51
|
Chabosseau P, Tuncay E, Meur G, Bellomo EA, Hessels A, Hughes S, Johnson PRV, Bugliani M, Marchetti P, Turan B, Lyon AR, Merkx M, Rutter GA. Mitochondrial and ER-targeted eCALWY probes reveal high levels of free Zn2+. ACS Chem Biol 2014; 9:2111-20. [PMID: 25011072 PMCID: PMC6101202 DOI: 10.1021/cb5004064] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc (Zn2+) ions are increasingly recognized as playing an important role in cellular physiology. Whereas the free Zn2+ concentration in the cytosol has been established to be 0.1-1 nM, the free Zn2+ concentration in subcellular organelles is not well-established. Here, we extend the eCALWY family of genetically encoded Förster Resonance Energy Transfer (FRET) Zn2+ probes to permit measurements in the endo(sarco)plasmic reticulum (ER) and mitochondrial matrix. Deployed in a variety of mammalian cell types, these probes reveal resting mitochondrial free [Zn2+] values of ∼300 pM, somewhat lower than in the cytosol but 3 orders of magnitude higher than recently reported using an alternative FRET-based sensor. By contrast, free ER [Zn2+] was found to be ≥5 nM, which is >5000-fold higher than recently reported but consistent with the proposed role of the ER as a mobilizable Zn2+ store. Treatment of β-cells or cardiomyocytes with sarco(endo)plasmic reticulum Ca2+-ATPase inhibitors, mobilization of ER Ca2+ after purinergic stimulation with ATP, or manipulation of ER redox, exerted no detectable effects on [Zn2+]ER. These findings question the previously proposed role of Ca2+ in Zn2+ mobilization from the ER and suggest that high ER Zn2+ levels may be an important aspect of cellular homeostasis.
Collapse
Affiliation(s)
- Pauline Chabosseau
- Section of Cell Biology, Division of Medicine, and ‡National Heart and Lung Institute, Imperial College London , London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Pouvreau S. Genetically encoded reactive oxygen species (ROS) and redox indicators. Biotechnol J 2014; 9:282-93. [PMID: 24497389 DOI: 10.1002/biot.201300199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/10/2013] [Accepted: 11/06/2013] [Indexed: 12/17/2022]
Abstract
Redox processes are increasingly being recognized as key elements in the regulation of cellular signaling cascades. They are frequently encountered at the frontier between physiological functions and pathological events. The biological relevance of intracellular redox changes depends on the subcellular origin, the spatio-temporal distribution and the redox couple involved. Thus, a key task in the elucidation of the role of redox reactions is the specific and quantitative measurement of redox conditions with high spatio-temporal resolution. Unfortunately, until recently, our ability to perform such measurements was limited by the lack of adequate technology. Over the last 10 years, promising imaging tools have been developed from fluorescent proteins. Genetically encoded reactive oxygen species (ROS) and redox indicators (GERRIs) have the potential to allow real-time and pseudo-quantitative monitoring of specific ROS and thiol redox state in subcellular compartments or live organisms. Redox-sensitive yellow fluorescent proteins (rxYFP family), redox-sensitive green fluorescent proteins (roGFP family), HyPer (a probe designed to measure H2 O2 ), circularly permuted YFP and others have been used in several models and sufficient information has been collected to highlight their main characteristics. This review is intended to be a tour guide of the main types of GERRIs, their origins, properties, advantages and pitfalls.
Collapse
Affiliation(s)
- Sandrine Pouvreau
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.
| |
Collapse
|
53
|
Kaludercic N, Deshwal S, Di Lisa F. Reactive oxygen species and redox compartmentalization. Front Physiol 2014; 5:285. [PMID: 25161621 PMCID: PMC4130307 DOI: 10.3389/fphys.2014.00285] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/11/2014] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) formation and signaling are of major importance and regulate a number of processes in physiological conditions. A disruption in redox status regulation, however, has been associated with numerous pathological conditions. In recent years it has become increasingly clear that oxidative and reductive modifications are confined in a spatio-temporal manner. This makes ROS signaling similar to that of Ca(2+) or other second messengers. Some subcellular compartments are more oxidizing (such as lysosomes or peroxisomes) whereas others are more reducing (mitochondria, nuclei). Moreover, although more reducing, mitochondria are especially susceptible to oxidation, most likely due to the high number of exposed thiols present in that compartment. Recent advances in the development of redox probes allow specific measurement of defined ROS in different cellular compartments in intact living cells or organisms. The availability of these tools now allows simultaneous spatio-temporal measurements and correlation between ROS generation and organelle and/or cellular function. The study of ROS compartmentalization and microdomains will help elucidate their role in physiology and disease. Here we will examine redox probes currently available and how ROS generation may vary between subcellular compartments. Furthermore, we will discuss ROS compartmentalization in physiological and pathological conditions focusing our attention on mitochondria, since their vulnerability to oxidative stress is likely at the basis of several diseases.
