51
|
Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress? EXPERIMENTAL DIABETES RESEARCH 2012; 2012:481840. [PMID: 22474423 PMCID: PMC3299342 DOI: 10.1155/2012/481840] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 12/12/2022]
Abstract
The vascular complications of diabetes mellitus impose a huge burden on the management of this disease. The higher incidence of cardiovascular complications and the unfavorable prognosis among diabetic individuals who develop such complications have been correlated to the hyperglycemia-induced oxidative stress and associated endothelial dysfunction. Although antioxidants may be considered as effective therapeutic agents to relieve oxidative stress and protect the endothelium, recent clinical trials involving these agents have shown limited therapeutic efficacy in this regard. In the recent past experimental evidence suggest that endoplasmic reticulum (ER) stress in the endothelial cells might be an important contributor to diabetes-related vascular complications. The current paper contemplates the possibility of the involvement of ER stress in endothelial dysfunction and diabetes-associated vascular complications.
Collapse
|
52
|
Blaise S, Kneib M, Rousseau A, Gambino F, Chenard MP, Messadeq N, Muckenstrum M, Alpy F, Tomasetto C, Humeau Y, Rio MC. In vivo evidence that TRAF4 is required for central nervous system myelin homeostasis. PLoS One 2012; 7:e30917. [PMID: 22363515 PMCID: PMC3281907 DOI: 10.1371/journal.pone.0030917] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/29/2011] [Indexed: 01/22/2023] Open
Abstract
Tumor Necrosis Factor Receptor-Associated Factors (TRAFs) are major signal transducers for the TNF and interleukin-1/Toll-like receptor superfamilies. However, TRAF4 does not fit the paradigm of TRAF function in immune and inflammatory responses. Its physiological and molecular functions remain poorly understood. Behavorial analyses show that TRAF4-deficient mice (TRAF4-KO) exhibit altered locomotion coordination typical of ataxia. TRAF4-KO central nervous system (CNS) ultrastructure shows strong myelin perturbation including disorganized layers and disturbances in paranode organization. TRAF4 was previously reported to be expressed by CNS neurons. Using primary cell culture, we now show that TRAF4 is also expressed by oligodendrocytes, at all stages of their differentiation. Moreover, histology and electron microscopy show degeneration of a high number of Purkinje cells in TRAF4-KO mice, that was confirmed by increased expression of the Bax pro-apoptotic marker (immunofluorescence), TUNEL analysis, and caspase-3 activation and PARP1 cleavage (western blotting). Consistent with this phenotype, MAG and NogoA, two myelin-induced neurite outgrowth inhibitors, and their neuron partners, NgR and p75NTR were overexpressed (Q-RT-PCR and western blotting). The strong increased phosphorylation of Rock2, a RhoA downstream target, indicated that the NgR/p75NTR/RhoA signaling pathway, known to induce actin cytoskeleton rearrangement that favors axon regeneration inhibition and neuron apoptosis, is activated in the absence of TRAF4 (western blotting). Altogether, these results provide conclusive evidence for the pivotal contribution of TRAF4 to myelination and to cerebellar homeostasis, and link the loss of TRAF4 function to demyelinating or neurodegenerative diseases.
