Ca2+ regulation in the absence of the iplA gene product in Dictyostelium discoideum.
BMC Cell Biol 2005;
6:13. [PMID:
15760480 PMCID:
PMC555532 DOI:
10.1186/1471-2121-6-13]
[Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 03/11/2005] [Indexed: 11/10/2022] Open
Abstract
Background
Stimulation of Dictyostelium discoideum with cAMP evokes an elevation of the cytosolic free Ca2+ concentration ([Ca2+]i). The [Ca2+]i-change is composed of liberation of stored Ca2+ and extracellular Ca2+-entry. The significance of the [Ca2+]i-transient for chemotaxis is under debate. Abolition of chemotactic orientation and migration by Ca2+-buffers in the cytosol indicates that a [Ca2+]i-increase is required for chemotaxis. Yet, the iplA- mutant disrupted in a gene bearing similarity to IP3-receptors of higher eukaryotes aggregates despite the absence of a cAMP-induced [Ca2+]i-transient which favours the view that [Ca2+]i-changes are insignificant for chemotaxis.
Results
We investigated Ca2+-fluxes and the effect of their disturbance on chemotaxis and development of iplA- cells. Differentiation was altered as compared to wild type amoebae and sensitive towards manipulation of the level of stored Ca2+. Chemotaxis was impaired when [Ca2+]i-transients were suppressed by the presence of a Ca2+-chelator in the cytosol of the cells. Analysis of ion fluxes revealed that capacitative Ca2+-entry was fully operative in the mutant. In suspensions of intact and permeabilized cells cAMP elicited extracellular Ca2+-influx and liberation of stored Ca2+, respectively, yet to a lesser extent than in wild type. In suspensions of partially purified storage vesicles ATP-induced Ca2+-uptake and Ca2+-release activated by fatty acids or Ca2+-ATPase inhibitors were similar to wild type. Mn2+-quenching of fura2 fluorescence allows to study Ca2+-influx indirectly and revealed that the responsiveness of mutant cells was shifted to higher concentrations: roughly 100 times more Mn2+ was necessary to observe agonist-induced Mn2+-influx. cAMP evoked a [Ca2+]i-elevation when stores were strongly loaded with Ca2+, again with a similar shift in sensitivity in the mutant. In addition, basal [Ca2+]i was significantly lower in iplA- than in wild type amoebae.
Conclusion
These results support the view that [Ca2+]i-transients are essential for chemotaxis and differentiation. Moreover, capacitative and agonist-activated ion fluxes are regulated by separate pathways that are mediated either by two types of channels in the plasma membrane or by distinct mechanisms coupling Ca2+-release from stores to Ca2+-entry in Dictyostelium. The iplA- strain retains the capacitative Ca2+-entry pathway and an impaired agonist-activated pathway that operates with reduced efficiency or at higher ionic pressure.
Collapse