Collapse
Affiliation(s)
- Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR) Padova, Italy
| | - Soni Deshwal
- Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council of Italy (CNR) Padova, Italy ; Department of Biomedical Sciences, University of Padova Padova, Italy
| |
Collapse
|
54
|
Joshi-Barr S, de Gracia Lux C, Mahmoud E, Almutairi A. Exploiting oxidative microenvironments in the body as triggers for drug delivery systems. Antioxid Redox Signal 2014; 21:730-54. [PMID: 24328819 PMCID: PMC4098119 DOI: 10.1089/ars.2013.5754] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Reactive oxygen species and reactive nitrogen species (ROS/RNS) play an important role in cell signaling pathways. However, the increased production of these species may disrupt cellular homeostasis, giving rise to pathological conditions. Biomaterials that are responsive to ROS/RNS can be strategically used to specifically release therapeutics and diagnostic agents to regions undergoing oxidative stress. RECENT ADVANCES Many nanocarriers intended to exploit redox micro-environments as triggers for drug release, summarized and compared in this review, have recently been developed. We describe these carriers' chemical structures, strategies for payload protection and oxidation-selective release, and ROS/RNS sensitivity as tested in initial studies. CRITICAL ISSUES ROS/RNS are unstable, so reliable measures of their concentrations in various conditions are scarce. Combined with the dearth of materials shown to respond to physiologically relevant levels of ROS/RNS, evaluations of their true sensitivity are difficult. FUTURE DIRECTIONS Oxidation-responsive nanocarriers developed thus far show tremendous potential for applicability in vivo; however, the sensitivity of these chemistries needs to be fine tuned to enable responses to physiological levels of ROS and RNS.
Collapse
Affiliation(s)
- Shivanjali Joshi-Barr
- 1 Skaggs School of Pharmacy and Pharmaceutical Sciences, Laboratory of Bioresponsive Materials, University of California , San Diego, San Diego, California
| | | | | | | |
Collapse
|
55
|
Zhang W, Zheng W, Mao M, Yang Y. Highly efficient folding of multi-disulfide proteins in superoxidizingEscherichia colicytoplasm. Biotechnol Bioeng 2014; 111:2520-7. [DOI: 10.1002/bit.25309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Wenyao Zhang
- Synthetic Biology and Biotechnology Laboratory; State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing Technology; School of Pharmacy; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| | - Wenyun Zheng
- Synthetic Biology and Biotechnology Laboratory; State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing Technology; School of Pharmacy; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| | - Miaowei Mao
- Synthetic Biology and Biotechnology Laboratory; State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing Technology; School of Pharmacy; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory; State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing Technology; School of Pharmacy; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| |
Collapse
|
56
|
Balancing oxidative protein folding: The influences of reducing pathways on disulfide bond formation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1383-90. [DOI: 10.1016/j.bbapap.2014.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 11/20/2022]
|
57
|
Wang L, Zhang L, Niu Y, Sitia R, Wang CC. Glutathione peroxidase 7 utilizes hydrogen peroxide generated by Ero1α to promote oxidative protein folding. Antioxid Redox Signal 2014; 20:545-56. [PMID: 23919619 PMCID: PMC3901321 DOI: 10.1089/ars.2013.5236] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIMS Ero1 flavoproteins catalyze oxidative folding in the endoplasmic reticulum (ER), consuming oxygen and generating hydrogen peroxide (H2O2). The ER-localized glutathione peroxidase 7 (GPx7) shows protein disulfide isomerase (PDI)-dependent peroxidase activity in vitro. Our work aims at identifying the physiological role of GPx7 in the Ero1α/PDI oxidative folding pathway and at dissecting the reaction mechanisms of GPx7. RESULTS Our data show that GPx7 can utilize Ero1α-produced H2O2 to accelerate oxidative folding of substrates both in vitro and in vivo. H2O2 oxidizes Cys57 of GPx7 to sulfenic acid, which can be resolved by Cys86 to form an intramolecular disulfide bond. Both the disulfide form and sulfenic acid form of GPx7 can oxidize PDI for catalyzing oxidative folding. GPx7 prefers to interact with the a domain of PDI, and intramolecular cooperation between the two redox-active sites of PDI increases the activity of the Ero1α/GPx7/PDI triad. INNOVATION Our in vitro and in vivo evidence provides mechanistic insights into how cells consume potentially harmful H2O2 while optimizing oxidative protein folding via the Ero1α/GPx7/PDI triad. Cys57 can promote PDI oxidation in two ways, and Cys86 emerges as a novel noncanonical resolving cysteine. CONCLUSION GPx7 promotes oxidative protein folding, directly utilizing Ero1α-generated H2O2 in the early secretory compartment. Thus, the Ero1α/GPx7/PDI triad generates two disulfide bonds and two H2O molecules at the expense of a single O2 molecule.
Collapse
Affiliation(s)
- Lei Wang
- 1 National Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
58
|
The mitochondrial translocator protein, TSPO, inhibits HIV-1 envelope glycoprotein biosynthesis via the endoplasmic reticulum-associated protein degradation pathway. J Virol 2014; 88:3474-84. [PMID: 24403586 DOI: 10.1128/jvi.03286-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The HIV-1 Env glycoprotein is folded in the endoplasmic reticulum (ER), which is necessary for viral entry and replication. Currently, it is still unclear how this process is regulated. The glycoprotein folding in the ER is controlled by the ER-associated protein degradation (ERAD) pathway, which specifically targets misfolded proteins for degradation. Previously, we reported that HIV-1 replication is restricted in the human CD4(+) T cell line CEM.NKR (NKR). To understand this mechanism, we first analyzed cellular protein expression in NKR cells and discovered that levels of the mitochondrial translocator protein TSPO were upregulated by ∼64-fold. Notably, when NKR cells were treated with TSPO antagonist PK-11195, Ro5-4864, or diazepam, HIV restriction was completely disrupted, and TSPO knockdown by short hairpin RNAs (shRNAs) achieved a similar effect. We next analyzed viral protein expression, and, interestingly, we discovered that Env expression was specifically inhibited. Both TSPO knockdown and treatment with TSPO antagonist could restore Env expression in NKR cells. We further discovered that Env proteins were rapidly degraded and that kifunensine, an ERAD pathway inhibitor, could restore Env expression and viral replication, indicating that Env proteins were misfolded and degraded through the ERAD pathway in NKR cells. We also knocked out the TSPO gene in 293T cells using CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat [CRISPR]/CRISPR-associated-9) technology and found that TSPO could similarly inhibit Env expression in these cells. Taken together, these results demonstrate that TSPO inhibits Env protein expression through the ERAD pathway and suggest that mitochondria play an important role in regulating the Env folding process. IMPORTANCE The HIV-1 Env glycoprotein is absolutely required for viral infection, and an understanding of its expression pathway in infected cells will identify new targets for antiretroviral therapies. Env proteins are folded in the ER and secreted through the classical secretory pathway. The Env folding process involves extensive cross-linking of 10 Cys residues by disulfide bond formation and heavy N-glycosylation on ∼30 Asn residues. Currently, it is still unclear how this process is regulated. Here, we studied this mechanism in the HIV nonpermissive human CD4(+) T cell line CEM.NKR. We found that Env proteins were rapidly degraded through a cellular pathway that specifically targets misfolded proteins, resulting in inhibition of Env expression. Importantly, we have identified a mitochondrial translocator protein, TSPO, which could trigger this degradation by interfering with the Env folding process. Further characterization of TSPO antiviral activity will reveal a novel antiretroviral mechanism that targets the Env protein.