Collapse
Affiliation(s)
- Sébastien Blaise
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| | - Marie Kneib
- Centre National de la Recherche Scientifique UPR3212, Strasbourg, France
| | - Adrien Rousseau
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| | - Frederic Gambino
- Centre National de la Recherche Scientifique UPR3212, Strasbourg, France
| | - Marie-Pierre Chenard
- Département de Pathologie, Centre Hospitalier Universitaire de Hautepierre, Strasbourg, France
| | - Nadia Messadeq
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| | - Martine Muckenstrum
- Département de Pathologie, Centre Hospitalier Universitaire de Hautepierre, Strasbourg, France
| | - Fabien Alpy
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| | - Catherine Tomasetto
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| | - Yann Humeau
- Centre National de la Recherche Scientifique UPR3212, Strasbourg, France
| | - Marie-Christine Rio
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| |
Collapse
|
53
|
Eritja N, Mirantes C, Llobet D, Masip G, Matias-Guiu X, Dolcet X. ERα-mediated repression of pro-inflammatory cytokine expression by glucocorticoids reveals a crucial role for TNFα and IL1α in lumen formation and maintenance. J Cell Sci 2012; 125:1929-44. [PMID: 22328525 DOI: 10.1242/jcs.095067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Most glandular tissues comprise polarized epithelial cells organized around a single central lumen. Although there is active research investigating the molecular networks involved in the regulation of lumenogenesis, little is known about the extracellular factors that influence lumen formation and maintenance. Using a three-dimensional culture system of epithelial endometrial cells, we have revealed a new role for pro-inflammatory cytokines such as TNFα and IL1α in the formation and, more importantly, maintenance of a single central lumen. We also studied the mechanism by which glucocorticoids repress TNFα and IL1α expression. Interestingly, regulation of pro-inflammatory cytokine expression and subsequent lumen formation is mediated by estrogen receptor α (ERα) but not by the glucocorticoid receptor. Finally, we investigated the signaling pathways involved in the regulation of lumen formation by pro-inflammatory cytokines. Our results demonstrate that activation of the ERK/MAPK signaling pathway, but not the PI3K/Akt signaling pathway, is important for the formation and maintenance of a single central lumen. In summary, our results suggest a novel role for ERα-regulated pro-inflammatory cytokine expression in lumen formation and maintenance.
Collapse
Affiliation(s)
- Nuria Eritja
- Oncologic Pathology Group, Departamento de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | | | | | | | | | | |
Collapse
|
54
|
Role for Traf4 in polarizing adherens junctions as a prerequisite for efficient cell shape changes. Mol Cell Biol 2011; 31:4978-93. [PMID: 21986496 DOI: 10.1128/mcb.05542-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Apical constriction of epithelial cells is a widely used morphogenetic mechanism. In the Drosophila embryo, the apical constrictions that internalize the mesoderm are controlled by the transcription factor Twist and require intact adherens junctions and a contractile acto-myosin network. We find that adherens junctions in constricting mesodermal cells undergo extensive remodeling. A Twist target gene encoding a member of the tumor necrosis factor (TNF) receptor-associated factor (TRAF) family, Traf4, is involved in this process. While TRAFs are best known for their functions in inflammatory responses, Traf4 appears to have a different role, and its mechanism of action is poorly understood. We show that Traf4 is required for efficient apical constriction during ventral furrow formation and for proper localization of Armadillo to the apical position in constricting cells. Traf4 and Armadillo interact with each other physically and functionally. Traf4 acts in a TNF receptor- and Jun N-terminal protein kinase (JNK)-independent manner to fine-tune the assembly of adherens junctions in the invaginating mesodermal cells.
Collapse
|
55
|
Soong G, Martin FJ, Chun J, Cohen TS, Ahn DS, Prince A. Staphylococcus aureus protein A mediates invasion across airway epithelial cells through activation of RhoA GTPase signaling and proteolytic activity. J Biol Chem 2011; 286:35891-35898. [PMID: 21878647 DOI: 10.1074/jbc.m111.295386] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Staphyococcus aureus and especially the epidemic methicillin-resistant S. aureus strains cause severe necrotizing pneumonia. The mechanisms whereby these organisms invade across the mucosal epithelial barrier to initiate invasive infection are not well understood. Protein A (SpA), a highly conserved and abundant surface protein of S. aureus, activates TNF receptor 1 and EGF receptor (EGFR) signaling cascades that can perturb the cytoskeleton. We demonstrate that wild-type S. aureus, but not spa mutants, invade across polarized airway epithelial cell monolayers via the paracellular junctions. SpA stimulated a RhoA/ROCK/MLC cascade, resulting in the contraction of the cytoskeleton. SpA(+) but not SpA(-) mutants stimulated activation of EGFR and along with subsequent calpain activity cleaved the membrane-spanning junctional proteins occludin and E-cadherin, facilitating staphylococcal transmigration through the cell-cell junctions. Treatment of polarized human airway epithelial monolayers with inhibitors of ROCK, EGFR, MAPKs, or calpain prevented staphylococcal penetration through the monolayers. In vivo, blocking calpain activity impeded bacterial invasion into the lung parenchyma. Thus, S. aureus exploits multiple receptors available on the airway mucosal surface to facilitate invasion across epithelial barriers.
