51
|
Hardy H, Prendergast JG, Patel A, Dutta S, Trejo-Reveles V, Kroeger H, Yung AR, Goodrich LV, Brooks B, Sowden JC, Rainger J. Detailed analysis of chick optic fissure closure reveals Netrin-1 as an essential mediator of epithelial fusion. eLife 2019; 8:43877. [PMID: 31162046 PMCID: PMC6606025 DOI: 10.7554/elife.43877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Epithelial fusion underlies many vital organogenic processes during embryogenesis. Disruptions to these cause a significant number of human birth defects, including ocular coloboma. We provide robust spatial-temporal staging and unique anatomical detail of optic fissure closure (OFC) in the embryonic chick, including evidence for roles of apoptosis and epithelial remodelling. We performed complementary transcriptomic profiling and show that Netrin-1 (NTN1) is precisely expressed in the chick fissure margin during fusion but is immediately downregulated after fusion. We further provide a combination of protein localisation and phenotypic evidence in chick, humans, mice and zebrafish that Netrin-1 has an evolutionarily conserved and essential requirement for OFC, and is likely to have an important role in palate fusion. Our data suggest that NTN1 is a strong candidate locus for human coloboma and other multi-system developmental fusion defects, and show that chick OFC is a powerful model for epithelial fusion research. Our bodies are made of many different groups of cells, which are arranged into tissues that perform specific roles. As tissues form in the embryo they must adopt precise three-dimensional structures, depending on their position in the body. In many cases this involves two edges of tissue fusing together to prevent gaps being present in the final structure. In individuals with a condition called ocular coloboma some of the tissues in the eyes fail to merge together correctly, leading to wide gaps that can severely affect vision. There are currently no treatments available for ocular coloboma and in over 70% of patients the cause of the defect is not known. Identifying new genes that control how tissues fuse may help researchers to find what causes this condition and multiple other tissue fusion defects, and establish whether these may be preventable in the future. Much of what is currently known about how tissues fuse has come from studying mice and zebrafish embryos. Although the extensive genetic tools available in these ‘models’ have proved very useful, both offer only a limited time window for observing tissues as they fuse, and the regions involved are very small. Chick embryos, on the other hand, are much larger than mouse or zebrafish embryos and are easier to access from within their eggs. This led Hardy et al. to investigate whether the developing chick eye could be a more useful model for studying the precise details of how tissues merge. Examining chick embryos revealed that tissues in the base of their eyes fuse between five and eight days after the egg had been fertilised, a comparatively long time compared to existing models. Also, many of the genes that Hardy et al. found switched on in chick eyes as the tissues merged had previously been identified as being essential for tissue fusion in humans. However, several new genes were also shown to be involved in the fusing process. For example, Netrin-1 was important for tissues to fuse in the eyes as well as in other regions of the developing embryo. These findings demonstrate that the chick eye is an excellent new model system to study how tissues fuse in animals. Furthermore, the genes identified by Hardy et al. may help researchers to identify the genetic causes of ocular coloboma and other tissue fusion defects in humans.
