51
|
Leclère L, Horin C, Chevalier S, Lapébie P, Dru P, Peron S, Jager M, Condamine T, Pottin K, Romano S, Steger J, Sinigaglia C, Barreau C, Quiroga Artigas G, Ruggiero A, Fourrage C, Kraus JEM, Poulain J, Aury JM, Wincker P, Quéinnec E, Technau U, Manuel M, Momose T, Houliston E, Copley RR. The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle. Nat Ecol Evol 2019; 3:801-810. [PMID: 30858591 DOI: 10.1038/s41559-019-0833-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
Jellyfish (medusae) are a distinctive life-cycle stage of medusozoan cnidarians. They are major marine predators, with integrated neurosensory, muscular and organ systems. The genetic foundations of this complex form are largely unknown. We report the draft genome of the hydrozoan jellyfish Clytia hemisphaerica and use multiple transcriptomes to determine gene use across life-cycle stages. Medusa, planula larva and polyp are each characterized by distinct transcriptome signatures reflecting abrupt life-cycle transitions and all deploy a mixture of phylogenetically old and new genes. Medusa-specific transcription factors, including many with bilaterian orthologues, associate with diverse neurosensory structures. Compared to Clytia, the polyp-only hydrozoan Hydra has lost many of the medusa-expressed transcription factors, despite similar overall rates of gene content evolution and sequence evolution. Absence of expression and gene loss among Clytia orthologues of genes patterning the anthozoan aboral pole, secondary axis and endomesoderm support simplification of planulae and polyps in Hydrozoa, including loss of bilateral symmetry. Consequently, although the polyp and planula are generally considered the ancestral cnidarian forms, in Clytia the medusa maximally deploys the ancestral cnidarian-bilaterian transcription factor gene complement.
Collapse
Affiliation(s)
- Lucas Leclère
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Coralie Horin
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Sandra Chevalier
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Pascal Lapébie
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
| | - Philippe Dru
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Sophie Peron
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Muriel Jager
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
| | - Thomas Condamine
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France
| | - Karen Pottin
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Laboratoire de Biologie du Développement (IBPS-LBD, UMR7622), Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Séverine Romano
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Julia Steger
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Laboratoire de Biologie du Développement (IBPS-LBD, UMR7622), Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Chiara Sinigaglia
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242-INRA USC 1370, Lyon cedex 07, France
| | - Carine Barreau
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Gonzalo Quiroga Artigas
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Antonella Ruggiero
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, Université de Montpellier, Montpellier Cedex 5, France
| | - Cécile Fourrage
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Service de Génétique UMR 781, Hôpital Necker-APHP, Paris, France
| | - Johanna E M Kraus
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Vienna, Austria.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique, Université Paris-Saclay, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Eric Quéinnec
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Vienna, Austria
| | - Michaël Manuel
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
| | - Tsuyoshi Momose
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Richard R Copley
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.
| |
Collapse
|
52
|
Ortega-Hernández J, Janssen R, Budd GE. The last common ancestor of Ecdysozoa had an adult terminal mouth. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 49:155-158. [PMID: 30458236 DOI: 10.1016/j.asd.2018.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
The Ecdysozoa is a major animal clade whose main uniting feature is a distinctive growth strategy that requires the periodical moulting of the external cuticle. The staggering diversity within Ecdysozoa has prompted substantial efforts to reconstruct their origin and early evolution. Based on palaentological and developmental data, we proposed a scenario for the early evolution of the ecdysozoan clade Panarthropoda (Onychophora, Tardigrada, Euarthropoda), and postulated that a terminal mouth is ancestral for this lineage. In light of the accompanying comment by Claus Nielsen, we take this opportunity to clarify the significance of our argumentation for Panarthropoda in the phylogenetic context of Ecdysozoa, and Bilateria more broadly. We conclude that the ancestral ecdysozoan most likely had an adult terminal mouth, and that the last common ancestors of all the phyla that constitute Ecdysozoa almost certainly also had an adult terminal mouth. The occurrence of a ventral-facing mouth in various adult ecdysozoans - particularly panarthropods - is the result of convergence. Despite the paucity of embryological data on fossil taxa, we contemplate the likelihood that a developmentally early ventral mouth opening could be ancestral for Ecdysozoa, and if so, then this would represent a symplesiomorphy of Bilateria as a whole.