Collapse
Affiliation(s)
- Grace Soong
- Department of Pediatrics, College of Physicians and Surgeons Columbia University, New York, New York 10032
| | - Francis J Martin
- Department of Pharmacology, College of Physicians and Surgeons Columbia University, New York, New York 10032
| | - Jarin Chun
- Department of Pharmacology, College of Physicians and Surgeons Columbia University, New York, New York 10032
| | - Taylor S Cohen
- Department of Pediatrics, College of Physicians and Surgeons Columbia University, New York, New York 10032
| | - Danielle S Ahn
- Department of Pediatrics, College of Physicians and Surgeons Columbia University, New York, New York 10032
| | - Alice Prince
- Department of Pediatrics, College of Physicians and Surgeons Columbia University, New York, New York 10032; Department of Pharmacology, College of Physicians and Surgeons Columbia University, New York, New York 10032.
| |
Collapse
|
56
|
Rousseau A, Rio MC, Alpy F. TRAF4, at the Crossroad between Morphogenesis and Cancer. Cancers (Basel) 2011; 3:2734-49. [PMID: 24212830 PMCID: PMC3757440 DOI: 10.3390/cancers3022734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 02/07/2023] Open
Abstract
Tumor Necrosis Factor Receptor-Associated Factor 4 (TRAF4) is a gene whose expression is altered in cancers. It is overexpressed in a variety of carcinomas of different origins, often as a consequence of amplification. TRAF4 encodes an adaptor protein that belongs to the TRAF protein family. While most TRAF proteins influence immune and inflammation processes, TRAF4 is mainly involved in developmental and morphogenic processes. Interestingly, this protein has been shown to be linked to crucial cellular functions such as cell polarity and the regulation of reactive oxygen species production.
Collapse
Affiliation(s)
- Adrien Rousseau
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, U964 INSERM, Université de Strasbourg, BP 10142, 67404 Illkirch, C.U. de Strasbourg, France.
| | | | | |
Collapse
|
57
|
ZNAMENSKAYA LF, YEGOROVA YUYU, ZITNER SV. Mechanism of the biological effect of the tumor necrosis factor-аlpha at psoriasis. VESTNIK DERMATOLOGII I VENEROLOGII 2011. [DOI: 10.25208/vdv974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Among different cytokines, tumor necrosis factor-аlpha (tumor necrosis factor α, TNF-α) plays a special role in psoriatic immunopathogenesis. Data on this cytokine collected for the recent decades made it possible to create a number of biological drugs blocking TNF-α, which are successfully applied in clinical practice for treating medium to severe psoriasis and psoriatic arthritis. This review presents general information about the cytokine structure and its receptor apparatus, regulation mechanisms of TNF-α synthesis and ways of signal transmission as the basis needed to implement the biological effects of cytokine in the development of psoriatic skin affections.
