51
|
Park HY, Wu C, Yonemoto L, Murphy-Smith M, Wu H, Stachur C, Gilchrest B. MITF mediates cAMP-induced protein kinase C-beta expression in human melanocytes. Biochem J 2006; 395:571-8. [PMID: 16411896 PMCID: PMC1462691 DOI: 10.1042/bj20051388] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cAMP-dependent pathway up-regulates MITF (microphthalmia-associated transcription factor), important for key melanogenic proteins such as tyrosinase, TRP-1 (tyrosinase-related protein 1) and TRP-2. We asked whether MITF is also a key transcription factor for PKC-beta (protein kinase C-beta), required to phosphorylate otherwise inactive tyrosinase. When paired cultures of human melanocytes were treated with isobutylmethylxanthine, known to increase intracellular cAMP, both protein and mRNA levels of PKC-beta were induced by 24 h. To determine whether MITF modulates PKC-beta expression, paired cultures of human melanocytes were transfected with dn-MITF (dominant-negative MITF) or empty control vector. By immunoblotting, PKC-beta protein was reduced by 63+/-3.7% within 48 h. Co-transfection of an expression vector for MITF-M, the MITF isoform specific for pigment cells, or empty control vector with a full-length PKC-beta promoter-CAT (chloramphenicol acetyltransferase) reporter construct (PKC-beta/CAT) into Cos-7 cells showed >60-fold increase in CAT activity. Melanocytes abundantly also expressed MITF-A, as well as the MITF-B and MITF-H isoforms. However, in contrast with MITF-M, MITF-A failed to transactivate co-expressed PKC-beta/CAT or CAT constructs under the control of a full-length tyrosinase promoter. Together, these results demonstrate that MITF, specifically MITF-M, is a key transcription factor for PKC-beta, linking the PKC- and cAMP-dependent pathways in regulation of melanogenesis.
Collapse
Affiliation(s)
- Hee-Young Park
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street J-205, Boston, MA 02118-2394, U.S.A
- To whom correspondence should be addressed (email )
| | - Christina Wu
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street J-205, Boston, MA 02118-2394, U.S.A
| | - Laurie Yonemoto
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street J-205, Boston, MA 02118-2394, U.S.A
| | - Melissa Murphy-Smith
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street J-205, Boston, MA 02118-2394, U.S.A
| | - Heng Wu
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street J-205, Boston, MA 02118-2394, U.S.A
| | - Christina M. Stachur
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street J-205, Boston, MA 02118-2394, U.S.A
| | - Barbara A. Gilchrest
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street J-205, Boston, MA 02118-2394, U.S.A
| |
Collapse
|
52
|
Wang N, Hebert DN. Tyrosinase maturation through the mammalian secretory pathway: bringing color to life. ACTA ACUST UNITED AC 2006; 19:3-18. [PMID: 16420243 DOI: 10.1111/j.1600-0749.2005.00288.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tyrosinase has been extensively utilized as a model substrate to study the maturation of glycoproteins in the mammalian secretory pathway. The visual nature of its enzymatic activity (melanin production) has facilitated the identification and characterization of the proteins that assist it becoming a functional enzyme, localized to its proper cellular location. Here, we review the steps involved in the maturation of tyrosinase from when it is first synthesized by cytosolic ribosomes until the mature protein reaches its post-Golgi residence in the melanosomes. These steps include protein processing, covalent modifications, chaperone binding, oligomerization, and trafficking. The disruption of any of these steps can lead to a wide range of pigmentation disorders.
Collapse
Affiliation(s)
- Ning Wang
- Program in Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | | |
Collapse
|
53
|
Ando H, Wen ZM, Kim HY, Valencia J, Costin GE, Watabe H, Yasumoto KI, Niki Y, Kondoh H, Ichihashi M, Hearing V. Intracellular composition of fatty acid affects the processing and function of tyrosinase through the ubiquitin-proteasome pathway. Biochem J 2006; 394:43-50. [PMID: 16232122 PMCID: PMC1386001 DOI: 10.1042/bj20051419] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proteasomes are multicatalytic proteinase complexes within cells that selectively degrade ubiquitinated proteins. We have recently demonstrated that fatty acids, major components of cell membranes, are able to regulate the proteasomal degradation of tyrosinase, a critical enzyme required for melanin biosynthesis, in contrasting manners by relative increases or decreases in the ubiquitinated tyrosinase. In the present study, we show that altering the intracellular composition of fatty acids affects the post-Golgi degradation of tyrosinase. Incubation with linoleic acid (C18:2) dramatically changed the fatty acid composition of cultured B16 melanoma cells, i.e. the remarkable increase in polyunsaturated fatty acids such as linoleic acid and arachidonic acid (C20:4) was compensated by the decrease in monounsaturated fatty acids such as oleic acid (C18:1) and palmitoleic acid (C16:1), with little effect on the proportion of saturated to unsaturated fatty acid. When the composition of intracellular fatty acids was altered, tyrosinase was rapidly processed to the Golgi apparatus from the ER (endoplasmic reticulum) and the degradation of tyrosinase was increased after its maturation in the Golgi. Retention of tyrosinase in the ER was observed when cells were treated with linoleic acid in the presence of proteasome inhibitors, explaining why melanin synthesis was decreased in cells treated with linoleic acid and a proteasome inhibitor despite the abrogation of tyrosinase degradation. These results suggest that the intracellular composition of fatty acid affects the processing and function of tyrosinase in connection with the ubiquitin-proteasome pathway and suggest that this might be a common physiological approach to regulate protein degradation.