Collapse
Affiliation(s)
- Holly Hardy
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - James Gd Prendergast
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Aara Patel
- Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sunit Dutta
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Violeta Trejo-Reveles
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Hannah Kroeger
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Andrea R Yung
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Brian Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Jane C Sowden
- Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Joe Rainger
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
52
|
Chen YC, Lin SP, Chang YY, Chang WP, Wei LY, Liu HC, Huang JF, Pain B, Wu SC. In vitro culture and characterization of duck primordial germ cells. Poult Sci 2019; 98:1820-1832. [PMID: 30462334 PMCID: PMC6414036 DOI: 10.3382/ps/pey515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022] Open
Abstract
This study aimed to isolate, culture, and characterize duck primordial germ cells (PGCs) and to compare these cells with chicken PGCs. We first cultured Muscovy duck (Cairina moschata) circulating PGCs and gonadal PGCs (gPGCs) in the modified serum-containing medium used to amplify chicken PGCs. gPGCs were found to proliferate better in serum-free chemically defined medium than in serum-containing medium. Thereafter, gPGCs were similarly isolated from 2 other duck breeds, the Pekin duck (Anas platyrhynchos) and the hybrid mule duck (C. moschata × A. platyrhynchos), and amplified for a limited period of time in the chemically defined culture condition, but sufficiently to be characterized and transplanted. Cultured gPGCs of all 3 duck breeds were characterized by Periodic acid-Schiff staining, immunocytochemical staining, and expression analysis of germline-specific and pluripotency genes. Cultured duck gPGCs colonized the gonads after being genetically labeled and injected into recipient embryos. Taken together, these results demonstrate that duck PGCs retain their germline characteristics after being isolated, expanded in vitro, and genetically modified. Further studies are required to establish the optimal conditions for long-term culture of duck PGCs, which may involve supplementing the culture medium with other growth factors or compounds.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Institute of Biotechnology, National Taiwan University, Taipei 10672, Taiwan.,Univ Lyon, Université Lyon 1, Stem Cell and Brain Research Institute, U1208, USC1361, INSERM, INRA, Bron 69500, France
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei 10672, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ying Chang
- Ilan Branch, Livestock Research Institute, Council of Agriculture, Executive Yuan, Ilan 26846, Taiwan
| | - Wei-Peng Chang
- Ilan Branch, Livestock Research Institute, Council of Agriculture, Executive Yuan, Ilan 26846, Taiwan
| | - Liang-Yuan Wei
- Ilan Branch, Livestock Research Institute, Council of Agriculture, Executive Yuan, Ilan 26846, Taiwan
| | - Hsiu-Chou Liu
- Ilan Branch, Livestock Research Institute, Council of Agriculture, Executive Yuan, Ilan 26846, Taiwan
| | - Jeng-Fang Huang
- Ilan Branch, Livestock Research Institute, Council of Agriculture, Executive Yuan, Ilan 26846, Taiwan.,Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan 71246, Taiwan
| | - Bertrand Pain
- Univ Lyon, Université Lyon 1, Stem Cell and Brain Research Institute, U1208, USC1361, INSERM, INRA, Bron 69500, France
| | - Shinn-Chih Wu
- Institute of Biotechnology, National Taiwan University, Taipei 10672, Taiwan.,Department of Animal Science and Technology, National Taiwan University, Taipei 10672, Taiwan
| |
Collapse
|
53
|
Retinoic acid (RA) and bone morphogenetic protein 4 (BMP4) restore the germline competence of in vitro cultured chicken blastodermal cells. In Vitro Cell Dev Biol Anim 2019; 55:169-176. [DOI: 10.1007/s11626-019-00324-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/16/2019] [Indexed: 11/26/2022]
|
54
|
Collarini EJ, Leighton PA, Van de Lavoir MC. Production of Transgenic Chickens Using Cultured Primordial Germ Cells and Gonocytes. Methods Mol Biol 2019; 1874:403-430. [PMID: 30353528 DOI: 10.1007/978-1-4939-8831-0_24] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The unique characteristics of the avian embryo, with its large opaque yolk, have necessitated the development of different approaches to transgenesis from those that have been successful in mammalian species. Genetic modification of birds was greatly advanced by the ability to grow long-term cultures of primordial germ cells (PGCs). These cells are obtained from embryos, established in culture, and can be propagated without losing the ability to contribute to the germline when reintroduced into a host animal. PGCs can be genetically modified in culture using traditional transfection and selection techniques, including gene targeting and site-specific nuclease approaches. Here, we describe our methods for deriving cell lines, long-term culture, genetic modification, production of germline chimeras and obtaining fully transgenic birds with the desired genetic modifications.