Collapse
|
58
|
Kakiashvili E, Dan Q, Vandermeer M, Zhang Y, Waheed F, Pham M, Szászi K. The epidermal growth factor receptor mediates tumor necrosis factor-alpha-induced activation of the ERK/GEF-H1/RhoA pathway in tubular epithelium. J Biol Chem 2011; 286:9268-79. [PMID: 21212278 PMCID: PMC3059019 DOI: 10.1074/jbc.m110.179903] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 01/05/2011] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF)-α induces cytoskeleton and intercellular junction remodeling in tubular epithelial cells; the underlying mechanisms, however, are incompletely explored. We have previously shown that ERK-mediated stimulation of the RhoA GDP/GTP exchange factor GEF-H1/Lfc is critical for TNF-α-induced RhoA stimulation. Here we investigated the upstream mechanisms of ERK/GEF-H1 activation. Surprisingly, TNF-α-induced ERK and RhoA stimulation in tubular cells were prevented by epidermal growth factor receptor (EGFR) inhibition or silencing. TNF-α also enhanced phosphorylation of the EGFR. EGF treatment mimicked the effects of TNF-α, as it elicited potent, ERK-dependent GEF-H1 and RhoA activation. Moreover, EGF-induced RhoA activation was prevented by GEF-H1 silencing, indicating that GEF-H1 is a key downstream effector of the EGFR. The TNF-α-elicited EGFR, ERK, and RhoA stimulation were mediated by the TNF-α convertase enzyme (TACE) that can release EGFR ligands. Further, EGFR transactivation also required the tyrosine kinase Src, as Src inhibition prevented TNF-α-induced activation of the EGFR/ERK/GEF-H1/RhoA pathway. Importantly, a bromodeoxyuridine (BrdU) incorporation assay and electric cell substrate impedance-sensing (ECIS) measurements revealed that TNF-α stimulated cell growth in an EGFR-dependent manner. In contrast, TNF-α-induced NFκB activation was not prevented by EGFR or Src inhibition, suggesting that TNF-α exerts both EGFR-dependent and -independent effects. In summary, in the present study we show that the TNF-α-induced activation of the ERK/GEF-H1/RhoA pathway in tubular cells is mediated through Src- and TACE-dependent EGFR activation. Such a mechanism could couple inflammatory and proliferative stimuli and, thus, may play a key role in the regulation of wound healing and fibrogenesis.
Collapse
Affiliation(s)
- Eli Kakiashvili
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Qinghong Dan
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Matthew Vandermeer
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Yuqian Zhang
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Faiza Waheed
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Monica Pham
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Katalin Szászi
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
59
|
Shingarova LN, Boldyreva EF, Yakimov SA, Guryanova SV, Dolgikh DA, Nedospasov SA, Kirpichnikov MP. Novel mutants of human tumor necrosis factor with dominant-negative properties. BIOCHEMISTRY (MOSCOW) 2011; 75:1458-63. [PMID: 21314616 DOI: 10.1134/s0006297910120060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tumor necrosis factor (TNF) is a polyfunctional cytokine, one of the key mediators of inflammation and innate immunity. On the other hand, systemic or local TNF overexpression is typical of such pathological states as rheumatoid arthritis, psoriasis, Crohn's disease, septic shock, and multiple sclerosis. Neutralization of TNF activity has a marked curative effect for some diseases; therefore, the search for various TNF blockers is a promising field of protein engineering and biotechnology. According to the previously developed concept concerning the possibility of designing dominant-negative mutants, the following TNF variants have been studied: TNFY87H + A145R, TNFY87H + A96S + A145R, and TNFV91N + A145R. All of these form inactive TNF heterotrimers with the native protein. The ability of mutants to neutralize the effect of TNF was investigated. The addition of mutants to the native protein was shown to provide a concentration-dependent suppression of TNF cytotoxicity against the mouse fibroblast cell line L929. Thus, novel inhibitors of human TNF can be engineered on the basis of these muteins.
