51
|
Juretić N, Urzúa U, Munroe DJ, Jaimovich E, Riveros N. Differential gene expression in skeletal muscle cells after membrane depolarization. J Cell Physiol 2007; 210:819-30. [PMID: 17146758 DOI: 10.1002/jcp.20902] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skeletal muscle is a highly plastic tissue with a remarkable capacity to adapt itself to challenges imposed by contractile activity. Adaptive response, that include hypertrophy and activation of oxidative mechanisms have been associated with transient changes in transcriptional activity of specific genes. To define the set of genes regulated by a depolarizing stimulus, we used 22 K mouse oligonucleotide microarrays. Total RNA from C2C12 myotubes was obtained at 2, 4, 18, and 24 h after high K+ stimulation. cDNA from control and depolarized samples was labeled with cyanine 3 or 5 dyes prior to microarray hybridization. Loess normalization followed by statistical analysis resulted in 423 differentially expressed genes using an unadjusted P-value < or = 0.01 as cut off. Depolarization affects transcriptional activity of a limited number of genes, mainly associated with metabolism, cell communication and response to stress. A number of genes related to Ca2+ signaling pathways are induced at 4 h, reinforcing the potential role of Ca2+ in early steps of signal transduction that leads to gene expression. Significant changes in the expression of molecules involved in muscle cell structure were observed; K+-depolarization increased Tnni1 and Acta1 mRNA levels in both differentiated C2C12 and rat skeletal muscle cells in primary culture. Of these two, depolarization induced slow Ca2+ transients appear to have a role only in the regulation of Tnni1 transcriptional activity. We suggest that depolarization induced expression of a small set of genes may underlie Ca2+ dependent plasticity of skeletal muscle cells.
Collapse
Affiliation(s)
- Nevenka Juretić
- Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
52
|
Valdés JA, Hidalgo J, Galaz JL, Puentes N, Silva M, Jaimovich E, Carrasco MA. NF-kappaB activation by depolarization of skeletal muscle cells depends on ryanodine and IP3 receptor-mediated calcium signals. Am J Physiol Cell Physiol 2007; 292:C1960-70. [PMID: 17215326 DOI: 10.1152/ajpcell.00320.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Depolarization of skeletal muscle cells by either high external K(+) or repetitive extracellular field potential pulses induces calcium release from internal stores. The two components of this release are mediated by either ryanodine receptors or inositol 1,4,5-trisphosphate (IP(3)) receptors and show differences in kinetics, amplitude, and subcellular localization. We have reported that the transcriptional regulators including ERKs, cAMP/Ca(2+)-response element binding protein, c-fos, c-jun, and egr-1 are activated by K(+)-induced depolarization and that their activation requires IP(3)-dependent calcium release. We presently describe the activation of the nuclear transcription factor NF-kappaB in response to depolarization by either high K(+) (chronic) or electrical pulses (fluctuating). Calcium transients of relative short duration activate an NF-kappaB reporter gene to an intermediate level, whereas long-lasting calcium increases obtained by prolonged electrical stimulation protocols of various frequencies induce maximal activation of NF-kappaB. This activation is independent of extracellular calcium, whereas calcium release mediated by either ryanodine or IP(3) receptors contribute in all conditions tested. NF-kappaB activation is mediated by IkappaBalpha degradation and p65 translocation to the nucleus. Partial blockade by N-acetyl-l-cysteine, a general antioxidant, suggests the participation of reactive oxygen species. Calcium-dependent signaling pathways such as those linked to calcineurin and PKC also contribute to NF-kappaB activation by depolarization, as assessed by blockade through pharmacological agents. These results suggest that NF-kappaB activation in skeletal muscle cells is linked to membrane depolarization and depends on the duration of elevated intracellular calcium. It can be regulated by sequential activation of calcium release mediated by the ryanodine and by IP(3) receptors.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Animals, Newborn
- Calcineurin/metabolism
- Calcium/metabolism
- Calcium Signaling
- Cell Line
- Electric Stimulation
- I-kappa B Proteins/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Kinetics
- Membrane Potentials
- Mice
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myoblasts, Skeletal/metabolism
- NF-KappaB Inhibitor alpha
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Potassium/metabolism
- Promoter Regions, Genetic
- Protein Kinase C/metabolism
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Ryanodine Receptor Calcium Release Channel/metabolism
- Transcription Factor RelA/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Juan Antonio Valdés
- Centro Fondo Nacional de Investigación en Areas Prioritarias de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
53
|
Carrasco MA, Hidalgo C. Calcium microdomains and gene expression in neurons and skeletal muscle cells. Cell Calcium 2006; 40:575-83. [PMID: 17034850 DOI: 10.1016/j.ceca.2006.08.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 01/14/2023]
Abstract
Neurons generate particular calcium microdomains in response to different stimuli. Calcium microdomains have a central role in a variety of neuronal functions. In particular, calcium microdomains participate in long-lasting synaptic plasticity--a neuronal response presumably correlated with cognitive brain functions that requires expression of new gene products. Stimulation of skeletal muscle generates - with few milliseconds delay - calcium microdomains that have a central role in the ensuing muscle contraction. In addition, recent evidence indicates that sustained stimulation of skeletal muscle cells in culture generates calcium microdomains, which stimulate gene expression but not muscle contraction. The mechanisms whereby calcium microdomains activate signaling cascades that lead to the transcription of genes known to participate in specific cellular responses are the central topic of this review. Thus, we will discuss here the signaling pathways and molecular mechanisms, which via activation of particular calcium-dependent transcription factors regulate the expression of specific genes or set of genes in neurons or skeletal muscle cells.