Collapse
|
55
|
Aduma N, Izumi H, Mizushima S, Kuroiwa A. Knockdown of DEAD-box helicase 4 (DDX4) decreases the number of germ cells in male and female chicken embryonic gonads. Reprod Fertil Dev 2019; 31:847-854. [DOI: 10.1071/rd18266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/27/2018] [Indexed: 11/23/2022] Open
Abstract
DEAD-box helicase 4 (DDX4; also known as vasa) is essential for the proper formation and maintenance of germ cells. Although DDX4 is conserved in a variety of vertebrates and invertebrates, its roles differ between species. This study investigated the function of DDX4 in chicken embryos by knocking down its expression using retroviral vectors that encoded DDX4-targeting microRNAs. DDX4 was effectively depleted invitro and invivo via this approach. Male and female gonads of DDX4-knockdown embryos contained a decreased number of primordial germ cells, indicating that DDX4 is essential to maintain a normal level of these cells in chicken embryos of both sexes. Expression of doublesex and mab-3 related transcription factor 1 (DMRT1) and sex determining region Y-box 9 (SOX9), which are involved in testis determination and differentiation, was normal in male gonads of DDX4-knockdown embryos. In contrast, expression of cytochrome P450 family 19 subfamily A member 1 (CYP19A1), which encodes aromatase and is essential for ovary development, was significantly decreased in female gonads of DDX4-knockdown embryos. Expression of forkhead box L2 (FOXL2), which plays an important role in ovary differentiation, was also slightly reduced in DDX4-knockdown embryos, but not significantly. Based on several pieces of evidence FOXL2 was hypothesised to regulate aromatase expression. The results of this study indicate that aromatase expression is also regulated by several additional pathways.
Collapse
|
56
|
Tait-Burkard C, Doeschl-Wilson A, McGrew MJ, Archibald AL, Sang HM, Houston RD, Whitelaw CB, Watson M. Livestock 2.0 - genome editing for fitter, healthier, and more productive farmed animals. Genome Biol 2018; 19:204. [PMID: 30477539 PMCID: PMC6258497 DOI: 10.1186/s13059-018-1583-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The human population is growing, and as a result we need to produce more food whilst reducing the impact of farming on the environment. Selective breeding and genomic selection have had a transformational impact on livestock productivity, and now transgenic and genome-editing technologies offer exciting opportunities for the production of fitter, healthier and more-productive livestock. Here, we review recent progress in the application of genome editing to farmed animal species and discuss the potential impact on our ability to produce food.
Collapse
Affiliation(s)
- Christine Tait-Burkard
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Andrea Doeschl-Wilson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Mike J McGrew
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Alan L Archibald
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Helen M Sang
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Ross D Houston
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - C Bruce Whitelaw
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Mick Watson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
57
|
Abstract
De-extinction projects for species such as the woolly mammoth and passenger pigeon have greatly stimulated public and scientific interest, producing a large body of literature and much debate. To date, there has been little consistency in descriptions of de-extinction technologies and purposes. In 2016, a special committee of the International Union for the Conservation of Nature (IUCN) published a set of guidelines for de-extinction practice, establishing the first detailed description of de-extinction; yet incoherencies in published literature persist. There are even several problems with the IUCN definition. Here I present a comprehensive definition of de-extinction practice and rationale that expounds and reconciles the biological and ecological inconsistencies in the IUCN definition. This new definition brings together the practices of reintroduction and ecological replacement with de-extinction efforts that employ breeding strategies to recover unique extinct phenotypes into a single “de-extinction” discipline. An accurate understanding of de-extinction and biotechnology segregates the restoration of certain species into a new classification of endangerment, removing them from the purview of de-extinction and into the arena of species’ recovery. I term these species as “evolutionarily torpid species”; a term to apply to species falsely considered extinct, which in fact persist in the form of cryopreserved tissues and cultured cells. For the first time in published literature, all currently active de-extinction breeding programs are reviewed and their progress presented. Lastly, I review and scrutinize various topics pertaining to de-extinction in light of the growing body of peer-reviewed literature published since de-extinction breeding programs gained public attention in 2013.