Collapse
Affiliation(s)
- L N Shingarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | | | | | | | | | | | | |
Collapse
|
60
|
Ebmeyer J, Leichtle A, Hernandez M, Ebmeyer U, Husseman J, Pak K, Sudhoff H, Broide D, Wasserman SI, Ryan AF. TNFA deletion alters apoptosis as well as caspase 3 and 4 expression during otitis media. BMC Immunol 2011; 12:12. [PMID: 21269505 PMCID: PMC3040143 DOI: 10.1186/1471-2172-12-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/26/2011] [Indexed: 02/01/2023] Open
Abstract
Background Tumor necrosis factor (TNFA) is the canonical member of the TNF superfamily, which plays a major role in both inflammation and apoptosis. To evaluate the role of TNFs in otitis media (OM), the most common disease of childhood, we evaluated middle ear (ME) expression of genes encoding the TNF and TNF receptor superfamilies during bacterial OM in the mouse, characterized OM in TNFA-deficient mice, and assessed apoptosis during OM in normal versus TNF-deficient MEs. Results TNFs and TNF receptors were broadly regulated during OM, with TNFA showing the highest level of up-regulation. TNF deficient mice exhibited mucosal hyperplasia even in the absence of infection and exuberant growth of the mucosa during OM, including the formation of mucosal polyps. Mucosal recovery during OM was also delayed, in parallel with a delay in mucosal apoptosis and reduced caspase gene expression. Conclusions The TNF and TNF receptor superfamilies mediate both inflammation and apoptosis during OM. TNF appears to be critical for the maintenance of mucosal architecture in both the normal and infected ME, since excessive accumulation of mucosal tissue is seen in TNFA-/- MEs both before and after bacterial inoculation of the ME. TNFA is also required for appropriate regulation of caspase genes.
Collapse
Affiliation(s)
- Joerg Ebmeyer
- Department of Otorhinolaryngology, Head and Neck Surgery Klinikum Bielefeld, Academic Teaching Hospital University of Münster, Bielefeld, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
The adaptor protein TRIP6 antagonizes Fas-induced apoptosis but promotes its effect on cell migration. Mol Cell Biol 2010; 30:5582-96. [PMID: 20876301 DOI: 10.1128/mcb.00134-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Fas/CD95 receptor mediates apoptosis but is also capable of triggering nonapoptotic signals. However, the mechanisms that selectively regulate these opposing effects are not yet fully understood. Here we demonstrate that the activation of Fas or stimulation with lysophosphatidic acid (LPA) induces cytoskeletal reorganization, leading to the association of Fas with actin stress fibers and the adaptor protein TRIP6. TRIP6 binds to the cytoplasmic juxtamembrane domain of Fas and interferes with the recruitment of FADD to Fas. Furthermore, through physical interactions with NF-κB p65, TRIP6 regulates nuclear translocation and the activation of NF-κB upon Fas activation or LPA stimulation. As a result, TRIP6 antagonizes Fas-induced apoptosis and further enhances the antiapoptotic effect of LPA in cells that express high levels of TRIP6. On the other hand, TRIP6 promotes Fas-mediated cell migration in apoptosis-resistant glioma cells. This effect is regulated via the Src-dependent phosphorylation of TRIP6 at Tyr-55. As TRIP6 is overexpressed in glioblastomas, this may have a significant impact on enhanced NF-κB activity, resistance to apoptosis, and Fas-mediated cell invasion in glioblastomas.
Collapse
|
62
|
Neisch AL, Speck O, Stronach B, Fehon RG. Rho1 regulates apoptosis via activation of the JNK signaling pathway at the plasma membrane. ACTA ACUST UNITED AC 2010; 189:311-23. [PMID: 20404112 PMCID: PMC2856900 DOI: 10.1083/jcb.200912010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the absence of moesin, RhoA slips out of its normal role as a GTPase to activate the JNK MAPK pathway and spur apoptosis. Precisely controlled growth and morphogenesis of developing epithelial tissues require coordination of multiple factors, including proliferation, adhesion, cell shape, and apoptosis. RhoA, a small GTPase, is known to control epithelial morphogenesis and integrity through its ability to regulate the cytoskeleton. In this study, we examine a less well-characterized RhoA function in cell survival. We demonstrate that the Drosophila melanogaster RhoA, Rho1, promotes apoptosis independently of Rho kinase through its effects on c-Jun NH2-terminal kinase (JNK) signaling. In addition, Rho1 forms a complex with Slipper (Slpr), an upstream activator of the JNK pathway. Loss of Moesin (Moe), an upstream regulator of Rho1 activity, results in increased levels of Rho1 at the plasma membrane and cortical accumulation of Slpr. Together, these results suggest that Rho1 functions at the cell cortex to regulate JNK activity and implicate Rho1 and Moe in epithelial cell survival.
