51
|
Abstract
Although aminoacyl-tRNA synthetases (ARSs) and ARS-interacting multi-functional proteins (AIMPs) have long been recognized as housekeeping proteins, evidence indicating that they play a key role in regulating cancer is now accumulating. In this chapter we will review the conventional and non-conventional functions of ARSs and AIMPs with respect to carcinogenesis. First, we will address how ARSs and AIMPs are altered in terms of expression, mutation, splicing, and post-translational modifications. Second, the molecular mechanisms for ARSs' and AIMPs' involvement in the initiation, maintenance, and progress of carcinogenesis will be covered. Finally, we will introduce the development of therapeutic approaches that target ARSs and AIMPs with the goal of treating cancer.
Collapse
|
52
|
Kang T, Kwon NH, Lee JY, Park MC, Kang E, Kim HH, Kang TJ, Kim S. AIMP3/p18 controls translational initiation by mediating the delivery of charged initiator tRNA to initiation complex. J Mol Biol 2012; 423:475-81. [PMID: 22867704 DOI: 10.1016/j.jmb.2012.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 11/28/2022]
Abstract
Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs) are nonenzymatic scaffolding proteins that comprise multisynthetase complex (MSC) with nine aminoacyl-tRNA synthetases in higher eukaryotes. Among the three AIMPs, AIMP3/p18 is strongly anchored to methionyl-tRNA synthetase (MRS) in the MSC. MRS attaches methionine (Met) to initiator tRNA (tRNA(i)(Met)) and plays an important role in translation initiation. It is known that AIMP3 is dispatched to nucleus or nuclear membrane to induce DNA damage response or senescence; however, the role of AIMP3 in translation as a component of MSC and the meaning of its interaction with MRS are still unclear. Herein, we observed that AIMP3 specifically interacted with Met-tRNA(i)(Met)in vitro, while it showed little or reduced interaction with unacylated or lysine-charged tRNA(i)(Met). In addition, AIMP3 discriminates Met-tRNA(i)(Met) from Met-charged elongator tRNA based on filter-binding assay. Pull-down assay revealed that AIMP3 and MRS had noncompetitive interaction with eukaryotic initiation factor 2 (eIF2) γ subunit (eIF2γ), which is in charge of binding with Met-tRNA(i)(Met) for the delivery of Met-tRNA(i)(Met) to ribosome. AIMP3 recruited active eIF2γ to the MRS-AIMP3 complex, and the level of Met-tRNA(i)(Met) bound to eIF2 complex was reduced by AIMP3 knockdown resulting in reduced protein synthesis. All these results suggested the novel function of AIMP3 as a critical mediator of Met-tRNA(i)(Met) transfer from MRS to eIF2 complex for the accurate and efficient translation initiation.
Collapse
Affiliation(s)
- Taehee Kang
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Choi JW, Lee JW, Kim JK, Jeon HK, Choi JJ, Kim DG, Kim BG, Nam DH, Kim HJ, Yun SH, Kim S. Splicing variant of AIMP2 as an effective target against chemoresistant ovarian cancer. J Mol Cell Biol 2012; 4:164-73. [PMID: 22532625 DOI: 10.1093/jmcb/mjs018] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chemoresistance is a main cause for the failure of cancer management and intensive investigation is on-going to control chemoresistant (CR) cancers. Although NF-κB has been suggested as one of the potential targets to alleviate chemoresistance of epithelial ovarian cancer (EOC), direct targeting of NF-κB may result in an unexpected effect due to the complex regulatory network via NF-κB. Here we show that AIMP2-DX2, a splicing variant of tumor suppressor AIMP2, can be a therapeutic target to control CR EOC. AIMP2-DX2 was often highly expressed in CR EOC both in vitro and in vivo. AIMP2-DX2 compromised the tumor necrosis factor alpha-dependent pro-apoptotic activity of AIMP2 via the competitive inhibition of AIMP2 binding to TRAF2 that plays a pivotal role in the regulation of NF-κB. The direct delivery of siRNA against AIMP2-DX2 into abdominal metastatic tumors of ovarian cancer using a microneedle converged on microendoscopy significantly suppressed the growth rate of tumors. The treated cancer tissues showed an enhanced apoptosis and the decreased TRAF2 level. Thus, we suggest that the downregulation of AIMP2-DX2 can be a potent adjuvant therapeutic approach for CR EOC that resulted from an aberrant activity of NF-κB.