Collapse
|
58
|
High fidelity CRISPR/Cas9 increases precise monoallelic and biallelic editing events in primordial germ cells. Sci Rep 2018; 8:15126. [PMID: 30310080 PMCID: PMC6181960 DOI: 10.1038/s41598-018-33244-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
Primordial germ cells (PGCs), the embryonic precursors of the sperm and egg, are used for the introduction of genetic modifications into avian genome. Introduction of small defined sequences using genome editing has not been demonstrated in bird species. Here, we compared oligonucleotide-mediated HDR using wild type SpCas9 (SpCas9-WT) and high fidelity SpCas9-HF1 in PGCs and show that many loci in chicken PGCs can be precise edited using donors containing CRISPR/Cas9-blocking mutations positioned in the protospacer adjacent motif (PAM). However, targeting was more efficient using SpCas9-HF1 when mutations were introduced only into the gRNA target sequence. We subsequently employed an eGFP-to-BFP conversion assay, to directly compare HDR mediated by SpCas9-WT and SpCas9-HF1 and discovered that SpCas9-HF1 increases HDR while reducing INDEL formation. Furthermore, SpCas9-HF1 increases the frequency of single allele editing in comparison to SpCas9-WT. We used SpCas9-HF1 to demonstrate the introduction of monoallelic and biallelic point mutations into the FGF20 gene and generate clonal populations of edited PGCs with defined homozygous and heterozygous genotypes. Our results demonstrate the use of oligonucleotide donors and high fidelity CRISPR/Cas9 variants to perform precise genome editing with high efficiency in PGCs.
Collapse
|
59
|
Sid H, Schusser B. Applications of Gene Editing in Chickens: A New Era Is on the Horizon. Front Genet 2018; 9:456. [PMID: 30356667 PMCID: PMC6189320 DOI: 10.3389/fgene.2018.00456] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023] Open
Abstract
The chicken represents a valuable model for research in the area of immunology, infectious diseases as well as developmental biology. Although it was the first livestock species to have its genome sequenced, there was no reverse genetic technology available to help understanding specific gene functions. Recently, homologous recombination was used to knockout the chicken immunoglobulin genes. Subsequent studies using immunoglobulin knockout birds helped to understand different aspects related to B cell development and antibody production. Furthermore, the latest advances in the field of genome editing including the CRISPR/Cas9 system allowed the introduction of site specific gene modifications in various animal species. Thus, it may provide a powerful tool for the generation of genetically modified chickens carrying resistance for certain pathogens. This was previously demonstrated by targeting the Trp38 region which was shown to be effective in the control of avian leukosis virus in chicken DF-1 cells. Herein we review the current and future prospects of gene editing and how it possibly contributes to the development of resistant chickens against infectious diseases.
Collapse
Affiliation(s)
| | - Benjamin Schusser
- Department of Animal Sciences, Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| |
Collapse
|
60
|
Three-dimensional culture of chicken primordial germ cells (cPGCs) in defined media containing the functional polymer FP003. PLoS One 2018; 13:e0200515. [PMID: 30240390 PMCID: PMC6150485 DOI: 10.1371/journal.pone.0200515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/30/2018] [Indexed: 11/29/2022] Open
Abstract
Scalable production of avian cell lines exhibits a valuable potential on therapeutic application by producing recombinant proteins and as the substrate for virus growth due to the special glycosylation occurs in avian species. Chicken primordial germ cells (cPGCs), a germinal pluripotent avian cell type, present the ability of self-renewal, an anchorage-independent cell growth and the ability to be genetically modified. This cell type could be an interesting bioreactor system for industrial purposes. This study sought to establish an expandable culture system with defined components for three-dimensional (3D) culture of cPGCs. cPGCs were cultured in medium supplemented with the functional polymer FP003. Viscoelasticity was low in this medium but cPGCs did not sediment in culture and efficiencies of space and nutrient utilization were thus enhanced and consequently their expansion was improved. The total number of cPGCs increased by 17-fold after 1 week of culture in 3D-FAot medium, an aseric defined medium containing FP003 polymer, FGF2 and Activin A as growth factors and Ovotransferrin as protein. Moreover, cPGC cell lines stably expressed the germline-specific reporter VASA:tdTOMATO, as well as other markers of cPGCs, for more than 1 month upon culture in 3D-FAot medium, indicating that the characteristics of these cells are maintained. In summary, this novel 3D culture system can be used to efficiently expand cPGCs in suspension without mechanical stirring, which is available for long-term culture and no loss of cellular properties was found. This system provides a platform for large-scale culture of cPGCs.