Collapse
|
59
|
Cao Z, Subramaniam S, Bulleid NJ. Lack of an efficient endoplasmic reticulum-localized recycling system protects peroxiredoxin IV from hyperoxidation. J Biol Chem 2014; 289:5490-8. [PMID: 24403061 PMCID: PMC3937625 DOI: 10.1074/jbc.m113.529305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Typical 2-Cys peroxiredoxins are required to remove hydrogen peroxide from several different cellular compartments. Their activity can be regulated by hyperoxidation and consequent inactivation of the active-site peroxidatic cysteine. Here we developed a simple assay to quantify the hyperoxidation of peroxiredoxins. Hyperoxidation of peroxiredoxins can only occur efficiently in the presence of a recycling system, usually involving thioredoxin and thioredoxin reductase. We demonstrate that there is a marked difference in the sensitivity of the endoplasmic reticulum-localized peroxiredoxin to hyperoxidation compared with either the cytosolic or mitochondrial enzymes. Each enzyme is equally sensitive to hyperoxidation in the presence of a robust recycling system. Our results demonstrate that peroxiredoxin IV recycling in the endoplasmic reticulum is much less efficient than in the cytosol or mitochondria, leading to the protection of peroxiredoxin IV from hyperoxidation.
Collapse
Affiliation(s)
- Zhenbo Cao
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | |
Collapse
|
60
|
|
61
|
Approaches to imaging unfolded secretory protein stress in living cells. ENDOPLASMIC RETICULUM STRESS IN DISEASES 2014; 1:27-39. [PMID: 25419521 DOI: 10.2478/ersc-2014-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The endoplasmic reticulum (ER) is the point of entry of proteins into the secretory pathway. Nascent peptides interact with the ER quality control machinery that ensures correct folding of the nascent proteins. Failure to properly fold proteins can lead to loss of protein function and cytotoxic aggregation of misfolded proteins that can lead to cell death. To cope with increases in the ER unfolded secretory protein burden, cells have evolved the Unfolded Protein Response (UPR). The UPR is the primary signaling pathway that monitors the state of the ER folding environment. When the unfolded protein burden overwhelms the capacity of the ER quality control machinery, a state termed ER stress, sensor proteins detect accumulation of misfolded peptides and trigger the UPR transcriptional response. The UPR, which is conserved from yeast to mammals, consists of an ensemble of complex signaling pathways that aims at adapting the ER to the new misfolded protein load. To determine how different factors impact the ER folding environment, various tools and assays have been developed. In this review, we discuss recent advances in live cell imaging reporters and model systems that enable researchers to monitor changes in the unfolded secretory protein burden and activation of the UPR and its associated signaling pathways.
Collapse
|
62
|
ERO1α-dependent endoplasmic reticulum-mitochondrial calcium flux contributes to ER stress and mitochondrial permeabilization by procaspase-activating compound-1 (PAC-1). Cell Death Dis 2013; 4:e968. [PMID: 24357799 PMCID: PMC3877569 DOI: 10.1038/cddis.2013.502] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/10/2013] [Indexed: 12/18/2022]
Abstract
Procaspase-activating compound-1 (PAC-1) is the first direct caspase-activating compound discovered; using an in vitro cell-free system of caspase activation. Subsequently, this compound was shown to induce apoptosis in a variety of cancer cells with promising in vivo antitumor activity in canine lymphoma model. Recently, we have reported its ability to kill drug-resistant, Bcl-2/Bcl-xL overexpressing and Bax/Bak-deficient cells despite the essential requirement of mitochondrial cytochrome c (cyt. c) release for caspase activation, indicating that the key molecular targets of PAC-1 in cancer cells are yet to be identified. Here, we have identified Ero1α-dependent endoplasmic reticulum (ER) calcium leakage to mitochondria through mitochondria-associated ER membranes (MAM) and ER luminal hyper-oxidation as the critical events of PAC-1-mediated cell death. PAC-1 treatment upregulated Ero1α in multiple cell lines, whereas silencing of Ero1α significantly inhibited calcium release from ER and cell death. Loss of ER calcium and hyper-oxidation of ER lumen by Ero1α collectively triggered ER stress. Upregulation of GRP78 and splicing of X-box-binding protein 1 (XBP1) mRNA in multiple cancer cells suggested ER stress as the general event triggered by PAC-1. XBP1 mRNA splicing and GRP78 upregulation confirmed ER stress even in Bax/Bak double knockout and PAC-1-resistant Apaf-1-knockout cells, indicating an induction of ER stress-mediated mitochondrial apoptosis by PAC-1. Furthermore, we identified BH3-only protein p53 upregulated modulator of apoptosis (PUMA) as the key molecular link that orchestrates overwhelmed ER stress to mitochondria-mediated apoptosis, involving mitochondrial reactive oxygen species, in a p53-independent manner. Silencing of PUMA in cancer cells effectively reduced cyt. c release and cell death by PAC-1.
