51
|
Simon DN, Wilson KL. Partners and post-translational modifications of nuclear lamins. Chromosoma 2013; 122:13-31. [PMID: 23475188 DOI: 10.1007/s00412-013-0399-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 12/16/2022]
Abstract
Nuclear intermediate filament networks formed by A- and B-type lamins are major components of the nucleoskeleton that are required for nuclear structure and function, with many links to human physiology. Mutations in lamins cause diverse human diseases ('laminopathies'). At least 54 partners interact with human A-type lamins directly or indirectly. The less studied human lamins B1 and B2 have 23 and seven reported partners, respectively. These interactions are likely to be regulated at least in part by lamin post-translational modifications. This review summarizes the binding partners and post-translational modifications of human lamins and discusses their known or potential implications for lamin function.
Collapse
Affiliation(s)
- Dan N Simon
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
52
|
Refsgaard L, Olesen MS, Møller DV, Christiansen M, Haunsø S, Svendsen JH, Christensen AH. Mutation analysis of the candidate genes SCN1B- 4B, FHL1, and LMNA in patients with arrhythmogenic right ventricular cardiomyopathy. Appl Transl Genom 2012; 1:44-46. [PMID: 27896052 PMCID: PMC5121199 DOI: 10.1016/j.atg.2012.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
INTRODUCTION Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetically determined heart disease characterized by fibrofatty infiltrations in the myocardium, right and/or left ventricular involvement, and ventricular tachyarrhythmias. Although ten genes have been associated with ARVC, only about 40% of the patients have an identifiable disease-causing mutation. In the present study we aimed at investigating the involvement of the genes SCN1B-SCN4B, FHL1, and LMNA in the pathogenesis of ARVC. METHODS Sixty-five unrelated patients (55 fulfilling ARVC criteria and 10 borderline cases) were screened for variants in SCN1B-4B, FHL1, and LMNA by direct sequencing and LightScanner melting curve analysis. RESULTS A total of 28 sequence variants were identified: seven in SCN1B, three in SCN2B, two in SCN3B, two in SCN4B, four in FHL1, and ten in LMNA. Three of the variants were novel. One of the variants was non-synonymous. No disease-causing mutations were identified. CONCLUSIONS In our limited sized cohort the six studied candidate genes were not associated with ARVC.
Collapse
Affiliation(s)
- Lena Refsgaard
- Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Juliane Maries Vej 20, 2100 Copenhagen O, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| | - Morten Salling Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Juliane Maries Vej 20, 2100 Copenhagen O, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen O, Denmark
- Corresponding author at: Laboratory for Molecular Cardiology, Section 9312, Department of Cardiology, Rigshospitalet, Juliane Maries vej 20, 2100 Copenhagen O, Denmark. Tel.: + 45 35456506; fax: + 45 35456500.
| | - Daniel Vega Møller
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Ørestads Boulevard 5, 2300 Copenhagen S, Denmark
| | - Michael Christiansen
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Ørestads Boulevard 5, 2300 Copenhagen S, Denmark
| | - Stig Haunsø
- Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Juliane Maries Vej 20, 2100 Copenhagen O, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen O, Denmark
- Department of Medicine and Surgery, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Jesper Hastrup Svendsen
- Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Juliane Maries Vej 20, 2100 Copenhagen O, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen O, Denmark
- Department of Medicine and Surgery, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Alex Hørby Christensen
- Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Juliane Maries Vej 20, 2100 Copenhagen O, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| |
Collapse
|
53
|
Haywood AF, Merner ND, Hodgkinson KA, Houston J, Syrris P, Booth V, Connors S, Pantazis A, Quarta G, Elliott P, McKenna W, Young TL. Recurrent missense mutations in TMEM43 (ARVD5) due to founder effects cause arrhythmogenic cardiomyopathies in the UK and Canada. Eur Heart J 2012; 34:1002-11. [DOI: 10.1093/eurheartj/ehs383] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
54
|
Salilew-Wondim D, Tesfaye D, Hossain M, Held E, Rings F, Tholen E, Looft C, Cinar U, Schellander K, Hoelker M. Aberrant placenta gene expression pattern in bovine pregnancies established after transfer of cloned or in vitro produced embryos. Physiol Genomics 2012; 45:28-46. [PMID: 23092953 DOI: 10.1152/physiolgenomics.00076.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the present study, we used the global transcriptome profile approach to identify dysregulated genes, molecular pathways, and molecular functional alterations in bovine placentas derived from somatic cell nuclear transfer (SCNT) and in vitro embryo production (IVP) pregnancies compared with their artificial insemination (AI) counterparts at day 50 of gestation. For this, day 7 blastocysts derived from AI, IVP, or SCNT were transferred to oestrus-synchronized cows. The pregnant animals were slaughtered at day 50 of gestation, and the placentas were then recovered and used for transcriptome analysis using Affymetrix GeneChip bovine genome array. Results showed the SCNT placenta to be different from its AI counterpart in the expression of 1,196 transcripts. These genes were found to be associated with alterations in key biological processes and molecular pathways in SCNT placenta, and the dysregulation of 9% (n = 110) of these genes was due to transcriptional reprogramming error. IVP placenta also displayed alterations in the expression of 72 genes, of which 58 were common to SCNT placenta. Gene enrichment analysis revealed that the expression of genes involved in organ development, blood vessel development, extracellular matrix organization, and the immune system was affected in both SCNT and IVP placentas. However, 96% of the affected genes in SCNT were not significantly altered in IVP groups. Thus, the higher transcriptome dysregulation in SCNT placenta followed by IVP would reflect the degree of placental abnormality in SCNT and IVP pregnancies at day 50 of the gestation, which may have a profound effect on subsequent fetal development and health of the offspring.
