51
|
Kabaso D, Gongadze E, Elter P, van Rienen U, Gimsa J, Kralj-Iglič V, Iglič A. Attachment of rod-like (BAR) proteins and membrane shape. Mini Rev Med Chem 2011; 11:272-82. [PMID: 21428902 PMCID: PMC3343385 DOI: 10.2174/138955711795305353] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 03/03/2011] [Accepted: 12/24/2010] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that cellular function depends on rod-like membrane proteins, among them Bin/Amphiphysin/Rvs (BAR) proteins may curve the membrane leading to physiologically important membrane invaginations and membrane protrusions. The membrane shaping induced by BAR proteins has a major role in various biological processes such as cell motility and cell growth. Different models of binding of BAR domains to the lipid bilayer are described. The binding includes hydrophobic insertion loops and electrostatic interactions between basic amino acids at the concave region of the BAR domain and negatively charged lipids. To shed light on the elusive binding dynamics, a novel experiment is proposed to expand the technique of single-molecule AFM for the traction of binding energy of a single BAR domain.
Collapse
Affiliation(s)
- D Kabaso
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
52
|
Cdc42 interacting protein 4 (CIP4) is essential for integrin-dependent T-cell trafficking. Proc Natl Acad Sci U S A 2010; 107:16252-6. [PMID: 20805498 DOI: 10.1073/pnas.1002747107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The F-BAR domain containing protein CIP4 (Cdc42 interacting protein 4) interacts with Cdc42 and WASP/N-WASP and is thought to participate in the assembly of filamentous actin. CIP4(-/-) mice had normal T- and B-lymphocyte development but impaired T cell-dependent antibody production, IgG antibody affinity maturation, and germinal center (GC) formation, despite an intact CD40L-CD40 axis. CIP4(-/-) mice also had impaired contact hypersensitivity (CHS) to haptens, and their T cells failed to adoptively transfer CHS. Ovalbumin-activated CD4(+) effector T cells from CIP4(-/-)/OT-II mice migrated poorly to antigen-challenged skin. Activated CIP4(-/-) T cells exhibited impaired adhesion and polarization on immobilized VCAM-1 and ICAM-1 and defective arrest and transmigration across murine endothelial cell monolayers under shear flow conditions. These results demonstrate an important role for CIP4 in integrin-dependent T cell-dependent antibody responses and GC formation and in integrin-mediated recruitment of effector T cells to cutaneous sites of antigen-driven immune reactions.
Collapse
|
53
|
Affiliation(s)
- Jürgen A W Heymann
- Laboratory of Cell Biochemistry and Biology, NIH-NIDDK, Bethesda, MD 20892, USA.
| | | |
Collapse
|
54
|
Yoon Y, Tong J, Lee PJ, Albanese A, Bhardwaj N, Källberg M, Digman MA, Lu H, Gratton E, Shin YK, Cho W. Molecular basis of the potent membrane-remodeling activity of the epsin 1 N-terminal homology domain. J Biol Chem 2009; 285:531-40. [PMID: 19880963 DOI: 10.1074/jbc.m109.068015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The mechanisms by which cytosolic proteins reversibly bind the membrane and induce the curvature for membrane trafficking and remodeling remain elusive. The epsin N-terminal homology (ENTH) domain has potent vesicle tubulation activity despite a lack of intrinsic molecular curvature. EPR revealed that the N-terminal alpha-helix penetrates the phosphatidylinositol 4,5-bisphosphate-containing membrane at a unique oblique angle and concomitantly interacts closely with helices from neighboring molecules in an antiparallel orientation. The quantitative fluorescence microscopy showed that the formation of highly ordered ENTH domain complexes beyond a critical size is essential for its vesicle tubulation activity. The mutations that interfere with the formation of large ENTH domain complexes abrogated the vesicle tubulation activity. Furthermore, the same mutations in the intact epsin 1 abolished its endocytic activity in mammalian cells. Collectively, these results show that the ENTH domain facilitates the cellular membrane budding and fission by a novel mechanism that is distinct from that proposed for BAR domains.