Collapse
|
63
|
Armstrong JA, Cash N, Soares PMG, Souza MHLP, Sutton R, Criddle DN. Oxidative stress in acute pancreatitis: lost in translation? Free Radic Res 2013; 47:917-33. [PMID: 23952531 DOI: 10.3109/10715762.2013.835046] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress has been implicated in the pathogenesis of acute pancreatitis, a severe and debilitating inflammation of the pancreas that carries a significant mortality, and which imposes a considerable financial burden on the health system due to patient care. Although extensive efforts have been directed towards the elucidation of critical underlying mechanisms and the identification of novel therapeutic targets, the disease remains without a specific therapy. In experimental animal models of acute pancreatitis, increased oxidative stress and decreased antioxidant defences have been observed, changes also detected in patients clinically. However, despite the promise of studies evaluating the effects of antioxidants in these model systems, translation to the clinic has thus far been disappointing. This may reflect many factors involved in the design of both preclinical and clinical evaluations of antioxidant therapy, not least the fact that most experimental studies have focussed on pre-treatment rather than post-injury assessment. This review has examined evidence relating to the involvement of oxidative stress in the pathophysiology of acute pancreatitis, focussing on experimental models and the clinical experience, including the experimental techniques employed and potential of antioxidant therapy.
Collapse
Affiliation(s)
- J A Armstrong
- NIHR Liverpool Pancreas Biomedical Research Unit, RLBUHT , Liverpool , UK
| | | | | | | | | | | |
Collapse
|
64
|
Araki K, Iemura SI, Kamiya Y, Ron D, Kato K, Natsume T, Nagata K. Ero1-α and PDIs constitute a hierarchical electron transfer network of endoplasmic reticulum oxidoreductases. J Cell Biol 2013; 202:861-74. [PMID: 24043701 PMCID: PMC3776355 DOI: 10.1083/jcb.201303027] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 08/08/2013] [Indexed: 01/20/2023] Open
Abstract
Ero1-α and endoplasmic reticulum (ER) oxidoreductases of the protein disulfide isomerase (PDI) family promote the efficient introduction of disulfide bonds into nascent polypeptides in the ER. However, the hierarchy of electron transfer among these oxidoreductases is poorly understood. In this paper, Ero1-α-associated oxidoreductases were identified by proteomic analysis and further confirmed by surface plasmon resonance. Ero1-α and PDI were found to constitute a regulatory hub, whereby PDI induced conformational flexibility in an Ero1-α shuttle cysteine (Cys99) facilitated intramolecular electron transfer to the active site. In isolation, Ero1-α also oxidized ERp46, ERp57, and P5; however, kinetic measurements and redox equilibrium analysis revealed that PDI preferentially oxidized other oxidoreductases. PDI accepted electrons from the other oxidoreductases via its a' domain, bypassing the a domain, which serves as the electron acceptor from reduced glutathione. These observations provide an integrated picture of the hierarchy of cooperative redox interactions among ER oxidoreductases in mammalian cells.
Collapse
Affiliation(s)
- Kazutaka Araki
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo 135-0064, Japan
- Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8047, Japan
| | - Shun-ichiro Iemura
- Innovative drug development translational research section, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Yukiko Kamiya
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagaya City University, Nagoya 467-8603, Japan
| | - David Ron
- Metabolic Research Laboratories; and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke’s Hospital; University of Cambridge, Cambridge CB2 0QQ, England, UK
| | - Koichi Kato
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagaya City University, Nagoya 467-8603, Japan
- The Glycoscience Institute, Ochanomizu University, Tokyo 112-8610, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo 135-0064, Japan
| | - Kazuhiro Nagata
- Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8047, Japan
| |
Collapse
|
65
|
Kolossov VL, Beaudoin JN, Hanafin WP, DiLiberto SJ, Kenis PJA, Gaskins HR. Transient light-induced intracellular oxidation revealed by redox biosensor. Biochem Biophys Res Commun 2013; 439:517-21. [PMID: 24025674 DOI: 10.1016/j.bbrc.2013.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 11/20/2022]
Abstract
We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.
Collapse
Affiliation(s)
- Vladimir L Kolossov
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801, USA.
| | | | | | | | | | | |
Collapse
|
66
|
Aller I, Meyer AJ. The oxidative protein folding machinery in plant cells. PROTOPLASMA 2013; 250:799-816. [PMID: 23090240 DOI: 10.1007/s00709-012-0463-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/02/2012] [Indexed: 06/01/2023]
Abstract
Formation of intra-molecular disulfides and concomitant oxidative protein folding is essential for stability and catalytic function of many soluble and membrane-bound proteins in the endomembrane system, the mitochondrial inter-membrane space and the thylakoid lumen. Disulfide generation from free cysteines in nascent polypeptide chains is generally a catalysed process for which distinct pathways exist in all compartments. A high degree of similarities between highly diverse eukaryotic and bacterial systems for generation of protein disulfides indicates functional conservation of key processes throughout evolution. However, while many aspects about molecular function of enzymatic systems promoting disulfide formation have been demonstrated for bacterial and non-plant eukaryotic organisms, it is now clear that the plant machinery for oxidative protein folding displays distinct details, suggesting that the different pathways have been adapted to plant-specific requirements in terms of compartmentation, molecular function and regulation. Here, we aim to evaluate biological diversity by comparing the plant systems for oxidative protein folding to the respective systems from non-plant eukaryotes.
