to the multimeric termination sites in combination with low-affinity binding of TTF-I to individual sites upstream of the gene serves multiple regulatory functions. Packaging of the clustered sites into chromatin is a prerequisite for high-affinity binding, coordinated activation of transcription and the formation of a chromatin loop between the promoter and the terminator.
Collapse
Affiliation(s)
- Sarah D. Diermeier
- Biochemistry Centre Regensburg (BCR), University of Regensburg, Regensburg, Germany
| | - Attila Németh
- Biochemistry Centre Regensburg (BCR), University of Regensburg, Regensburg, Germany
| | - Michael Rehli
- Department of Hematology, University Hospital Regensburg, Regensburg, Germany
| | - Ingrid Grummt
- Molecular Biology of the Cell II, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Gernot Längst
- Biochemistry Centre Regensburg (BCR), University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
100
|
|