Collapse
Affiliation(s)
- Dessie Salilew-Wondim
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Functional effects of the TMEM43 Ser358Leu mutation in the pathogenesis of arrhythmogenic right ventricular cardiomyopathy. BMC MEDICAL GENETICS 2012; 13:21. [PMID: 22458570 PMCID: PMC3352248 DOI: 10.1186/1471-2350-13-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 03/29/2012] [Indexed: 12/31/2022]
Abstract
Background The Ser358Leu mutation in TMEM43, encoding an inner nuclear membrane protein, has been implicated in arrhythmogenic right ventricular cardiomyopathy (ARVC). The pathogenetic mechanisms of this mutation are poorly understood. Methods To determine the frequency of TMEM43 mutations as a cause of ARVC, we screened 11 ARVC families for mutations in TMEM43 and five desmosomal genes previously implicated in the disease. Functional studies were performed in COS-7 cells transfected with wildtype, mutant, and 1:2 wildtype:mutant TMEM43 to determine the effect of the Ser358Leu mutation on the stability and cellular localization of TMEM43 and other nuclear envelope and desmosomal proteins, assessed by solubility assays and immunofluorescence imaging. mRNA expression was assessed of genes potentially affected by dysfunction of the nuclear lamina. Results Three novel mutations in previously documented desmosomal genes, but no mutations in TMEM43, were identified. COS-7 cells transfected with mutant TMEM43 exhibited no change in desmosomal stability. Stability and nuclear membrane localization of mutant TMEM43 and of lamin B and emerin were normal. Mutant TMEM43 did not alter the expression of genes located on chromosome 13, previously implicated in nuclear envelope protein mutations leading to skeletal muscular dystrophies. Conclusions Mutant TMEM43 exhibits normal cellular localization and does not disrupt integrity and localization of other nuclear envelope and desmosomal proteins. The pathogenetic role of TMEM43 mutations in ARVC remains uncertain.
Collapse
|
56
|
Abstract
The evolution of the nucleus, the defining feature of eukaryotic cells, was long shrouded in speculation and mystery. There is now strong evidence that nuclear pore complexes (NPCs) and nuclear membranes coevolved with the endomembrane system, and that the last eukaryotic common ancestor (LECA) had fully functional NPCs. Recent studies have identified many components of the nuclear envelope in living Opisthokonts, the eukaryotic supergroup that includes fungi and metazoan animals. These components include diverse chromatin-binding membrane proteins, and membrane proteins with adhesive lumenal domains that may have contributed to the evolution of nuclear membrane architecture. Further discoveries about the nucleoskeleton suggest that the evolution of nuclear structure was tightly coupled to genome partitioning during mitosis.