Collapse
|
61
|
Neural stem cells deriving from chick embryonic hindbrain recapitulate hindbrain development in culture. Sci Rep 2018; 8:13920. [PMID: 30224755 PMCID: PMC6141497 DOI: 10.1038/s41598-018-32203-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Neural stem cells (NSCs) are self-renewing multipotent cells that line the neural-tube and generate all the nervous system. Understanding NSC biology is fundamental for neurodevelopmental research and therapy. Many studies emphasized the need to culture NSCs, which are typically purified from mammalian embryonic/adult brains. These sources are somewhat limited in terms of quantity, availability and animal ethical guidelines. Therefore, new sources are needed. The chick is a powerful system for experimental embryology which contributed enormously to neurodevelopmental concepts. Its accessibility, genetic/molecular manipulations, and homology to other vertebrates, makes it valuable for developmental biology research. Recently, we identified a population of NSCs in the chick hindbrain. It resides in rhombomere-boundaries, expresses Sox2 and generates progenitors and neurons. Here, we investigated whether these cells can recapitulate hindbrain development in culture. By developing approaches to propagate and image cells, manipulate their growth-conditions and separate them into subpopulations, we demonstrate the ordered formation of multipotent and self-renewing neurospheres that maintain regional identity and display differential stem/differentiation/proliferation properties. Live imaging revealed new cellular dynamics in the culture. Collectively, these NSC cultures reproduce major aspects of hindbrain development in-vitro, proposing the chick as a model for culturing hindbrain-NSCs that can be directly applied to other neural-tube domains and species.
Collapse
|
62
|
Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken. BMC Genomics 2018; 19:594. [PMID: 30086717 PMCID: PMC6081845 DOI: 10.1186/s12864-018-4972-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
Background The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also an important livestock species. We describe a novel approach to data integration to generate an mRNA expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues. Results Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type restricted, contained transcription factors that have previously been implicated in their regulation, or were otherwise associated with biological processes, such as the cell cycle. The atlas provides a resource for the functional annotation of genes that currently have only a locus ID. We cross-referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression (CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of the expansion of tissue macrophage populations during development. Conclusion Expression profiles obtained from public RNA-seq datasets – despite being generated by different laboratories using different methodologies – can be made comparable to each other. This meta-analytic approach to RNA-seq can be extended with new datasets from novel tissues, and is applicable to any species. Electronic supplementary material The online version of this article (10.1186/s12864-018-4972-7) contains supplementary material, which is available to authorized users.
Collapse
|
63
|
Oishi I, Yoshii K, Miyahara D, Tagami T. Efficient production of human interferon beta in the white of eggs from ovalbumin gene-targeted hens. Sci Rep 2018; 8:10203. [PMID: 29976933 PMCID: PMC6033876 DOI: 10.1038/s41598-018-28438-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Transgenic chickens could potentially serve as bioreactors for commercial production of recombinant proteins in egg white. Many transgenic chickens have been generated by randomly integrating viral vectors into their genomes, but transgene expression has proved insufficient and/or limited to the initial cohort. Herein, we demonstrate the feasibility of integrating human interferon beta (hIFN-β) into the chicken ovalbumin locus and producing hIFN-β in egg white. We knocked in hIFN-β into primordial germ cells using a CRISPR/Cas9 protocol and then generated germline chimeric roosters by cell transplantation into recipient embryos. Two generation-zero founder roosters produced hIFN-β knock-in offspring, and all knock-in female offspring produced abundant egg-white hIFN-β (~3.5 mg/ml). Although female offspring of the first generation were sterile, their male counterparts were fertile and produced a second generation of knock-in hens, for which egg-white hIFN-β production was comparable with that of the first generation. The hIFN-β bioactivity represented only ~5% of total egg-white hIFN-β, but unfolding and refolding of hIFN-β in the egg white fully recovered the bioactivity. These results suggest that transgene insertion at the chicken ovalbumin locus can result in abundant and stable expression of an exogenous protein deposited into egg white and should be amenable to industrial applications.