Collapse
Affiliation(s)
- Isabel Aller
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | | |
Collapse
|
67
|
Squires S, Christians E, Riedel M, Timothy D, Rodesch CK, Marvin J, Benjamin I. Effects of redox state on the efficient uptake of cell permeable Peptide in Mammalian cells. Open Biochem J 2013; 7:54-65. [PMID: 23919090 PMCID: PMC3731798 DOI: 10.2174/1874091x20130531001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 05/21/2013] [Accepted: 05/27/2013] [Indexed: 11/22/2022] Open
Abstract
We investigated whether a cell-penetrating peptide linked via a disulfide bond to a fluorophore-labeled
cargo peptide can be used to interrogate changes in cellular redox state. A fluorescence resonance energy
transfer (FRET) pair was constructed so that the cargo peptide was labeled with fluorescein amidite (FAM)
and the cell-penetrating peptide was attached to a quencher. Incubation of cells in culture with the FRET
construct was visualized using live-cell, time-lapse imaging, which demonstrated earlier cellular uptake of
the construct when cells were treated with the reducing agent n-acetylcysteine (NAC). The FRET peptide
construct was easily detected in cells cultured in 96-well plates using a plate-reader. Treatment of cells with
various classes of reducing or oxidizing agents resulted in an increase or decrease in FAM fluorescence,
respectively. Changes in FAM fluorescence correlated significantly with redox-sensitive green fluorescent
protein ratios in cells treated with hydrogen peroxide but not NAC. Detection of relative changes in cellular
redox state was enhanced by the fact that uptake of the cell-penetrating peptide occurred more quickly in
relatively reduced compared with oxidized cells. We conclude that cell-penetrating peptides coupled via
disulfide bonds to detectable cargo is a novel and specific approach for assessment of relative changes in
cellular thiol redox state.
Collapse
Affiliation(s)
- Shayne Squires
- Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Birk J, Ramming T, Odermatt A, Appenzeller-Herzog C. Green fluorescent protein-based monitoring of endoplasmic reticulum redox poise. Front Genet 2013; 4:108. [PMID: 23781233 PMCID: PMC3680709 DOI: 10.3389/fgene.2013.00108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/27/2013] [Indexed: 01/08/2023] Open
Abstract
Pathological endoplasmic reticulum (ER) stress is tightly linked to the accumulation of reactive oxidants, which can be both upstream and downstream of ER stress. Accordingly, detrimental intracellular stress signals are amplified through establishment of a vicious cycle. An increasing number of human diseases are characterized by tissue atrophy in response to ER stress and oxidative injury. Experimental monitoring of stress-induced, time-resolved changes in ER reduction-oxidation (redox) states is therefore important. Organelle-specific examination of redox changes has been facilitated by the advent of genetically encoded, fluorescent probes, which can be targeted to different subcellular locations by means of specific amino acid extensions. These probes include redox-sensitive green fluorescent proteins (roGFPs) and the yellow fluorescent protein-based redox biosensor HyPer. In the case of roGFPs, variants with known specificity toward defined redox couples are now available. Here, we review the experimental framework to measure ER redox changes using ER-targeted fluorescent biosensors. Advantages and drawbacks of plate-reader and microscopy-based measurements are discussed, and the power of these techniques demonstrated in the context of selected cell culture models for ER stress.
Collapse
Affiliation(s)
- Julia Birk
- Division of Molecular & Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel Basel, Switzerland
| | | | | | | |
Collapse
|
69
|
Avezov E, Cross BCS, Kaminski Schierle GS, Winters M, Harding HP, Melo EP, Kaminski CF, Ron D. Lifetime imaging of a fluorescent protein sensor reveals surprising stability of ER thiol redox. ACTA ACUST UNITED AC 2013; 201:337-49. [PMID: 23589496 PMCID: PMC3628511 DOI: 10.1083/jcb.201211155] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Interfering with disulfide bond formation impedes protein folding and promotes endoplasmic reticulum (ER) stress. Due to limitations in measurement techniques, the relationships of altered thiol redox and ER stress have been difficult to assess. We report that fluorescent lifetime measurements circumvented the crippling dimness of an ER-tuned fluorescent redox-responsive probe (roGFPiE), faithfully tracking the activity of the major ER-localized protein disulfide isomerase, PDI. In vivo lifetime imaging by time-correlated single-photon counting (TCSPC) recorded subtle changes in ER redox poise induced by exposure of mammalian cells to a reducing environment but revealed an unanticipated stability of redox to fluctuations in unfolded protein load. By contrast, TCSPC of roGFPiE uncovered a hitherto unsuspected reductive shift in the mammalian ER upon loss of luminal calcium, whether induced by pharmacological inhibition of calcium reuptake into the ER or by physiological activation of release channels. These findings recommend fluorescent lifetime imaging as a sensitive method to track ER redox homeostasis in mammalian cells.
Collapse
Affiliation(s)
- Edward Avezov
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Ayer A, Sanwald J, Pillay BA, Meyer AJ, Perrone GG, Dawes IW. Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae. PLoS One 2013; 8:e65240. [PMID: 23762325 PMCID: PMC3676407 DOI: 10.1371/journal.pone.0065240] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/24/2013] [Indexed: 11/18/2022] Open
Abstract
Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (EGSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. EGSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (−340 to −350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H+/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H+/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions.