Collapse
Affiliation(s)
- Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
57
|
Gaertner A, Schwientek P, Ellinghaus P, Summer H, Golz S, Kassner A, Schulz U, Gummert J, Milting H. Myocardial transcriptome analysis of human arrhythmogenic right ventricular cardiomyopathy. Physiol Genomics 2011; 44:99-109. [PMID: 22085907 DOI: 10.1152/physiolgenomics.00094.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiomyopathy primarily of the right ventricle characterized through fibrofatty replacement of cardiomyocytes. The genetic etiology in ARVC patients is most commonly caused by dominant inheritance and high genetic heterogeneity. Though histological examinations of ARVC-affected human myocardium reveals fibrolipomatous replacement, the molecular mechanisms leading to loss of cardiomyocytes are largely unknown. We therefore analyzed the transcriptomes of six ARVC hearts and compared our findings to six nonfailing donor hearts (NF). To characterize the ARVC-specific transcriptome, we compared our findings to samples from seven patients with idiopathic dilated cardiomyopathy (DCM). The myocardial DCM and ARVC samples were prepared from hearts explanted during an orthotopic heart transplantation representing myocardium from end-stage heart failure patients (NYHA IV). From each heart, left (LV) and right ventricular (RV) myocardial samples were analyzed by Affymetrix HG-U133 Plus 2.0 arrays, adding up to six sample groups. Unsupervised cluster analyses of the groups revealed a clear separation of NF and cardiomyopathy samples. However, in contrast to the other samples, the analyses revealed no distinct expression pattern in LV and RV of myocardial ARVC samples. We further identified differentially expressed transcripts using t-tests and found transcripts separating diseased and NF ventricular myocardium. Of note, in failing myocardium only ~15-16% of the genes are commonly regulated compared with NF samples. In addition both cardiomyopathies are clearly distinct on the transcriptome level. Comparison of the expression patterns between the failing RV and LV using a paired t-test revealed a lack of major differences between LV and RV gene expression in ARVC hearts. Our study is the first analysis of specific ARVC-related RV and LV gene expression patterns in terminal failing human hearts.
Collapse
Affiliation(s)
- Anna Gaertner
- Herz- und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Klinik für Thorax- und Kardiovaskularchirurgie, Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Bad Oeynhausen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Larance M, Kirkwood KJ, Xirodimas DP, Lundberg E, Uhlen M, Lamond AI. Characterization of MRFAP1 turnover and interactions downstream of the NEDD8 pathway. Mol Cell Proteomics 2011; 11:M111.014407. [PMID: 22038470 PMCID: PMC3316733 DOI: 10.1074/mcp.m111.014407] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The NEDD8-Cullin E3 ligase pathway plays an important role in protein homeostasis, in particular the degradation of cell cycle regulators and transcriptional control networks. To characterize NEDD8-cullin target proteins, we performed a quantitative proteomic analysis of cells treated with MLN4924, a small molecule inhibitor of the NEDD8 conjugation pathway. MRFAP1 and its interaction partner, MORF4L1, were among the most up-regulated proteins after NEDD8 inhibition in multiple human cell lines. We show that MRFAP1 has a fast turnover rate in the absence of MLN4924 and is degraded via the ubiquitin-proteasome system. The increased abundance of MRFAP1 after MLN4924 treatment results from a decreased rate of degradation. Characterization of the binding partners of both MRFAP1 and MORF4L1 revealed a complex protein-protein interaction network. MRFAP1 bound to a number of E3 ubiquitin ligases, including CUL4B, but not to components of the NuA4 complex, including MRGBP, which bound to MORF4L1. These data indicate that MRFAP1 may regulate the ability of MORF4L1 to interact with chromatin-modifying enzymes by binding to MORF4L1 in a mutually exclusive manner with MRGBP. Analysis of MRFAP1 expression in human tissues by immunostaining with a MRFAP1-specific antibody revealed that it was detectable in only a small number of tissues, in particular testis and brain. Strikingly, analysis of the seminiferous tubules of the testis showed the highest nuclear staining in the spermatogonia and much weaker staining in the spermatocytes and spermatids. MRGBP was inversely correlated with MRFAP1 expression in these cell types, consistent with an exchange of MORF4L1 interaction partners as cells progress through meiosis in the testis. These data highlight an important new arm of the NEDD8-cullin pathway.
Collapse
Affiliation(s)
- Mark Larance
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | | | | | | | | | | |
Collapse
|
59
|
Simon DN, Wilson KL. The nucleoskeleton as a genome-associated dynamic 'network of networks'. Nat Rev Mol Cell Biol 2011; 12:695-708. [PMID: 21971041 DOI: 10.1038/nrm3207] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the cytosol, actin polymers, intermediate filaments and microtubules can anchor to cell surface adhesions and interlink to form intricate networks. This cytoskeleton is anchored to the nucleus through LINC (links the nucleoskeleton and cytoskeleton) complexes that span the nuclear envelope and in turn anchor to networks of filaments in the nucleus. The metazoan nucleoskeleton includes nuclear pore-linked filaments, A-type and B-type lamin intermediate filaments, nuclear mitotic apparatus (NuMA) networks, spectrins, titin, 'unconventional' polymers of actin and at least ten different myosin and kinesin motors. These elements constitute a poorly understood 'network of networks' that dynamically reorganizes during mitosis and is responsible for genome organization and integrity.