Collapse
Affiliation(s)
- Youngdae Yoon
- Department of Bioengineering, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Drosophila Cip4/Toca-1 integrates membrane trafficking and actin dynamics through WASP and SCAR/WAVE. Curr Biol 2009; 19:1429-37. [PMID: 19716703 DOI: 10.1016/j.cub.2009.07.058] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/03/2009] [Accepted: 07/20/2009] [Indexed: 11/21/2022]
Abstract
BACKGROUND Developmental processes are intimately tied to signaling events that integrate the dynamic reorganization of the actin cytoskeleton and membrane dynamics. The F-BAR-domain-containing proteins are prime candidates to couple actin dynamics and membrane trafficking in different morphogenetic processes. RESULTS Here, we present the functional analysis of the Drosophila F-BAR protein Cip4/Toca1 (Cdc42-interacting protein 4/transducer of Cdc42-dependent actin assembly 1). Cip4 is able to form a complex with WASP and SCAR/WAVE and recruits both actin-nucleation-promoting factors to invaginating membranes and endocytic vesicles. Actin-comet-tail-based movement of these vesicles depends not only on WASP but largely on WAVE function. In vivo, loss of cip4 function causes multiple wing hairs. A similar phenotype is observed when vesicle scission is affected after Dynamin suppression. Gene dosage experiments show that Cip4 and WAVE functionally interact to restrict wing hair formation. Further rescue experiments confirm that Cip4 is able to act through WAVE and WASP in vivo. Biochemical and functional data support a model in which Cdc42 acts upstream of Cip4 and recruits not only WASP but also SCAR/WAVE via Abi to control Dynamin-dependent cell polarization in the wing. CONCLUSION Cip4 integrates membrane trafficking and actin dynamics through WASP and WAVE. First, Cip4 promotes membrane invaginations and triggers the vesicle scission by recruiting Dynamin to the neck of nascent vesicles. Second, Cip4 recruits WASP and WAVE proteins to induce actin polymerization, supporting vesicle scission and providing the force for vesicle movement.
Collapse
|
56
|
Takkunen M, Hukkanen M, Liljeström M, Grenman R, Virtanen I. Podosome-like structures of non-invasive carcinoma cells are replaced in epithelial-mesenchymal transition by actin comet-embedded invadopodia. J Cell Mol Med 2009; 14:1569-93. [PMID: 19656240 PMCID: PMC3829022 DOI: 10.1111/j.1582-4934.2009.00868.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes and invadopodia are actin-based structures at the ventral cell membrane, which have a role in cell adhesion, migration and invasion. Little is known about the differences and dynamics underlying these structures. We studied podosome-like structures of oral squamous carcinoma cells and invadopodia of their invasive variant that has undergone a spontaneous epithelial-mesenchymal transition (EMT). In 3D imaging, podosomes were relatively large structures that enlarged in time, whereas invadopodia of invasive cells remained small, but were more numerous, degraded more extracellular matrix (ECM) and were morphologically strikingly different from podosomes. In live-cell imaging, highly dynamic, invadopodia-embedded actin tails were frequently released and rocketed through the cytoplasm. Resembling invadopodia, we found new club-ended cell extensions in EMT-experienced cells, which contained actin, cortactin, vinculin and MT1-matrix metalloproteinase. These dynamic cell extensions degraded ECM and, in field emission scanning electron microscopy, protruded from the dorsal cell membrane. Plectin, αII-spectrin, talin and focal adhesion kinase immunoreactivities were detected in podosome rings, whereas they were absent from invadopodia. Tensin potentially replaced talin in invadopodia. Integrin α3β1 surrounded both podosomes and invadopodia, whereas integrin αvβ5 localized only to invadopodia heads. Pacsin 2, in conjunction with filamin A, was detected early in podosomes, whereas pacsin 2 was not found in invadopodia and filamin A showed delayed accumulation. Fluorescence recovery after photobleaching indicated faster reorganization of actin, cortactin and filamin A in podosomes compared to invadopodia. In conclusion, EMT affects the invasion machinery of oral squamous carcinoma cells. Non-invasive squamous carcinoma cells constitutively organize podosomes, whereas invasive cells form invadopodia. The club-ended cell extensions, or externalized invadopodia, are involved in ECM degradation and maintenance of contact to adhesion substrate and surrounding cells during invasion.
Collapse
Affiliation(s)
- Minna Takkunen
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
57
|
Hu J, Troglio F, Mukhopadhyay A, Everingham S, Kwok E, Scita G, Craig AWB. F-BAR-containing adaptor CIP4 localizes to early endosomes and regulates Epidermal Growth Factor Receptor trafficking and downregulation. Cell Signal 2009; 21:1686-97. [PMID: 19632321 DOI: 10.1016/j.cellsig.2009.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/08/2009] [Accepted: 07/16/2009] [Indexed: 12/12/2022]
Abstract
Cdc42-Interacting Protein-4 (CIP4) family adaptors have been implicated in promoting Epidermal Growth Factor Receptor (EGFR) internalization, however, their unique or overlapping functions remain unclear. Here, we show that although CIP4 was not required for early events in clathrin-mediated endocytosis of EGFR, CIP4 localizes to vesicles containing EGFR and Rab5. Furthermore, expression of constitutively active Rab5 led to accumulation of CIP4 and the related adaptor Toca-1 in giant endosomes. Using a mutagenesis approach, we show that localization of CIP4 to endosomes is mediated in part via the curved phosphoinositide-binding face of the CIP4 F-BAR domain. Downregulation of CIP4 in A431 epidermoid carcinoma cells by RNA interference led to elevated EGFR levels, compared to control cells. Although surface expression of EGFR was not affected by CIP4 silencing, EGF-induced transit of EGFR from EEA1-positive endosomes to lysosomes was reduced compared to control cells. This correlated with more robust activation of ERK kinase and entry to S phase in CIP4-depleted A431 cells, compared to control cells. The combined silencing of CIP4 and Toca-1 was more effective in driving cells into S phase, suggesting a partial redundancy in their functions. Overall, our results implicate CIP4 and Toca-1 in regulating late events in EGFR trafficking from endosomes that serves to limit sustained ERK activation within the endosomal compartment.