Collapse
Affiliation(s)
- Anita Ayer
- University of New South Wales, Sydney, Australia
| | | | | | | | | | - Ian W. Dawes
- University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
71
|
Sarkar DD, Edwards SK, Mauser JA, Suarez AM, Serowoky MA, Hudok NL, Hudok PL, Nuñez M, Weber CS, Lynch RM, Miyashita O, Tsao TS. Increased redox-sensitive green fluorescent protein reduction potential in the endoplasmic reticulum following glutathione-mediated dimerization. Biochemistry 2013; 52:3332-45. [PMID: 23594148 DOI: 10.1021/bi400052u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the endoplasmic reticulum (ER) is the compartment where disulfide bridges in secreted and cell surface proteins are formed, the disturbance of its redox state has profound consequences, yet regulation of ER redox potential remains poorly understood. To monitor the ER redox state in live cells, several fluorescence-based sensors have been developed. However, these sensors have yielded results that are inconsistent with each other and with earlier non-fluorescence-based studies. One particular green fluorescent protein (GFP)-based redox sensor, roGFP1-iL, could detect oxidizing changes in the ER despite having a reduction potential significantly lower than that previously reported for the ER. We have confirmed these observations and determined the mechanisms by which roGFP1-iL detects oxidizing changes. First, glutathione mediates the formation of disulfide-bonded roGFP1-iL dimers with an intermediate excitation fluorescence spectrum resembling a mixture of oxidized and reduced monomers. Second, glutathione facilitates dimerization of roGFP1-iL, which shifted the equilibrium from oxidized monomers to dimers, thereby increasing the molecule's reduction potential compared with that of a dithiol redox buffer. We conclude that the glutathione redox couple in the ER significantly increased the reduction potential of roGFP1-iL in vivo by facilitating its dimerization while preserving its ratiometric nature, which makes it suitable for monitoring oxidizing and reducing changes in the ER with a high degree of reliability in real time. The ability of roGFP1-iL to detect both oxidizing and reducing changes in ER and its dynamic response in glutathione redox buffer between approximately -190 and -130 mV in vitro suggests a range of ER redox potentials consistent with those determined by earlier approaches that did not involve fluorescent sensors.
Collapse
Affiliation(s)
- Deboleena Dipak Sarkar
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B. The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 2013; 37:872-914. [PMID: 23480475 DOI: 10.1111/1574-6976.12020] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/14/2013] [Accepted: 02/17/2013] [Indexed: 12/11/2022] Open
Abstract
Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes.
Collapse
Affiliation(s)
- Marizela Delic
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | | | | | | | | | | |
Collapse
|
73
|
Birk J, Meyer M, Aller I, Hansen HG, Odermatt A, Dick TP, Meyer AJ, Appenzeller-Herzog C. Endoplasmic reticulum: reduced and oxidized glutathione revisited. J Cell Sci 2013; 126:1604-17. [PMID: 23424194 DOI: 10.1242/jcs.117218] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The reducing power of glutathione, expressed by its reduction potential EGSH, is an accepted measure for redox conditions in a given cell compartment. In the endoplasmic reticulum (ER), EGSH is less reducing than elsewhere in the cell. However, attempts to determine EGSH(ER) have been inconsistent and based on ineligible assumptions. Using a codon-optimized and evidently glutathione-specific glutaredoxin-coupled redox-sensitive green fluorescent protein (roGFP) variant, we determined EGSH(ER) in HeLa cells as -208±4 mV (at pH 7.0). At variance with existing models, this is not oxidizing enough to maintain the known redox state of protein disulfide isomerase family enzymes. Live-cell microscopy confirmed ER hypo-oxidation upon inhibition of ER Ca(2+) import. Conversely, stressing the ER with a glycosylation inhibitor did not lead to more reducing conditions, as reported for yeast. These results, which for the first time establish the oxidative capacity of glutathione in the ER, illustrate a context-dependent interplay between ER stress and EGSH(ER). The reported development of ER-localized EGSH sensors will enable more targeted in vivo redox analyses in ER-related disorders.
Collapse
Affiliation(s)
- Julia Birk
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Schuiki I, Zhang L, Volchuk A. Endoplasmic reticulum redox state is not perturbed by pharmacological or pathological endoplasmic reticulum stress in live pancreatic β-cells. PLoS One 2012; 7:e48626. [PMID: 23144914 PMCID: PMC3493583 DOI: 10.1371/journal.pone.0048626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/03/2012] [Indexed: 01/16/2023] Open
Abstract
Accumulation of unfolded, misfolded and aggregated proteins in the endoplasmic reticulum (ER) causes ER stress. ER stress can result from physiological situations such as acute increases in secretory protein biosynthesis or pathological conditions that perturb ER homeostasis such as alterations in the ER redox state. Here we monitored ER redox together with transcriptional output of the Unfolded Protein Response (UPR) in INS-1 insulinoma cells stably expressing eroGFP (ER-redox-sensor) and mCherry protein driven by a GRP78 promoter (UPR-sensor). Live cell imaging, flow cytometry and biochemical characterization were used to examine these parameters in response to various conditions known to induce ER stress. As expected, treatment of the cells with the reducing agent dithiothreitol caused a decrease in the oxidation state of the ER accompanied by an increase in XBP-1 splicing. Unexpectedly however, other treatments including tunicamycin, thapsigargin, DL-homocysteine, elevated free fatty acids or high glucose had essentially no influence on the ER redox state, despite inducing ER stress. Comparable results were obtained with dispersed rat islet cells expressing eroGFP. Thus, unlike in yeast cells, ER stress in pancreatic β-cells is not associated with a more reducing ER environment.