Collapse
Affiliation(s)
- M Angélica Carrasco
- Centro FONDAP de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|
54
|
Alonso MT, Villalobos C, Chamero P, Alvarez J, García-Sancho J. Calcium microdomains in mitochondria and nucleus. Cell Calcium 2006; 40:513-25. [PMID: 17067669 DOI: 10.1016/j.ceca.2006.08.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
Endomembranes modify the progression of the cytosolic Ca(2+) wave and contribute to generate Ca(2+) microdomains, both in the cytosol and inside the own organella. The concentration of Ca(2+) in the cytosol ([Ca(2+)](C)), the mitochondria ([Ca(2+)](M)) and the nucleus ([Ca(2+)](N)) are similar at rest, but may become very different during cell activation. Mitochondria avidly take up Ca(2+) from the high [Ca(2+)](C) microdomains generated during cell activation near Ca(2+) channels of the plasma membrane and/or the endomembranes and prevent propagation of the high Ca(2+) signal to the bulk cytosol. This shaping of [Ca(2+)](C) signaling is essential for independent regulation of compartmentalized cell functions. On the other hand, a high [Ca(2+)](M) signal is generated selectively in the mitochondria close to the active areas, which tunes up respiration to the increased local needs. The progression of the [Ca(2+)](C) signal to the nucleus may be dampened by mitochondria, the nuclear envelope or higher buffering power inside the nucleoplasm. On the other hand, selective [Ca(2+)](N) signals could be generated by direct release of stored Ca(2+) into the nucleoplasm. Ca(2+) release could even be restricted to subnuclear domains. Putative Ca(2+) stores include the nuclear envelope, their invaginations inside the nucleoplasm (nucleoplasmic reticulum) and nuclear microvesicles. Inositol trisphosphate, cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate have all been reported to produce release of Ca(2+) into the nucleoplasm, but contribution of these mechanisms under physiological conditions is still uncertain.
Collapse
Affiliation(s)
- María Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés s/n, Valladolid, Spain
| | | | | | | | | |
Collapse
|
55
|
Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olson EN, Chen J, Brown JH, Bers DM. Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 2006; 116:675-82. [PMID: 16511602 PMCID: PMC1386110 DOI: 10.1172/jci27374] [Citation(s) in RCA: 376] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 01/03/2006] [Indexed: 11/17/2022] Open
Abstract
Previous work showed that calmodulin (CaM) and Ca2+-CaM-dependent protein kinase II (CaMKII) are somehow involved in cardiac hypertrophic signaling, that inositol 1,4,5-trisphosphate receptors (InsP3Rs) in ventricular myocytes are mainly in the nuclear envelope, where they associate with CaMKII, and that class II histone deacetylases (e.g., HDAC5) suppress hypertrophic gene transcription. Furthermore, HDAC phosphorylation in response to neurohumoral stimuli that induce hypertrophy, such as endothelin-1 (ET-1), activates HDAC nuclear export, thereby regulating cardiac myocyte transcription. Here we demonstrate a detailed mechanistic convergence of these 3 issues in adult ventricular myocytes. We show that ET-1, which activates plasmalemmal G protein-coupled receptors and InsP3 production, elicits local nuclear envelope Ca2+ release via InsP3R. This local Ca2+ release activates nuclear CaMKII, which triggers HDAC5 phosphorylation and nuclear export (derepressing transcription). Remarkably, this Ca2+-dependent pathway cannot be activated by the global Ca2+ transients that cause contraction at each heartbeat. This novel local Ca2+ signaling in excitation-transcription coupling is analogous to but separate (and insulated) from that involved in excitation-contraction coupling. Thus, myocytes can distinguish simultaneous local and global Ca2+ signals involved in contractile activation from those targeting gene expression.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Animals
- Calcium Channels/deficiency
- Calcium Channels/genetics
- Calcium Signaling/physiology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2
- Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors
- Calmodulin/metabolism
- Cells, Cultured
- Endothelin-1/physiology
- Histone Deacetylases/metabolism
- Inositol 1,4,5-Trisphosphate/physiology
- Inositol 1,4,5-Trisphosphate Receptors
- Mice
- Mice, Knockout
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Nuclear Envelope/enzymology
- Nuclear Envelope/metabolism
- Nuclear Envelope/physiology
- Rabbits
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Xu Wu
- Loyola University Chicago, Chicago, Illinois 60153, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Eltit JM, García AA, Hidalgo J, Liberona JL, Chiong M, Lavandero S, Maldonado E, Jaimovich E. Membrane electrical activity elicits inositol 1,4,5-trisphosphate-dependent slow Ca2+ signals through a Gbetagamma/phosphatidylinositol 3-kinase gamma pathway in skeletal myotubes. J Biol Chem 2006; 281:12143-54. [PMID: 16513646 DOI: 10.1074/jbc.m511218200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tetanic electrical stimulation of myotubes evokes a ryanodine receptor-related fast calcium signal, during the stimulation, followed by a phospholipase C/inositol 1,4,5-trisphosphate-dependent slow calcium signal few seconds after stimulus end. L-type calcium channels (Cav 1.1, dihydropyridine receptors) acting as voltage sensors activate an unknown signaling pathway involved in phospholipase C activation. We demonstrated that both G protein and phosphatidylinositol 3-kinase were activated by electrical stimulation, and both the inositol 1,4,5-trisphosphate rise and slow calcium signal induced by electrical stimulation were blocked by pertussis toxin, by a Gbetagamma scavenger peptide, and by phosphatidylinositol 3-kinase inhibitors. Immunofluorescence using anti-phosphatidylinositol 3-kinase gamma antibodies showed a clear location in striations within the cytoplasm, consistent with a position near the I band region of the sarcomere. The time course of phosphatidylinositol 3-kinase activation, monitored in single living cells using a pleckstrin homology domain fused to green fluorescent protein, was compatible with sequential phospholipase Cgamma1 activation as confirmed by phosphorylation assays for the enzyme. Co-transfection of a dominant negative form of phosphatidylinositol 3-kinase gamma inhibited the phosphatidylinositol 3-kinase activity as well as the slow calcium signal. We conclude that Gbetagamma/phosphatidylinositol 3-kinase gamma signaling pathway is involved in phospholipase C activation and the generation of the slow calcium signal induced by tetanic stimulation. We postulate that membrane potential fluctuations in skeletal muscle cells can activate a pertussis toxin-sensitive G protein, phosphatidylinositol 3-kinase, phospholipase C pathway toward modulation of long term, activity-dependent plastic changes.
Collapse
Affiliation(s)
- José M Eltit
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultades de Medicina y Ciencias Químicas y Farmacéuticas, Universidad de Chile, Independecia 1027, Santiago 7, Chile
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Bezin S, Charpentier G, Fossier P, Cancela JM. The Ca2+-releasing messenger NAADP, a new player in the nervous system. ACTA ACUST UNITED AC 2006; 99:111-8. [PMID: 16458493 DOI: 10.1016/j.jphysparis.2005.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Many physiological processes are controlled by a great diversity of Ca2+ signals. Within cell, Ca2+ signals depend upon Ca2+ entry and/or Ca2+ release from internal Ca2+ stores. The control of Ca2+-store mobilization is ensured by a family of messengers comprising inositol 1,4,5 trisphosphate, cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP). From recent works, new concepts have emerged where activation of the cells by outside stimuli, acting at the plasma membrane, results in the synthesis of multiple Ca2+-releasing messengers which may interact and shape complex Ca2+ signals in the cytosol as well as in the nucleus. This contribution will cover the most recent advances on NAADP signalling with some emphasis on neurons.
Collapse
Affiliation(s)
- Stéphanie Bezin
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1 Avenue de La Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|