Collapse
Affiliation(s)
- Jin Woo Choi
- Medicinal Bioconvergence Research Center, Advanced Institutes of Convergence Technology, Suwon, Gyeonggi 443-759, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Lei M, Bai X, Yang T, Lai X, Qiu W, Yang L, Lian X. Gsdma3 is a new factor needed for TNF-α-mediated apoptosis signal pathway in mouse skin keratinocytes. Histochem Cell Biol 2012; 138:385-96. [DOI: 10.1007/s00418-012-0960-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2012] [Indexed: 01/01/2023]
|
55
|
Wernstedt A, Valtorta E, Armelao F, Togni R, Girlando S, Baudis M, Heinimann K, Messiaen L, Staehli N, Zschocke J, Marra G, Wimmer K. Improved multiplex ligation-dependent probe amplification analysis identifies a deleterious PMS2 allele generated by recombination with crossover between PMS2 and PMS2CL. Genes Chromosomes Cancer 2012; 51:819-31. [PMID: 22585707 PMCID: PMC3398144 DOI: 10.1002/gcc.21966] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/02/2012] [Indexed: 11/08/2022] Open
Abstract
Heterozygous PMS2 germline mutations are associated with Lynch syndrome. Up to one third of these mutations are genomic deletions. Their detection is complicated by a pseudogene (PMS2CL), which--owing to extensive interparalog sequence exchange--closely resembles PMS2 downstream of exon 12. A recently redesigned multiplex ligation-dependent probe amplification (MLPA) assay identifies PMS2 copy number alterations with improved reliability when used with reference DNAs containing equal numbers of PMS2- and PMS2CL-specific sequences. We selected eight such reference samples--all publicly available--and used them with this assay to study 13 patients with PMS2-defective colorectal tumors. Three presented deleterious alterations: an Alu-mediated exon deletion; a 125-kb deletion encompassing PMS2 and four additional genes (two with tumor-suppressing functions); and a novel deleterious hybrid PMS2 allele produced by recombination with crossover between PMS2 and PMS2CL, with the breakpoint in intron 10 (the most 5' breakpoint of its kind reported thus far). We discuss mechanisms that might generate this allele in different chromosomal configurations (and their diagnostic implications) and describe an allele-specific PCR assay that facilitates its detection. Our data indicate that the redesigned PMS2 MLPA assay is a valid first-line option. In our series, it identified roughly a quarter of all PMS2 mutations.
Collapse
|
56
|
Selective regression of cancer cells expressing a splicing variant of AIMP2 through targeted RNA replacement by trans-splicing ribozyme. J Biotechnol 2012; 158:44-9. [DOI: 10.1016/j.jbiotec.2012.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/21/2011] [Accepted: 01/10/2012] [Indexed: 11/20/2022]
|
57
|
Cabal-Hierro L, Lazo PS. Signal transduction by tumor necrosis factor receptors. Cell Signal 2012; 24:1297-305. [PMID: 22374304 DOI: 10.1016/j.cellsig.2012.02.006] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/14/2012] [Indexed: 12/24/2022]
Abstract
Tumor necrosis factor (TNF) is a key mediator in the inflammatory response which is implicated in the onset of a number of diseases. Research on TNF led to the characterization of the largest family of cytokines known until now, the TNF superfamily, which exert their biological effects through the interaction with transmembrane receptors of the TNFR superfamily. TNF itself exerts its biological effects interacting with two different receptors: TNFR1 and TNFR2. TNFR1 presents a death domain on its intracellular region. In contrast to TNFR1, TNFR2 does not have a death domain. Activation of TNFR1 implies the consecutive formation of two different TNF receptor signalling complexes. Complex I controls the expression of antiapoptotic proteins that prevent the triggering of cell death processes, whereas Complex II triggers cell death processes. TNFR2 only signals for antiapoptotic reactions. However, recent evidence indicates that TNFR2 also signals to induce TRAF2 degradation. TRAF2 is a key mediator in signal transduction of both TNFR1 and TNFR2. Thus, this novel signalling pathway has two important implications: on one hand, it represents an auto regulatory loop for TNFR2; on the other hand, when this signal is triggered TNFR1 activity is modified so that antiapoptotic pathways are inhibited and apoptotic reactions are enhanced.