Collapse
Affiliation(s)
- Hideya Ando
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
| | - Zhi-Ming Wen
- †Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD 20852, U.S.A
| | - Hee-Yong Kim
- †Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD 20852, U.S.A
| | - Julio C. Valencia
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
| | - Gertrude-E. Costin
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
| | - Hidenori Watabe
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
| | - Ken-ichi Yasumoto
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
| | | | | | | | - Vincent J. Hearing
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
54
|
Ni-Komatsu L, Orlow SJ. Heterologous expression of tyrosinase recapitulates the misprocessing and mistrafficking in oculocutaneous albinism type 2: effects of altering intracellular pH and pink-eyed dilution gene expression. Exp Eye Res 2005; 82:519-28. [PMID: 16199032 DOI: 10.1016/j.exer.2005.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 08/09/2005] [Accepted: 08/11/2005] [Indexed: 11/17/2022]
Abstract
The processing and trafficking of tyrosinase, a melanosomal protein essential for pigmentation, was investigated in a human epithelial 293 cell line that stably expresses the protein. The effects of the pink-eyed dilution (p) gene product, in which mutations result in oculocutaneous albinism type 2 (OCA2), on the processing and trafficking of tyrosinase in this cell line were studied. The majority of tyrosinase was retained in the endoplasmic reticulum-Golgi intermediate compartment and the early Golgi compartment in the 293 cells expressing the protein. Coexpression of p could partially correct the mistrafficking of tyrosinase in 293 cells. Tyrosinase was targeted to the late endosomal and lysosomal compartments after treatment of the cells with compounds that correct the tyrosinase mistrafficking in albino melanocytes, most likely through altering intracellular pH, while the substrate tyrosine had no effect on the processing of tyrosinase. Remarkably, this heterologous expression system recapitulates the defective processing and mistrafficking of tyrosinase observed in OCA2 albino melanocytes and certain amelanotic melanoma cells. Coexpression of other melanosomal proteins in this heterologous system may further aid our understanding of the details of normal and pathologic processing of melanosomal proteins.
Collapse
Affiliation(s)
- Li Ni-Komatsu
- The Ronald O. Perelman Department of Dermatology and Cell Biology, New York University School of Medicine, Dermatology Room H-100, NYU School of Medicine, 560 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
55
|
Wang N, Daniels R, Hebert DN. The cotranslational maturation of the type I membrane glycoprotein tyrosinase: the heat shock protein 70 system hands off to the lectin-based chaperone system. Mol Biol Cell 2005; 16:3740-52. [PMID: 15958486 PMCID: PMC1182312 DOI: 10.1091/mbc.e05-05-0381] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The maturation of eukaryotic secretory cargo initiates cotranslationally and cotranslocationally as the polypeptide chain emerges into the endoplasmic reticulum lumen. Here, we characterized the cotranslational maturation pathway for the human type I membrane glycoprotein tyrosinase. To recapitulate the cotranslational events, including glycosylation, signal sequence cleavage, chaperone binding, and oxidation, abbreviated transcripts lacking a stop codon were in vitro translated in the presence of semipermeabilized melanocyte membranes. This created a series of ribosome/translocon-arrested chains of increasing lengths, simulating intermediates in the cotranslational folding process. Initially, nascent chains were found to associate with the heat shock protein (Hsp) 70 family member BiP. As the nascent chains elongated and additional glycans were transferred, BiP binding rapidly decreased and the lectin-based chaperone system was recruited in its place. The lectin chaperone calnexin bound to the nascent chain after the addition of two glycans, and calreticulin association followed upon the addition of a third. The glycan-specific oxidoreductase ERp57 was cross-linked to tyrosinase when calnexin and calreticulin were associated. This timing coincided with the formation of disulfide bonds within tyrosinase and the cleavage of its signal sequence. Therefore, tyrosinase maturation initiates cotranslationally with the Hsp70 system and is handed off to the lectin chaperone system that first uses calnexin before calreticulin. Interestingly, divergence in the maturation pathways of wild-type and mutant albino tyrosinase can already be observed for translocon-arrested nascent chains.