Collapse
Affiliation(s)
- Amanda L Neisch
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
63
|
Lavoie JN, Landry MC, Faure RL, Champagne C. Src-family kinase signaling, actin-mediated membrane trafficking and organellar dynamics in the control of cell fate: lessons to be learned from the adenovirus E4orf4 death factor. Cell Signal 2010; 22:1604-14. [PMID: 20417707 DOI: 10.1016/j.cellsig.2010.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 04/15/2010] [Indexed: 12/15/2022]
Abstract
Evidence has accumulated that there are different modes of regulated cell death, which share overlapping signaling pathways. Cytoskeletal-dependent inter-organellar communication as a result of protein and lipid trafficking in and out of organelles has emerged as a common, key issue in the regulation of cell death modalities. The movement of proteins and lipids between cell compartments is believed to relay death signals in part through modifications of organelles dynamics. Little is known, however, regarding how trafficking is integrated within stress signaling pathways directing organelle-specific remodeling events. In this review, we discuss emerging evidence supporting a role for regulated changes in actin dynamics and intracellular membrane flow. Based on recent findings using the adenovirus E4orf4 death factor as a probing tool to tackle the mechanistic underpinnings that control alternative modes of cell death, we propose the existence of multifunctional platforms at the endosome-Golgi interface regulated by SFK-signaling. These endosomal platforms could be mobilized during cell activation processes to reorganize cellular membranes and promote inter-organelle signaling.
Collapse
Affiliation(s)
- Josée N Lavoie
- Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, CRCHUQ, Québec, Canada.
| | | | | | | |
Collapse
|
64
|
Janji B, Vallar L, Al Tanoury Z, Bernardin F, Vetter G, Schaffner-Reckinger E, Berchem G, Friederich E, Chouaib S. The actin filament cross-linker L-plastin confers resistance to TNF-alpha in MCF-7 breast cancer cells in a phosphorylation-dependent manner. J Cell Mol Med 2009; 14:1264-75. [PMID: 19799649 PMCID: PMC3828844 DOI: 10.1111/j.1582-4934.2009.00918.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We used a tumour necrosis factor (TNF)-α resistant breast adenocarcinoma MCF-7 cell line to investigate the involvement of the actin cytoskeleton in the mechanism of cell resistance to this cytokine. We found that TNF resistance correlates with the loss of cell epithelial properties and the gain of a mesenchymal phenotype, reminiscent of an epithelial-to-mesenchymal transition (EMT). Morphological changes were associated with a profound reorganization of the actin cytoskeleton and with a change in the repertoire of expressed actin cytoskeleton genes and EMT markers, as revealed by DNA microarray-based expression profiling. L-plastin, an F-actin cross-linking and stabilizing protein, was identified as one of the most significantly up-regulated genes in TNF-resistant cells. Knockdown of L-plastin in these cells revealed its crucial role in conferring TNF resistance. Importantly, overexpression of wild-type L-plastin in TNF-sensitive MCF-7 cells was sufficient to protect them against TNF-mediated cell death. Furthermore, we found that this effect is dependent on serine-5 phosphorylation of L-plastin and that non-conventional protein kinase C isoforms and the ceramide pathway may regulate its phosphorylation state. The protective role of L-plastin was not restricted to TNF-α resistant MCF-7 cells because a correlation between the expression of L-plastin and the resistance to TNF-α was observed in other breast cancer cell lines. Together, our study discloses a novel unexpected role of the actin bundling protein L-plastin as a cell protective protein against TNF-cytotoxicity.
Collapse
Affiliation(s)
- Bassam Janji
- Laboratory of Experimental Hemato-Oncology (LHCE), Department of Oncology, Luxembourg
| | | | | | | | | | | | | | | | | |
Collapse
|