Collapse
Affiliation(s)
- Irmgard Schuiki
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Liling Zhang
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Allen Volchuk
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
75
|
Bulleid NJ. Disulfide bond formation in the mammalian endoplasmic reticulum. Cold Spring Harb Perspect Biol 2012; 4:4/11/a013219. [PMID: 23125019 DOI: 10.1101/cshperspect.a013219] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The formation of disulfide bonds between cysteine residues occurs during the folding of many proteins that enter the secretory pathway. As the polypeptide chain collapses, cysteines brought into proximity can form covalent linkages during a process catalyzed by members of the protein disulfide isomerase family. There are multiple pathways in mammalian cells to ensure disulfides are introduced into proteins. Common requirements for this process include a disulfide exchange protein and a protein oxidase capable of forming disulfides de novo. In addition, any incorrect disulfides formed during the normal folding pathway are removed in a process involving disulfide exchange. The pathway for the reduction of disulfides remains poorly characterized. This work will cover the current knowledge in the field and discuss areas for future investigation.
Collapse
Affiliation(s)
- Neil J Bulleid
- Institute of Molecular, Cellular and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom.
| |
Collapse
|
76
|
Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1363-73. [DOI: 10.1016/j.bbadis.2011.12.001] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/25/2011] [Accepted: 12/02/2011] [Indexed: 12/27/2022]
|
77
|
Kolossov VL, Leslie MT, Chatterjee A, Sheehan BM, Kenis PJA, Gaskins HR. Förster resonance energy transfer-based sensor targeting endoplasmic reticulum reveals highly oxidative environment. Exp Biol Med (Maywood) 2012; 237:652-62. [PMID: 22715429 DOI: 10.1258/ebm.2012.011436] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The glutathione thiol/disulfide couple is the major redox buffer in the endoplasmic reticulum (ER); however, mechanisms by which it contributes to the tightly regulated redox environment of this intracellular organelle are poorly understood. The recent development of genetically encoded, ratiometric, single green fluorescent protein-based redox-sensitive (roGFP) sensors adjusted for more oxidative environments enables non-invasive measurement of the ER redox environment in living cells. In turn, Förster resonance energy transfer (FRET) sensors based on two fluorophore probes represent an alternative strategy for ratiometric signal acquisition. In previous work, we described the FRET-based redox sensor CY-RL7 with a relatively high midpoint redox potential of -143 mV, which is required for monitoring glutathione potentials in the comparatively high oxidative environment of the ER. Here, the efficacy of the CY-RL7 probe was ascertained in the cytosol and ER of live cells with fluorescence microscopy and flow cytometry. The sensor was found to be fully reduced at steady state in the cytosol and became fully oxidized in response to treatment with 1-chloro-2,4-dinitrobenzene, a depletor of reduced glutathione (GSH). In contrast, the probe was strongly oxidized (88%) upon expression in the ER of cultured cells. We also examined the responsiveness of the ER sensor to perturbations in cellular glutathione homeostasis. We observed that the reductive level of the FRET sensor was increased two-fold to about 28% in cells pretreated with N-acetylcysteine, a substrate for GSH synthesis. Finally, we evaluated the responsiveness of CY-RL7 and roGFP1-iL to various perturbations of cellular glutathione homeostasis to address the divergence in the specificity of these two probes. Together, the present data generated with genetically encoded green fluorescent protein (GFP)-based glutathione probes highlight the complexity of the ER redox environment and indicate that the ER glutathione pool may be more oxidized than is currently considered.
Collapse
Affiliation(s)
- Vladimir L Kolossov
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | | | |
Collapse
|
78
|
Dardalhon M, Kumar C, Iraqui I, Vernis L, Kienda G, Banach-Latapy A, He T, Chanet R, Faye G, Outten CE, Huang ME. Redox-sensitive YFP sensors monitor dynamic nuclear and cytosolic glutathione redox changes. Free Radic Biol Med 2012; 52:2254-65. [PMID: 22561702 PMCID: PMC3382975 DOI: 10.1016/j.freeradbiomed.2012.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/22/2012] [Accepted: 04/06/2012] [Indexed: 02/07/2023]
Abstract
Intracellular redox homeostasis is crucial for many cellular functions but accurate measurements of cellular compartment-specific redox states remain technically challenging. To better characterize redox control in the nucleus, we targeted a yellow fluorescent protein-based redox sensor (rxYFP) to the nucleus of the yeast Saccharomyces cerevisiae. Parallel analyses of the redox state of nucleus-rxYFP and cytosol-rxYFP allowed us to monitor distinctively dynamic glutathione (GSH) redox changes within these two compartments under a given condition. We observed that the nuclear GSH redox environment is highly reducing and similar to the cytosol under steady-state conditions. Furthermore, these sensors are able to detect redox variations specific for their respective compartments in glutathione reductase (Glr1) and thioredoxin pathway (Trr1, Trx1, Trx2) mutants that have altered subcellular redox environments. Our mutant redox data provide in vivo evidence that glutathione and the thioredoxin redox systems have distinct but overlapping functions in controlling subcellular redox environments. We also monitored the dynamic response of nucleus-rxYFP and cytosol-rxYFP to GSH depletion and to exogenous low and high doses of H₂O₂ bursts. These observations indicate a rapid and almost simultaneous oxidation of both nucleus-rxYFP and cytosol-rxYFP, highlighting the robustness of the rxYFP sensors in measuring real-time compartmental redox changes. Taken together, our data suggest that the highly reduced yeast nuclear and cytosolic redox states are maintained independently to some extent and under distinct but subtle redox regulation. Nucleus- and cytosol-rxYFP register compartment-specific localized redox fluctuations that may involve exchange of reduced and/or oxidized glutathione between these two compartments. Finally, we confirmed that GSH depletion has profound effects on mitochondrial genome stability but little effect on nuclear genome stability, thereby emphasizing that the critical requirement for GSH during growth is linked to a mitochondria-dependent process.