Collapse
Affiliation(s)
- Javier Ortega-Hernández
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK; Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala se 752 36, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala se 752 36, Sweden
| |
Collapse
|
53
|
Ramírez-Carreto S, Pérez-García EI, Salazar-García SI, Bernáldez-Sarabia J, Licea-Navarro A, Rudiño-Piñera E, Pérez-Martínez L, Pedraza-Alva G, Rodríguez-Almazán C. Identification of a pore-forming protein from sea anemone Anthopleura dowii Verrill (1869) venom by mass spectrometry. J Venom Anim Toxins Incl Trop Dis 2019; 25:e147418. [PMID: 31131002 PMCID: PMC6483413 DOI: 10.1590/1678-9199-jvatitd-1474-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Pore-forming proteins (PFP) are a class of toxins abundant in the venom of
sea anemones. Owing to their ability to recognize and permeabilize cell
membranes, pore-forming proteins have medical potential in cancer therapy or
as biosensors. In the present study, we showed the partial purification and
sequencing of a pore-forming protein from Anthopleura dowii
Verrill (1869). 17. Methods: Cytolytic activity of A. dowii Verrill (1869) venom was
determined via hemolysis assay in the erythrocytes of four mammals (sheep,
goat, human and rabbit). The cytotoxic activity was analyzed in the human
adherent lung carcinoma epithelial cells (A549) by the cytosolic lactate
dehydrogenase (LDH) assay, and trypan blue staining. The venom was
fractionated via ammonium sulfate precipitation gradient, dialysis, and ion
exchange chromatography. The presence of a pore-forming protein in purified
fractions was evaluated through hemolytic and cytotoxic assays, and the
activity fraction was analyzed using the percent of osmotic protections
after polyethylene glycol (PEG) treatment and mass spectrometry. 18. Results: The amount of protein at which the venom produced 50% hemolysis
(HU50) was determined in hemolysis assays using erythrocytes
from sheep (HU50 = 10.7 ± 0.2 μg), goat (HU50 = 13.2 ±
0.3 μg), rabbit (HU50 = 34.7 ± 0.5 μg), and human
(HU50 = 25.6 ± 0.6 μg). The venom presented a cytotoxic
effect in A549 cells and the protein amount present in the venom responsible
for producing 50% death (IC50) was determined using a trypan blue
cytotoxicity assay (1.84 ± 0.40 μg/mL). The loss of membrane integrity in
the A549 cells caused by the venom was detected by the release of LDH in
proportion to the amount of protein. The venom was fractionated; and the
fraction with hemolytic and cytotoxic activities was analyzed by mass
spectrometry. A pore-forming protein was identified. The cytotoxicity in the
A549 cells produced by the fraction containing the pore-forming protein was
osmotically protected by PEG-3350 Da molecular mass, which corroborated that
the loss of integrity in the plasma membrane was produced via pore
formation. 19. Conclusion: A. dowii Verrill (1869) venom
contains a pore-forming protein suitable for designing new drugs for cancer
therapy.
Collapse
Affiliation(s)
- Santos Ramírez-Carreto
- Universidad Nacional Autónoma de México, Instituto de Biotecnología, Departamento de Medicina Molecular y Bioprocesos, Av. Universidad 2001, Cuernavaca, Morelos, México
| | - Erick I Pérez-García
- Universidad Nacional Autónoma de México, Instituto de Biotecnología, Departamento de Medicina Molecular y Bioprocesos, Av. Universidad 2001, Cuernavaca, Morelos, México
| | - Sandra I Salazar-García
- Universidad Nacional Autónoma de México, Instituto de Biotecnología, Departamento de Medicina Molecular y Bioprocesos, Av. Universidad 2001, Cuernavaca, Morelos, México
| | - Johanna Bernáldez-Sarabia
- Centro de Investigación Científica y de Educación Superior de Ensenada, Departamento de Innovación Biomédica, Baja California, México
| | - Alexei Licea-Navarro
- Centro de Investigación Científica y de Educación Superior de Ensenada, Departamento de Innovación Biomédica, Baja California, México
| | - Enrique Rudiño-Piñera
- Universidad Nacional Autónoma de México, Instituto de Biotecnología, Departamento de Medicina Molecular y Bioprocesos, Av. Universidad 2001, Cuernavaca, Morelos, México
| | - Leonor Pérez-Martínez
- Universidad Nacional Autónoma de México, Instituto de Biotecnología, Departamento de Medicina Molecular y Bioprocesos, Av. Universidad 2001, Cuernavaca, Morelos, México
| | - Gustavo Pedraza-Alva
- Universidad Nacional Autónoma de México, Instituto de Biotecnología, Departamento de Medicina Molecular y Bioprocesos, Av. Universidad 2001, Cuernavaca, Morelos, México
| | - Claudia Rodríguez-Almazán
- Universidad Nacional Autónoma de México, Instituto de Biotecnología, Departamento de Medicina Molecular y Bioprocesos, Av. Universidad 2001, Cuernavaca, Morelos, México
| |
Collapse
|