Collapse
Affiliation(s)
- Jinghui Hu
- Queen's University Cancer Research Institute, Division of Cancer Biology & Genetics and Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
58
|
Nishihama R, Schreiter JH, Onishi M, Vallen EA, Hanna J, Moravcevic K, Lippincott MF, Han H, Lemmon MA, Pringle JR, Bi E. Role of Inn1 and its interactions with Hof1 and Cyk3 in promoting cleavage furrow and septum formation in S. cerevisiae. ACTA ACUST UNITED AC 2009; 185:995-1012. [PMID: 19528296 PMCID: PMC2711614 DOI: 10.1083/jcb.200903125] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytokinesis requires coordination of actomyosin ring (AMR) contraction with rearrangements of the plasma membrane and extracellular matrix. In Saccharomyces cerevisiae, new membrane, the chitin synthase Chs2 (which forms the primary septum [PS]), and the protein Inn1 are all delivered to the division site upon mitotic exit even when the AMR is absent. Inn1 is essential for PS formation but not for Chs2 localization. The Inn1 C-terminal region is necessary for localization, and distinct PXXP motifs in this region mediate functionally important interactions with SH3 domains in the cytokinesis proteins Hof1 (an F-BAR protein) and Cyk3 (whose overexpression can restore PS formation in inn1Δ cells). The Inn1 N terminus resembles C2 domains but does not appear to bind phospholipids; nonetheless, when overexpressed or fused to Hof1, it can provide Inn1 function even in the absence of the AMR. Thus, Inn1 and Cyk3 appear to cooperate in activating Chs2 for PS formation, which allows coordination of AMR contraction with ingression of the cleavage furrow.
Collapse
Affiliation(s)
- Ryuichi Nishihama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Lee S, Han JW, Leeper L, Gruver JS, Chung CY. Regulation of the formation and trafficking of vesicles from Golgi by PCH family proteins during chemotaxis. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1199-209. [PMID: 19409937 PMCID: PMC2703453 DOI: 10.1016/j.bbamcr.2009.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 04/22/2009] [Accepted: 04/24/2009] [Indexed: 12/14/2022]
Abstract
Previous study demonstrated that WASP localizes on vesicles during Dictyostelium chemotaxis and these vesicles appear to be preferentially distributed at the leading and trailing edge of migrating cells. In this study, we have examined the role of PCH family proteins, Nwk/Bzz1p-like protein (NLP) and Syndapin-like protein (SLP), in the regulation of the formation and trafficking of WASP-vesicles during chemotaxis. NLP and SLP appear to be functionally redundant and deletion of both nlp and slp genes causes the loss of polarized F-actin organization and significant defects in chemotaxis. WASP and NLP are colocalized on vesicles and interactions between two molecules via the SH3 domain of NLP/SLP and the proline-rich repeats of WASP are required for vesicle formation from Golgi. Microtubules are required for polarized trafficking of these vesicles as vesicles showing high directed mobility are absent in cells treated with nocodazole. Our results suggest that interaction of WASP with NLP/SLP is required for the formation and trafficking of vesicles from Golgi to the membrane, which might play a central role in the establishment of cell polarity during chemotaxis.
Collapse
Affiliation(s)
- S. Lee
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600
| | - J. W. Han
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600
| | - L. Leeper
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600
| | - J. S. Gruver
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600
| | - C. Y. Chung
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600
| |
Collapse
|
60
|
Pawson T, Kofler M. Kinome signaling through regulated protein-protein interactions in normal and cancer cells. Curr Opin Cell Biol 2009; 21:147-53. [PMID: 19299117 DOI: 10.1016/j.ceb.2009.02.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 02/10/2009] [Indexed: 11/25/2022]
Abstract
The flow of molecular information through normal and oncogenic signaling pathways frequently depends on protein phosphorylation, mediated by specific kinases, and the selective binding of the resulting phosphorylation sites to interaction domains present on downstream targets. This physical and functional interplay of catalytic and interaction domains can be clearly seen in cytoplasmic tyrosine kinases such as Src, Abl, Fes, and ZAP-70. Although the kinase and SH2 domains of these proteins possess similar intrinsic properties of phosphorylating tyrosine residues or binding phosphotyrosine sites, they also undergo intramolecular interactions when linked together, in a fashion that varies from protein to protein. These cooperative interactions can have diverse effects on substrate recognition and kinase activity, and provide a variety of mechanisms to link the stimulation of catalytic activity to substrate recognition. Taken together, these data have suggested how protein kinases, and the signaling pathways in which they are embedded, can evolve complex properties through the stepwise linkage of domains within single polypeptides or multi-protein assemblies.