Collapse
Affiliation(s)
- Lucía Cabal-Hierro
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33071 Oviedo, Spain
| | | |
Collapse
|
58
|
Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen and angiogenin interact with common host proteins, including annexin A2, which is essential for survival of latently infected cells. J Virol 2011; 86:1589-607. [PMID: 22130534 DOI: 10.1128/jvi.05754-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) infection and latency-associated nuclear antigen (LANA-1) upregulate the multifunctional protein angiogenin (ANG). Our studies demonstrate that silencing ANG or inhibiting its nuclear translocation downregulates KSHV LANA-1 expression and ANG is necessary for KSHV latency, anti-apoptosis and angiogenesis (Sadagopan et al., J. Virol. 83:3342-3364, 2009; Sadagopan et al., J Virol. 85:2666-2685, 2011). Here we show that LANA-1 interacts with ANG and colocalizes in latently infected endothelial telomerase-immortalized human umbilical vein endothelial (TIVE-LTC) cells. Mass spectrometric analyses of TIVE-LTC proteins immunoprecipitated by anti-LANA-1 and ANG antibodies identified 28 common cellular proteins such as ribosomal proteins, structural proteins, tRNA synthetases, metabolic pathway enzymes, chaperons, transcription factors, antioxidants, and ubiquitin proteosome proteins. LANA-1 and ANG interaction with one of the proteins, annexin A2, was validated. Annexin A2 has been shown to play roles in cell proliferation, apoptosis, plasmin generation, exocytosis, endocytosis, and cytoskeleton reorganization. It is also known to associate with glycolytic enzyme 3-phosphoglyceratekinase in the primer recognition protein (PRP) complex that interacts with DNA polymerase α in the lagging strand of DNA during replication. A higher level of annexin A2 is expressed in KSHV+ but not in Epstein-Barr virus (EBV)+ B-lymphoma cell lines. Annexin A2 colocalized with several LANA-1 punctate spots in KSHV+ body cavity B-cell lymphoma (BCBL-1) cells. In triple-staining analyses, we observed annexin A2-ANG-LANA-1, annexin A2-ANG, and ANG-LANA-1 colocalizations. Annexin A2 appeared as punctate nuclear dots in LANA-1-positive TIVE-LTC cells. In LANA-1-negative TIVE-LTC cells, annexin A2 was detected predominately in the cytoplasm, with some nuclear spots, and colocalization with ANG was observed mostly in the cytoplasm. Annexin A2 coimmunoprecipitated with LANA-1 and ANG in TIVE-LTC and BCBL-1 cells and with ANG in 293T cells independent of LANA-1. This suggested that annexin A2 forms a complex with LANA-1 and ANG as well as a separate complex with ANG. Silencing annexin A2 in BCBL-1 cells resulted in significant cell death, downregulation of cell cycle-associated Cdk6 and of cyclin D, E, and A proteins, and downregulation of LANA-1 and ANG expression. No effect was seen in KSHV⁻ lymphoma (BJAB and Ramos) and 293T cells. These studies suggest that LANA-1 association with annexin A2/ANG could be more important than ANG association with annexin A2, and KSHV probably uses annexin A2 to maintain the viability and cell cycle regulation of latently infected cells. Since the identified LANA-1- and ANG-interacting common cellular proteins are hitherto unknown to KSHV and ANG biology, this offers a starting point for further analysis of their roles in KSHV biology, which may lead to identification of potential therapeutic targets to control KSHV latency and associated malignancies.
Collapse
|
59
|
Chang EJ, Ha J, Kang SS, Lee ZH, Kim HH. AWP1 binds to tumor necrosis factor receptor-associated factor 2 (TRAF2) and is involved in TRAF2-mediated nuclear factor-kappaB signaling. Int J Biochem Cell Biol 2011; 43:1612-20. [DOI: 10.1016/j.biocel.2011.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/15/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
|
60
|
Abstract
Over the past decade, the identification of cancer-associated factors has been a subject of primary interest not only for understanding the basic mechanisms of tumorigenesis but also for discovering the associated therapeutic targets. However, aminoacyl-tRNA synthetases (ARSs) have been overlooked, mostly because many assumed that they were simply 'housekeepers' that were involved in protein synthesis. Mammalian ARSs have evolved many additional domains that are not necessarily linked to their catalytic activities. With these domains, they interact with diverse regulatory factors. In addition, the expression of some ARSs is dynamically changed depending on various cellular types and stresses. This Analysis article addresses the potential pathophysiological implications of ARSs in tumorigenesis.