Collapse
Affiliation(s)
- Dan N Simon
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
60
|
Chen Y, Sánchez A, Rubio ME, Kohl T, Pardo LA, Stühmer W. Functional K(v)10.1 channels localize to the inner nuclear membrane. PLoS One 2011; 6:e19257. [PMID: 21559285 PMCID: PMC3086910 DOI: 10.1371/journal.pone.0019257] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 03/31/2011] [Indexed: 01/09/2023] Open
Abstract
Ectopically expressed human KV10.1 channels are relevant players in tumor biology. However, their function as ion channels at the plasma membrane does not totally explain their crucial role in tumors. Both in native and heterologous systems, it has been observed that a majority of KV10.1 channels remain at intracellular locations. In this study we investigated the localization and possible roles of perinuclear KV10.1. We show that KV10.1 is expressed at the inner nuclear membrane in both human and rat models; it co-purifies with established inner nuclear membrane markers, shows resistance to detergent extraction and restricted mobility, all of them typical features of proteins at the inner nuclear membrane. KV10.1 channels at the inner nuclear membrane are not all transported directly from the ER but rather have been exposed to the extracellular milieu. Patch clamp experiments on nuclei devoid of external nuclear membrane reveal the existence of channel activity compatible with KV10.1. We hypothesize that KV10.1 channels at the nuclear envelope might participate in the homeostasis of nuclear K+, or indirectly interact with heterochromatin, both factors known to affect gene expression.
Collapse
Affiliation(s)
- Ye Chen
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Araceli Sánchez
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - María E. Rubio
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Tobias Kohl
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Luis A. Pardo
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- * E-mail: (LAP); (WS)
| | - Walter Stühmer
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- * E-mail: (LAP); (WS)
| |
Collapse
|
61
|
Liang WC, Mitsuhashi H, Keduka E, Nonaka I, Noguchi S, Nishino I, Hayashi YK. TMEM43 mutations in emery-dreifuss muscular dystrophy-related myopathy. Ann Neurol 2011; 69:1005-13. [DOI: 10.1002/ana.22338] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/25/2010] [Accepted: 11/12/2010] [Indexed: 01/18/2023]
|
62
|
Christensen AH, Andersen CB, Tybjaerg-Hansen A, Haunso S, Svendsen JH. Mutation analysis and evaluation of the cardiac localization of TMEM43 in arrhythmogenic right ventricular cardiomyopathy. Clin Genet 2011; 80:256-64. [DOI: 10.1111/j.1399-0004.2011.01623.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
63
|
Abstract
A- and B-type lamins are the major intermediate filaments of the nucleus. Lamins engage in a plethora of stable and transient interactions, near the inner nuclear membrane and throughout the nucleus. Lamin-binding proteins serve an amazingly diverse range of functions. Numerous inner-membrane proteins help anchor lamin filaments to the nuclear envelope, serving as part of the nuclear "lamina" network that is essential for nuclear architecture and integrity. Certain lamin-binding proteins of the inner membrane bind partners in the outer membrane and mechanically link lamins to the cytoskeleton. Inside the nucleus, lamin-binding proteins appear to serve as the "adaptors" by which the lamina organizes chromatin, influences gene expression and epigenetic regulation, and modulates signaling pathways. Transient interactions of lamins with key components of the transcription and replication machinery may provide an additional level of regulation or support to these essential events.
Collapse
Affiliation(s)
- Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
64
|
Bengtsson L, Schwappacher R, Roth M, Boergermann JH, Hassel S, Knaus P. PP2A regulates BMP signalling by interacting with BMP receptor complexes and by dephosphorylating both the C-terminus and the linker region of Smad1. J Cell Sci 2009; 122:1248-57. [PMID: 19339557 DOI: 10.1242/jcs.039552] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Phosphorylation of Smads is a crucial regulatory step in the signal transduction pathway initiated by bone morphogenetic proteins (BMPs). Although the dephosphorylation events terminating the pathway in the nucleus have been characterized, little is known about the dephosphorylation of Smads in the cytoplasm. In a proteomic screen for proteins interacting with the BMP type-II receptor, we found the regulatory Bbeta subunit of PP2A. PP2A is one of the major serine/threonine phosphatases involved in cell-cycle regulation and signal transduction. Here, we present data showing that the Bbeta subunit of PP2A interacts with both BMP type-I and type-II receptors. Furthermore, we demonstrate that several B subunits can associate with the BMP type-II receptor, independently of the kinase activity of the receptor and the catalytic subunit of PP2A. By contrast, the PP2A catalytic subunit is required for PP2A function at the receptor complex. This function of PP2A is the dephosphorylation of Smad1, mainly in the linker region. PP2A-mediated dephosphorylation of the BMP-Smad linker region leads to increased nuclear translocation of Smads and overall amplification of the BMP signal. Although other phosphatases identified within the BMP pathway are all shown to inhibit signalling, PP2A is the first example for a signalling stimulatory phosphatase within this pathway.
Collapse
Affiliation(s)
- Luiza Bengtsson
- Institute of Chemistry and Biochemistry, FU Berlin, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|