Collapse
Affiliation(s)
- Tony Pawson
- Samuel Lunenfeld Research Institute, Mt Sinai Hospital, Toronto, Ontario, Canada.
| | | |
Collapse
|
61
|
Oh MA, Choi S, Lee MJ, Choi MC, Lee SA, Ko W, Cance WG, Oh ES, Buday L, Kim SH, Lee JW. Specific tyrosine phosphorylation of focal adhesion kinase mediated by Fer tyrosine kinase in suspended hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:781-91. [PMID: 19339212 DOI: 10.1016/j.bbamcr.2009.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 01/03/2009] [Accepted: 01/23/2009] [Indexed: 11/26/2022]
Abstract
Cell adhesion to the extracellular matrix (ECM) can activate signaling via focal adhesion kinase (FAK) leading to dynamic regulation of cellular morphology. Mechanistic basis for the lack of effective intracellular signaling by non-attached epithelial cells is poorly understood. To examine whether signaling in suspended cells is regulated by Fer cytoplasmic tyrosine kinase, we investigated the effect of ectopic Fer expression on signaling in suspended or adherent hepatocytes. We found that ectopic Fer expression in Huh7 hepatocytes in suspension or on non-permissive poly-lysine caused significant phosphorylation of FAK Tyr577, Tyr861, or Tyr925, but not Tyr397 or Tyr576. Fer-mediated FAK phosphorylation in suspended cells was independent of c-Src activity or growth factor stimulation, but dependent of cortactin expression. Consistent with these results, complex formation between FAK, Fer, and cortactin was observed in suspended cells. The Fer-mediated effect correlated with multiple membrane protrusions, even on poly-lysine. Together, these observations suggest that Fer may allow a bypass of anchorage-dependency for intracellular signal transduction in hepatocytes.
Collapse
Affiliation(s)
- Min-A Oh
- Cancer Research Institute, Cell Dynamics Research Center, Department of Tumor Biology, College of Medicine, Seoul National University, 101, Daehangro, Jongno-gu, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Saarikangas J, Zhao H, Pykäläinen A, Laurinmäki P, Mattila PK, Kinnunen PKJ, Butcher SJ, Lappalainen P. Molecular mechanisms of membrane deformation by I-BAR domain proteins. Curr Biol 2009; 19:95-107. [PMID: 19150238 DOI: 10.1016/j.cub.2008.12.029] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/26/2008] [Accepted: 12/08/2008] [Indexed: 02/06/2023]
Abstract
BACKGROUND Generation of membrane curvature is critical for the formation of plasma membrane protrusions and invaginations and for shaping intracellular organelles. Among the central regulators of membrane dynamics are the BAR superfamily domains, which deform membranes into tubular structures. In contrast to the relatively well characterized BAR and F-BAR domains that promote the formation of plasma membrane invaginations, I-BAR domains induce plasma membrane protrusions through a poorly understood mechanism. RESULTS We show that I-BAR domains induce strong PI(4,5)P(2) clustering upon membrane binding, bend the membrane through electrostatic interactions, and remain dynamically associated with the inner leaflet of membrane tubules. Thus, I-BAR domains induce the formation of dynamic membrane protrusions to the opposite direction than do BAR and F-BAR domains. Strikingly, comparison of different I-BAR domains revealed that they deform PI(4,5)P(2)-rich membranes through distinct mechanisms. IRSp53 and IRTKS I-BARs bind membranes mainly through electrostatic interactions, whereas MIM and ABBA I-BARs additionally insert an amphipathic helix into the membrane bilayer, resulting in larger tubule diameter in vitro and more efficient filopodia formation in vivo. Furthermore, FRAP analysis revealed that whereas the mammalian I-BAR domains display dynamic association with filopodia, the C. elegans I-BAR domain forms relatively stable structures inside the plasma membrane protrusions. CONCLUSIONS These data define I-BAR domain as a functional member of the BAR domain superfamily and unravel the mechanisms by which I-BAR domains deform membranes to induce filopodia in cells. Furthermore, our work reveals unexpected divergence in the mechanisms by which evolutionarily distinct groups of I-BAR domains interact with PI(4,5)P(2)-rich membranes.
Collapse
Affiliation(s)
- Juha Saarikangas
- Program in Cell and Molecular Biology, Institute of Biotechnology, P.O. Box 56, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|