Collapse
Affiliation(s)
- Sunghoon Kim
- Medicinal Bioconvergence Research Center, WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| | | | | |
Collapse
|
61
|
Rodríguez M, Cabal-Hierro L, Carcedo MT, Iglesias JM, Artime N, Darnay BG, Lazo PS. NF-kappaB signal triggering and termination by tumor necrosis factor receptor 2. J Biol Chem 2011; 286:22814-24. [PMID: 21558270 DOI: 10.1074/jbc.m111.225631] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor receptor 2 (TNFR2) activates transcription factor κB (NF-κB) and c-Jun N-terminal kinase (JNK). The mechanisms mediating these activations are dependent on the recruitment of TNF receptor-associated factor 2 (TRAF2) to the intracellular region of the receptor. TNFR2 also induces TRAF2 degradation. We show that in addition to the well characterized TRAF2 binding motif 402-SKEE-405, the human receptor contains another sequence located at the C-terminal end (amino acids 425-439), which also recruits TRAF2 and activates NF-κB. In addition to that, human TNFR2 contains a conserved region (amino acids 338-379) which is responsible for TRAF2 degradation and therefore of terminating NF-κB signaling. TRAF2 degradation and the lack of NF-κB activation when both TNFR1 and TNFR2 are co-expressed results in an enhanced ability of TNFR1 to induce cell death, showing that the cross-talk between both receptors is of a great biological relevance. Induction of TRAF2 degradation appears to be independent of TRAF2 binding to the receptor. Amino acids 343-TGSSDSS-349 are essential for inducing TRAF2 degradation because deletion mutants of this region or point mutations at serine residues 345 and 346 or 348 and 349 obliterate the ability of TNFR2 to induce TRAF2 degradation.
Collapse
Affiliation(s)
- Montserrat Rodríguez
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33071 Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
62
|
Choi JW, Kim DG, Lee AE, Kim HR, Lee JY, Kwon NH, Shin YK, Hwang SK, Chang SH, Cho MH, Choi YL, Kim J, Oh SH, Kim B, Kim SY, Jeon HS, Park JY, Kang HP, Park BJ, Han JM, Kim S. Cancer-associated splicing variant of tumor suppressor AIMP2/p38: pathological implication in tumorigenesis. PLoS Genet 2011; 7:e1001351. [PMID: 21483803 PMCID: PMC3069106 DOI: 10.1371/journal.pgen.1001351] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/23/2011] [Indexed: 11/26/2022] Open
Abstract
Although ARS-interacting multifunctional protein 2 (AIMP2, also named as MSC p38) was first found as a component for a macromolecular tRNA synthetase complex, it was recently discovered to dissociate from the complex and work as a potent tumor suppressor. Upon DNA damage, AIMP2 promotes apoptosis through the protective interaction with p53. However, it was not demonstrated whether AIMP2 was indeed pathologically linked to human cancer. In this work, we found that a splicing variant of AIMP2 lacking exon 2 (AIMP2-DX2) is highly expressed by alternative splicing in human lung cancer cells and patient's tissues. AIMP2-DX2 compromised pro-apoptotic activity of normal AIMP2 through the competitive binding to p53. The cells with higher level of AIMP2-DX2 showed higher propensity to form anchorage-independent colonies and increased resistance to cell death. Mice constitutively expressing this variant showed increased susceptibility to carcinogen-induced lung tumorigenesis. The expression ratio of AIMP2-DX2 to normal AIMP2 was increased according to lung cancer stage and showed a positive correlation with the survival of patients. Thus, this work identified an oncogenic splicing variant of a tumor suppressor, AIMP2/p38, and suggests its potential for anti-cancer target. Lung cancer is one of the most common cancers and a leading cause of death resulting from cancer. Despite intensive investigation, effective therapeutic targets and reliable biomarkers are still limited. Here we found that a tumor suppressor, AIMP2 (MSC p38), produces a variant lacking a part of its structure in cancer tissues. We designated it AIMP2-DX2. This smaller version of AIMP2 compromises the normal tumor suppressive activity of AIMP2 and induces tumor formation. We also found that the expression of AIMP2-DX2 was increased according to cancer progression. In addition, the patients with higher expression of AIMP2-DX2 showed lower survival than those with lower levels of this variant. Suppression of AIMP2-DX2 slowed tumor growth, suggesting it as a new therapeutic target. In summary, this work newly identified a tumor-inducing factor, AIMP2-DX2, that can be used as a therapeutic target and biomarker associated with lung cancer.
