51
|
Zeng X, Liu Q, Yang Y, Jia W, Li S, He D, Ma R. Placenta-specific protein 8 promotes the proliferation of lung adenocarcinoma PC-9 cells and their tolerance to an epidermal growth factor receptor tyrosine kinase inhibitor by activating the ERK signaling pathway. Oncol Lett 2019; 18:5621-5627. [PMID: 31620204 DOI: 10.3892/ol.2019.10911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 08/06/2019] [Indexed: 11/06/2022] Open
Abstract
Placenta-specific protein 8 (PLAC8) is a conserved protein with a molecular weight of 12.5 kDa. The specific function of this protein has not been fully elucidated, however, PLAC8 has been found to play an important tumor regulatory role in certain types of cancer, including colon, pancreatic and liver cancer. PLAC8 also participates in the regulation of the cell cycle, autophagy, epithelial-mesenchymal transition and other cellular functions, indicating its potential as a molecular target worth further investigation. The present study investigated the effect of PLAC8 on the proliferation of lung adenocarcinoma PC-9 cells and their sensitivity to gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). It was found that the inhibition of PLAC8 expression in PC-9 cells resulted in significantly decreased proliferation, whereas overexpression of PLAC8 significantly increased the proliferation (P<0.05) of PC-9 cells. Furthermore, inhibition of PLAC8 expression resulted in decreased activity of the ERK signaling pathway, while PLAC8 overexpression increased activity of this pathway. Inhibition of the ERK signaling pathway with U0126 reversed the effects induced by inhibiting or overexpressing PLAC8 on cell proliferation. In addition, overexpression of PLAC8 significantly decreased the sensitivity of PC-9 cells to gefitinib, and this effect was reversed by U0126. Overall, these results suggest that PLAC8 is involved in the regulation of proliferation of lung adenocarcinoma PC-9 cells and impacts their sensitivity to an EGFR-TKI. Thus, PLAC8 is a potential novel target in lung adenocarcinoma for future studies.
Collapse
Affiliation(s)
- Xiaofei Zeng
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Qing Liu
- Department of Cardiothoracic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, P.R. China
| | - Yanhui Yang
- Department of Cardiothoracic Surgery, The First People's Hospital of Neijiang, Sichuan 641000, P.R. China
| | - Weikun Jia
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Shuping Li
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Dongsheng He
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Ruidong Ma
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
52
|
Mao M, Chen Y, Jia Y, Yang J, Wei Q, Li Z, Chen L, Chen C, Wang L. PLCA8 suppresses breast cancer apoptosis by activating the PI3k/AKT/NF-κB pathway. J Cell Mol Med 2019; 23:6930-6941. [PMID: 31448883 PMCID: PMC6787500 DOI: 10.1111/jcmm.14578] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/12/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
The cysteine‐rich lysosomal protein placenta‐specific 8 (PLAC8), also called onzin, has been shown to be involved in many types of cancers, and its role is highly dependent on cellular and physiological contexts. However, the precise function of PLAC8 in breast cancer (BC) progression remains unclear. In this study, we investigated both the clinical significance and biological functions of PLAC8 in BC progression. First, high PLAC8 expression was observed in primary BC tissues compared with adjacent normal tissues through immunohistochemistry analysis. The results of in vitro and in vivo assays further confirmed that PLAC8 overexpression promotes cell proliferation and suppress BC cell apoptosis, whereas PLAC8 silencing has the opposite effect. In addition, the forced expression of PLAC8 greatly induces cell migration, partially by affecting the EMT‐related genes, including down‐regulating E‐cadherin expression and facilitating vimentin expression. Further mechanistic analysis confirmed that PLAC8 contributes to cell proliferation and suppresses cell apoptosis in BC by activating the PI3K/AKT/NF‐κB pathway. The results of our study provide new insights into an oncogenic role of PLAC8 and reveal a novel PLAC8/ PI3K/AKT/NF‐κB pathway as a potential therapeutic target for BC.