Collapse
Affiliation(s)
- Ning Wang
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
56
|
Farinha CM, Amaral MD. Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin. Mol Cell Biol 2005; 25:5242-52. [PMID: 15923638 PMCID: PMC1140594 DOI: 10.1128/mcb.25.12.5242-5252.2005] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2004] [Revised: 11/16/2004] [Accepted: 03/04/2005] [Indexed: 11/20/2022] Open
Abstract
Biosynthesis and folding of multidomain transmembrane proteins is a complex process. Structural fidelity is monitored by endoplasmic reticulum (ER) quality control involving the molecular chaperone calnexin. Retained misfolded proteins undergo ER-associated degradation (ERAD) through the ubiquitin-proteasome pathway. Our data show that the major degradation pathway of the cystic fibrosis transmembrane conductance regulator (CFTR) with F508del (the most frequent mutation found in patients with the genetic disease cystic fibrosis) from the ER is independent of calnexin. Moreover, our results demonstrate that inhibition of mannose-processing enzymes, unlike most substrate glycoproteins, does not stabilize F508del-CFTR, although wild-type (wt) CFTR is drastically stabilized under the same conditions. Together, our data support a novel model by which wt and F508del-CFTR undergo ERAD from two distinct checkpoints, the mutant being disposed of independently of N-glycosidic residues and calnexin, probably by the Hsc70/Hsp70 machinery, and wt CFTR undergoing glycan-mediated ERAD.
Collapse
Affiliation(s)
- Carlos M Farinha
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | | |
Collapse
|
57
|
Hall AM, Orlow SJ. Degradation of tyrosinase induced by phenylthiourea occurs following Golgi maturation. ACTA ACUST UNITED AC 2005; 18:122-9. [PMID: 15760341 DOI: 10.1111/j.1600-0749.2005.00213.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tyrosinase, the rate-limiting enzyme of melanin synthesis, is a di-copper metalloprotein that catalyzes the conversion of L-tyrosine to L-DOPAquinone. Phenylthiourea (PTU) is a well-known inhibitor of tyrosinase and melanin synthesis and is known to interact with sweet potato catechol oxidase, an enzyme possessing copper binding domain homology to tyrosinase. While PTU is frequently used to induce hypopigmentation in biological systems, little is known about its effects on tyrosinase and other melanogenic proteins. We have found that PTU induces degradation of tyrosinase but not of other melanogenic proteins including the tyrosinase-related metalloproteins tyrosinase-related protein (Tyrp)1 and Tyrp2. Using pulse-chase analysis coupled with glycosidase digestion, we observed that tyrosinase degradation occurs following complete maturation of the protein and that degradation was reversed by cysteine protease inhibitor E64 but not proteasome inhibitor N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal. We conclude that PTU specifically induces tyrosinse degradation following Golgi maturation. Our data suggest that in addition to well-known ER-directed quality control, tyrosinase is also subject to post-Golgi quality control.
Collapse
Affiliation(s)
- Andrea M Hall
- The Ronald O. Perelman Department of Dermatology and the Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | | |
Collapse
|
58
|
Bolt G, Kristensen C, Steenstrup TD. Posttranslational N-glycosylation takes place during the normal processing of human coagulation factor VII. Glycobiology 2004; 15:541-7. [PMID: 15616124 DOI: 10.1093/glycob/cwi032] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
N-glycosylation is normally a cotranslational process that occurs during translocation of the nascent protein to the endoplasmic reticulum. In the present study, however, we demonstrate posttranslational N-glycosylation of recombinant human coagulation factor VII (FVII) in CHO-K1 and 293A cells. Human FVII has two N-glycosylation sites (N145 and N322). Pulse-chase labeled intracellular FVII migrated as two bands corresponding to FVII with one and two N-glycans, respectively. N-glycosidase treatment converted both of these band into a single band, which comigrated with mutated FVII without N-glycans. Immediately after pulse, most labeled intracellular FVII had one N-glycan, but during a 1-h chase, the vast majority was processed into FVII with two N-glycans, demonstrating posttranslational N-glycosylation of FVII. Pulse-chase analysis of N-glycosylation site knockout mutants demonstrated cotranslational glycosylation of N145 but primarily or exclusively posttranslational glycosylation of N322. The posttranslational N-glycosylation appeared to take place in the same time frame as the folding of nascent FVII into a secretion-competent conformation, indicating a link between the two processes. We propose that the cotranslational conformation(s) of FVII are unfavorable for glycosylation at N332, whereas a more favorable conformation is obtained during the posttranslational folding. This is the first documentation of posttranslational N-glycosylation of a non-modified protein in mammalian cells with an intact N-glycosylation machinery. Thus, the present study demonstrates that posttranslational N-glycosylation can be a part of the normal processing of glycoproteins.
Collapse
Affiliation(s)
- Gert Bolt
- Mammalian Cell Technology, Novo Nordisk A/S, Novo Allé, 2880 Bagsvaerd, Denmark.
| | | | | |
Collapse
|