Collapse
Affiliation(s)
- Jin Woo Choi
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Dae Gyu Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Al-Eum Lee
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Hye Rim Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Jin Young Lee
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Nam Hoon Kwon
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Young Kee Shin
- Laboratory of Molecular Pathology, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Soon-Kyung Hwang
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seung-Hee Chang
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Myung-Haing Cho
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yoon-La Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jhingook Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Hyun Oh
- National Cancer Center, Research Institute, Goyang, Korea
| | - Bora Kim
- National Cancer Center, Research Institute, Goyang, Korea
| | - Soo-Youl Kim
- National Cancer Center, Research Institute, Goyang, Korea
| | - Hyo-Sung Jeon
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jae Yong Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyunseok Peter Kang
- Department of Pathology and Laboratory Medicine, Roswell Cancer Park Institute, Buffalo, New York, United States of America
| | - Bum Joon Park
- Department of Molecular Biology, Pusan National University, Pusan, Korea
| | - Jung Min Han
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Suwon, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Suwon, Korea
- * E-mail:
| |
Collapse
|
63
|
Park SG, Choi EC, Kim S. Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs): a triad for cellular homeostasis. IUBMB Life 2010; 62:296-302. [PMID: 20306515 DOI: 10.1002/iub.324] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are highly conserved for efficient and precise translation of genetic codes. In higher eukaryotic systems, several different ARSs including glutamyl-prolyl-, isoelucyl-, leucyl-, methionyl-, glutaminyl-, lysyl-, arginyl-, and aspartyl-tRNA synthetase form a macromolecular protein complex with three nonenzymatic cofactors (AIMP1/p43, AIMP2/p38, and AIMP3/p18). Although the structure and functional implications for this complex formation are not completely understood, rapidly accumulating evidences suggest that this complex would work as a molecular hub linked to the multiple signaling pathways that involve the components of enzymes and cofactors. In this article, the roles of three nonenzymatic components of the multi-tRNA synthetase complex in the assembly of the components and in cell regulation are addressed.
Collapse
Affiliation(s)
- Sang Gyu Park
- Department of Biomedical Science, CHA University, Yeoksam-dong, Kangnam-gu, Seoul, Korea
| | | | | |
Collapse
|
64
|
Faustman D, Davis M. TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev Drug Discov 2010; 9:482-93. [PMID: 20489699 DOI: 10.1038/nrd3030] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although drug development has advanced for autoimmune diseases, many current therapies are hampered by adverse effects and the frequent destruction or inactivation of healthy cells in addition to pathological cells. Targeted autoimmune therapies capable of eradicating the rare autoreactive immune cells that are responsible for the attack on the body's own cells are yet to be identified. This Review presents a new emerging approach aimed at selectively destroying autoreactive immune cells by specific activation of tumour necrosis factor receptor 2 (TNFR2), which is found on autoreactive and normal T lymphocytes, with the potential of avoiding or reducing the toxicity observed with existing therapies.
Collapse
Affiliation(s)
- Denise Faustman
- Immunobiology Laboratory, Room 3602, Building 149, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
65
|
Brown MV, Reader JS, Tzima E. Mammalian aminoacyl-tRNA synthetases: Cell signaling functions of the protein translation machinery. Vascul Pharmacol 2010; 52:21-6. [DOI: 10.1016/j.vph.2009.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/20/2009] [Accepted: 11/29/2009] [Indexed: 12/01/2022]
|
66
|
Choi JW, Um JY, Kundu JK, Surh YJ, Kim S. Multidirectional tumor-suppressive activity of AIMP2/p38 and the enhanced susceptibility of AIMP2 heterozygous mice to carcinogenesis. Carcinogenesis 2009; 30:1638-44. [PMID: 19622630 DOI: 10.1093/carcin/bgp170] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aminoacyl-transfer ribonucleic acid (tRNA) synthetases-interacting multifunctional protein (AIMP) 2 is a factor associated with the macromolecular protein synthesis machinery consisting of nine different aminoacyl-tRNA synthetases and three non-enzymatic factors. However, it was shown to work as a multifaceted regulator through the versatile interactions with diverse signal mediators. For instance, it can mediate pro-apoptotic response to DNA damage and tumor necrosis factor-alpha (TNF-alpha) stimulus and growth-arresting signal by transforming growth factor (TGF)-beta. Considering that these pathways are critically implicated in the control of tumorigenesis, AIMP2 is expected to work as a potent tumor suppressor with broad coverage against different cancer types. Here we investigated whether AIMP2 would give gene dosage effect on its pro-apoptotic and anti-proliferative activities using the wild-type, hetero- and homozygous AIMP2 cells and whether AIMP2 would be critical in preventing tumorigenesis using different in vivo tumor models. Both the apoptotic responses to DNA damage and TNF-alpha and sensitivity to growth arresting TGF-beta signal were reduced in AIMP2 hetero- and homozygous cells compared with the wild-type cells in dose-dependent manner. In all the in vivo carcinogenesis experiments, reduction of AIMP2 level in heterozygous AIMP2 mice provided higher susceptibility to tumor formation. Thus, this work proves the functional significance of AIMP2 in determination of cell proliferation and death, and as a haploinsufficient tumor suppressor.
Collapse
Affiliation(s)
- Jin Woo Choi
- Center for Medicinal Protein Network and Systems Biology, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|