Collapse
Affiliation(s)
- Isao Oishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31, Midorioka, Ikeda, Osaka, 563-8577, Japan.
| | - Kyoko Yoshii
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31, Midorioka, Ikeda, Osaka, 563-8577, Japan
| | - Daichi Miyahara
- Animal Breeding and Reproduction Research Division, National Agriculture and Food Research Organization, Institute of Livestock and Grassland Science, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Takahiro Tagami
- Animal Breeding and Reproduction Research Division, National Agriculture and Food Research Organization, Institute of Livestock and Grassland Science, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| |
Collapse
|
64
|
Antonova E, Glazova O, Gaponova A, Eremyan A, Zvereva S, Grebenkina N, Volkova N, Volchkov P. Successful CRISPR/Cas9 mediated homologous recombination in a chicken cell line. F1000Res 2018; 7:238. [PMID: 29946437 PMCID: PMC6008848 DOI: 10.12688/f1000research.13457.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 02/02/2023] Open
Abstract
Background: CRISPR/Cas9 system is becoming the dominant genome editing tool in a variety of organisms. CRISPR/Cas9 mediated knock out has been demonstrated both in chicken cell lines and in chicken germ cells that served to generate genetically modified birds. However, there is limited data about CRISPR/Cas9 dependent homology directed repair (HDR) for avian, even in cell culture. Few attempts have been made with integrations in safe harbor loci of chicken genome that induces constitutive expression of the inserted gene. Gene expression under an endogenous promoter would be more valuable than under a constitutive exogenous promoter, as it allows the gene expression to be tissue-specific. Methods: Three gRNAs were chosen to target chicken 3'-untranslated region of GAPDH gene. Cas9-mediated activity in the targeted locus for the gRNAs in DF-1 cells was estimated by T7E1 assay. To edit the locus, the HDR cassette was added along with CRISPR/Cas9. The inserted sequence contained eGFP in frame with a GAPDH coding sequence via P2A and Neomycin resistance gene ( neoR) under cytomegalovirus promoter. Correct integration of the cassette was confirmed with fluorescent microscopy, PCR analysis and sequencing. Enrichment of modified cells was done by G418 selection. Efficiency of integration was assessed with fluorescence activated cell sorting (FACS). Results: We have established a CRISPR/Cas9 system to target an endogenous locus and precisely insert a gene under endogenous control. In our system, we used positive and negative selection to enrich modified cells and remove cells with undesirable insertions. The efficiency of CRISPR/Cas9-mediated HDR was increased up to 90% via G418 enrichment. We have successfully inserted eGFP under control of the chicken GAPDH promoter. Conclusions: The approach can be used further to insert genes of interest under control of tissue-specific promoters in primordial germ cells in order to produce genetically modified birds with useful for biotechnological purposes features.