Collapse
Affiliation(s)
- Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yunlu Jia
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qun Wei
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
53
|
Tao H, Liu X, Liu X, Liu W, Wu D, Wang R, Lv G. LncRNA MEG3 inhibits trophoblast invasion and trophoblast-mediated VSMC loss in uterine spiral artery remodeling. Mol Reprod Dev 2019; 86:686-695. [PMID: 31066488 DOI: 10.1002/mrd.23147] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/06/2019] [Accepted: 03/11/2019] [Indexed: 02/03/2023]
Abstract
Extravillous trophoblasts (EVTs) migrate into uterine decidua and induce vascular smooth muscle cell (VSMC) loss through mechanisms thought to involve migration and apoptosis, achieving complete spiral artery remodeling. Long noncoding RNA maternally expressed gene 3 (MEG3) can regulate diverse cellular processes, such as proliferation and migration, and has been discovered highly expressed in human placenta tissues. However, little is known about the role of MEG3 in modulating EVT functions and EVT-induced VSMC loss. In this study, we first examined the location of MEG3 in human first-trimester placenta by in situ hybridization. Then, exogenous upregulation of MEG3 in HTR-8/SVneo cells was performed to investigate the effects of MEG3 on EVT motility and EVT capacity to displace VSMCs. Meanwhile, the molecules mediating EVT-induced VSMC loss, such as tumor necrosis factor-α (TNF-α), Fas ligand (FasL), and tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL) were detected at transcriptional and translational levels. Finally, VSMCs were cocultured with MEG3-upregulated HTR-8/SVneo to explore the role of MEG3 on EVT-mediated VSMC migration and apoptosis. Results showed that MEG3 was expressed in trophoblasts in placental villi and decidua, and MEG3 enhancement inhibited HTR-8/SVneo migration and invasion. Meanwhile, the displacement of VSMCs by HTR-8/SVneo and the expression of TNF-α, FasL and TRAIL in HTR-8/SVneo were reduced following MEG3 overexpression in HTR-8/SVneo. Furthermore, HTR-8/SVneo with MEG3 upregulation impaired VSMC migration and apoptosis. The PI3K/Akt pathway, which is possibly downstream, was inactivated in MEG3-upregulated HTR-8/SVneo. These findings suggest that MEG3 might be a negative regulator of spiral artery remodeling via suppressing EVT invasion and EVT-mediated VSMC loss.
Collapse
Affiliation(s)
- Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Lv
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
54
|
Liu R, Deng D, Liu X, Xiao Y, Huang J, Wang F, Li X, Yu M. A miR-18a binding-site polymorphism in CDC42 3'UTR affects CDC42 mRNA expression in placentas and is associated with litter size in pigs. Mamm Genome 2018; 30:34-41. [PMID: 30506450 DOI: 10.1007/s00335-018-9788-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022]
Abstract
Increasing evidence suggests that miRNA binding-site polymorphism in the 3'-untranslated region (3'UTR) of a target gene could affect that gene's expression, and can be associated with a variety of complex traits. In this study, we find that miR-18a and cell division cycle 42 (CDC42) mRNA, whose expression was inversely correlated, are differentially expressed in porcine placentas during critical stages of placental development. rs55618224 (T>C), a SNP in the 3'UTR region of CDC42 that is perfectly complementary to the miR-18a seed could influence miR-18a-related regulation of CDC42 gene by altering their binding affinity. In addition, CDC42 mRNA was found to have higher expression level in the homozygous TT placentas as compared to those homozygous CC placentas in pigs. Furthermore, we identified a significant association between rs55618224 and total number born per litter. These results suggest the miR-18a binding-site polymorphism in CDC42 3'UTR may impact litter size by regulation of CDC42 gene in porcine placentas.
Collapse
Affiliation(s)
- Ruize Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dadong Deng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiangdong Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yujing Xiao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ji Huang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Feiyu Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
55
|
Shi LY, Ma Y, Zhu GY, Liu JW, Zhou CX, Chen LJ, Wang Y, Li RC, Yang ZX, Zhang D. Placenta‐specific 1 regulates oocyte meiosis and fertilization through furin. FASEB J 2018; 32:5483-5494. [DOI: 10.1096/fj.201700922rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Li-Ya Shi
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Yang Ma
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Gang-Yi Zhu
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Jin-Wei Liu
- Department of GynecologyZhejiang Provincial People's HospitalHangzhouChina
| | - Chun-Xiang Zhou
- Prenatal Diagnosis Center of Jiangsu ProvinceAffiliated Drum Tower Hospital, Nanjing University Medical SchoolNanjingChina
| | - Liang-Jian Chen
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Yang Wang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | | | - Zhi-Xia Yang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Dong Zhang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|