Collapse
Affiliation(s)
- Ekaterina Antonova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Olga Glazova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Anna Gaponova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Aykaz Eremyan
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Svetlana Zvereva
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Natalya Grebenkina
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Natalya Volkova
- Ernst Institute of Animal Husbandry, Podolsk Municipal District, Moscow Region, 142132 , Russian Federation
| | - Pavel Volchkov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| |
Collapse
|
65
|
Cooper CA, Doran TJ, Challagulla A, Tizard MLV, Jenkins KA. Innovative approaches to genome editing in avian species. J Anim Sci Biotechnol 2018; 9:15. [PMID: 29449939 PMCID: PMC5806378 DOI: 10.1186/s40104-018-0231-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/08/2018] [Indexed: 11/22/2022] Open
Abstract
The tools available for genome engineering have significantly improved over the last 5 years, allowing scientist to make precise edits to the genome. Along with the development of these new genome editing tools has come advancements in technologies used to deliver them. In mammals genome engineering tools are typically delivered into in vitro fertilized single cell embryos which are subsequently cultured and then implanted into a recipient animal. In avian species this is not possible, so other methods have been developed for genome engineering in birds. The most common involves in vitro culturing of primordial germ cells (PGCs), which are cells that migrate through the embryonic circulatory system to the developing gonad and colonize the gonad, eventually differentiating into the gonadocytes which produce either sperm or ova. While in culture the PGCs can be modified to carry novel transgenes or gene edits, the population can be screened and enriched, and then transferred into a recipient embryo. The largest drawback of PGC culture is that culture methods do not transfer well across avian species, thus there are reliable culture methods for only a few species including the chicken. Two newer technologies that appear to be more easily adapted in a wider range of avian species are direct injection and sperm transfection assisted gene editing (STAGE). The direct injection method involves injecting genome engineering tools into the circulatory system of the developing embryo just prior to the developmental time point when the PGCs are migrating to the gonads. The genome engineering tools are complexed with transfection reagents, allowing for in vivo transfection of the PGCs. STAGE utilizes sperm transfection to deliver genome engineering tools directly to the newly fertilized embryo. Preliminary evidence indicates that both methodologies have the potential to be adapted for use in birds species other than the chicken, however further work is needed in this area.
Collapse
Affiliation(s)
- Caitlin A Cooper
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Private Bag 24, Geelong, VIC 3220 Australia
| | - Timothy J Doran
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Private Bag 24, Geelong, VIC 3220 Australia
| | - Arjun Challagulla
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Private Bag 24, Geelong, VIC 3220 Australia
| | - Mark L V Tizard
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Private Bag 24, Geelong, VIC 3220 Australia
| | - Kristie A Jenkins
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Private Bag 24, Geelong, VIC 3220 Australia
| |
Collapse
|
66
|
Han JY, Park YH. Primordial germ cell-mediated transgenesis and genome editing in birds. J Anim Sci Biotechnol 2018; 9:19. [PMID: 29423217 PMCID: PMC5791193 DOI: 10.1186/s40104-018-0234-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
Transgenesis and genome editing in birds are based on a unique germline transmission system using primordial germ cells (PGCs), which is quite different from the mammalian transgenic and genome editing system. PGCs are progenitor cells of gametes that can deliver genetic information to the next generation. Since avian PGCs were first discovered in nineteenth century, there have been numerous efforts to reveal their origin, specification, and unique migration pattern, and to improve germline transmission efficiency. Recent advances in the isolation and in vitro culture of avian PGCs with genetic manipulation and genome editing tools enable the development of valuable avian models that were unavailable before. However, many challenges remain in the production of transgenic and genome-edited birds, including the precise control of germline transmission, introduction of exogenous genes, and genome editing in PGCs. Therefore, establishing reliable germline-competent PGCs and applying precise genome editing systems are critical current issues in the production of avian models. Here, we introduce a historical overview of avian PGCs and their application, including improved techniques and methodologies in the production of transgenic and genome-edited birds, and we discuss the future potential applications of transgenic and genome-edited birds to provide opportunities and benefits for humans.
Collapse
Affiliation(s)
- Jae Yong Han
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea.,2Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano, 399-4598 Japan
| | - Young Hyun Park
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea
| |
Collapse
|
67
|
Lee HJ, Kim YM, Ono T, Han JY. Genome Modification Technologies and Their Applications in Avian Species. Int J Mol Sci 2017; 18:ijms18112245. [PMID: 29072628 PMCID: PMC5713215 DOI: 10.3390/ijms18112245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/01/2022] Open
Abstract
The rapid development of genome modification technology has provided many great benefits in diverse areas of research and industry. Genome modification technologies have also been actively used in a variety of research areas and fields of industry in avian species. Transgenic technologies such as lentiviral systems and piggyBac transposition have been used to produce transgenic birds for diverse purposes. In recent years, newly developed programmable genome editing tools such as transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) have also been successfully adopted in avian systems with primordial germ cell (PGC)-mediated genome modification. These genome modification technologies are expected to be applied to practical uses beyond system development itself. The technologies could be used to enhance economic traits in poultry such as acquiring a disease resistance or producing functional proteins in eggs. Furthermore, novel avian models of human diseases or embryonic development could also be established for research purposes. In this review, we discuss diverse genome modification technologies used in avian species, and future applications of avian biotechnology.
Collapse
Affiliation(s)
- Hong Jo Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Young Min Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Tamao Ono
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.
| | - Jae Yong Han
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.
| |
Collapse
|
68
|
Farzaneh M, Attari F, Mozdziak PE, Khoshnam SE. The evolution of chicken stem cell culture methods. Br Poult Sci 2017; 58:681-686. [PMID: 28840744 DOI: 10.1080/00071668.2017.1365354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. The avian embryo is an excellent model for studying embryology and the production of pharmaceutical proteins in transgenic chickens. Furthermore, chicken stem cells have the potential for proliferation and differentiation and emerged as an attractive tool for various cell-based technologies. 2. The objective of these studies is the derivation and culture of these stem cells is the production of transgenic birds for recombinant biomaterials and vaccine manufacture, drug and cytotoxicity testing, as well as to gain insight into basic science, including cell tracking. 3. Despite similarities among the established chicken stem cell lines, fundamental differences have been reported between their culture conditions and applications. Recent conventional protocols used for expansion and culture of chicken stem cells mostly depend on feeder cells, serum-containing media and static culture. 4. Utilising chicken stem cells for generation of cell-based transgenic birds and a variety of vaccines requires large-scale cell production. However, scaling up the conventional adherent chicken stem cells is challenging and labour intensive. Development of a suspension cell culture process for chicken embryonic stem cells (cESCs), chicken primordial germ cells (PGCs) and chicken induced pluripotent stem cells (ciPSCs) will be an important advance for increasing the growth kinetics of these cells. 6. This review describes various approaches and suggestions to achieve optimal cell growth for defined chicken stem cells cultures and use in future manufacturing applications.
Collapse
Affiliation(s)
- M Farzaneh
- a Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR , Tehran , Iran
| | - F Attari
- b Department of Animal Biology, School of Biology, College of Science , University of Tehran , Tehran , Iran
| | - P E Mozdziak
- c Physiology Graduate Program , North Carolina State University , Raleigh , NC , USA
| | - S E Khoshnam
- d Department of Physiology, Faculty of Medicine, Physiology Research Center , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran.,e Student Research Committee , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
69
|
Woodcock ME, Idoko-Akoh A, McGrew MJ. Gene editing in birds takes flight. Mamm Genome 2017; 28:315-323. [PMID: 28612238 PMCID: PMC5569130 DOI: 10.1007/s00335-017-9701-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/05/2017] [Indexed: 12/28/2022]
Abstract
The application of gene editing (GE) technology to create precise changes to the genome of bird species will provide new and exciting opportunities for the biomedical, agricultural and biotechnology industries, as well as providing new approaches for producing research models. Recent advances in modifying both the somatic and germ cell lineages in chicken indicate that this species, and conceivably soon other avian species, has joined a growing number of model organisms in the gene editing revolution.
Collapse
Affiliation(s)
- Mark E Woodcock
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Alewo Idoko-Akoh
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Michael J McGrew
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|