Collapse
Affiliation(s)
- Michèle Dardalhon
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Chitranshu Kumar
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Ismail Iraqui
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Laurence Vernis
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Guy Kienda
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Agata Banach-Latapy
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Tiantian He
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Roland Chanet
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Gérard Faye
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Caryn E. Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Meng-Er Huang
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| |
Collapse
|
79
|
Abstract
SIGNIFICANCE The biogenesis of most secreted and outer membrane proteins involves the formation of structure stabilizing disulfide bonds. Hence knowledge of the mechanisms for their formation is critical for understanding a myriad of cellular processes and associated disease states. RECENT ADVANCES Until recently it was thought that members of the Ero1 sulfhydryl oxidase family were responsible for catalyzing the majority of disulfide bond formation in the endoplasmic reticulum. However, multiple eukaryotic organisms are now known to show no or minor phenotypes when these enzymatic pathways are disrupted, suggesting that other pathways can catalyze disulfide bond formation to an extent sufficient to maintain normal physiology. CRITICAL ISSUES AND FUTURE DIRECTIONS This lack of a strong phenotype raises multiple questions regarding what pathways are acting and whether they themselves constitute the major route for disulfide bond formation. This review critically examines the potential low molecular oxidants that maybe involved in the catalyzed or noncatalyzed formation of disulfide bonds, with an emphasis on the mammalian endoplasmic reticulum, via an examination of their thermodynamics, kinetics, and availability and gives pointers to help guide future experimental work.
Collapse
|
80
|
Delic M, Rebnegger C, Wanka F, Puxbaum V, Haberhauer-Troyer C, Hann S, Köllensperger G, Mattanovich D, Gasser B. Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast. Free Radic Biol Med 2012; 52:2000-12. [PMID: 22406321 DOI: 10.1016/j.freeradbiomed.2012.02.048] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/24/2012] [Accepted: 02/24/2012] [Indexed: 01/27/2023]
Abstract
Oxidative protein folding can exceed the cellular secretion machinery, inducing the unfolded protein response (UPR). Sustained endoplasmic reticulum (ER) stress leads to cell stress and disease, as described for Alzheimer, Parkinson, and diabetes mellitus, among others. It is currently assumed that the redox state of the ER is optimally balanced for formation of disulfide bonds using glutathione as the main redox buffer and that UPR causes a reduction of this organelle. The direct effect of oxidative protein folding in the ER, however, has not yet been dissected from UPR regulation. To measure in vivo redox conditions in the ER and cytosol of the yeast model organism Pichia pastoris we targeted redox-sensitive roGFP variants to the respective organelles. Thereby, we clearly demonstrate that induction of the UPR causes reduction of the cytosol in addition to ER reduction. Similarly, a more reduced redox state of the cytosol, but not of the ER, is observed during oxidative protein folding in the ER without UPR induction, as demonstrated by overexpressing genes of disulfide bond-rich secretory proteins such as porcine trypsinogen or protein disulfide isomerase (PDI1) and ER oxidase (ERO1). Cytosolic reduction seems not to be caused by the action of glutathione reductase (GLR1) and could not be compensated for by overexpression of cytosolic glutathione peroxidase (GPX1). Overexpression of GPX1 and PDI1 oxidizes the ER and increases the secretion of correctly folded proteins, demonstrating that oxidative protein folding per se is enhanced by a more oxidized ER and is counterbalanced by a more reduced cytosol. As the total glutathione concentration of these strains does not change significantly, but the ratio of GSH to GSSG is altered, either transport or redox signaling between the glutathione pools of ER and cytosol is assumed. These data clearly demonstrate that protein folding and ER stress have a severe impact on the cytosolic redox balance, which may be a major factor during development of folding-related diseases.
Collapse
Affiliation(s)
- Marizela Delic
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Li HY, Zheng XM, Che MX, Hu HY. A redox-sensitive luciferase assay for determining the localization and topology of endoplasmic reticulum proteins. PLoS One 2012; 7:e35628. [PMID: 22530060 PMCID: PMC3329452 DOI: 10.1371/journal.pone.0035628] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/19/2012] [Indexed: 11/19/2022] Open
Abstract
Correct localization and transmembrane topology are crucial for the proteins residing and functioning in the endoplasmic reticulum (ER). We have developed a rapid and convenient assay, based on the redox-sensitive luciferase from Gaussia princeps (Gluc) and green fluorescence protein (GFP), to determine the localization or topology of ER proteins. Using the tandem Gluc-GFP reporter fused to different positions of a target protein, we successfully characterized the topologies of two ER transmembrane proteins Herp and HRD1 that are involved in the ER quality control system. This assay method may also be applicable to the proteins in secretory pathway, plasma membrane, and other compartments of cells.
Collapse
Affiliation(s)
- Hai-Yin Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xue-Ming Zheng
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mei-Xia Che
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
82
|
Rutkevich LA, Williams DB. Vitamin K epoxide reductase contributes to protein disulfide formation and redox homeostasis within the endoplasmic reticulum. Mol Biol Cell 2012; 23:2017-27. [PMID: 22496424 PMCID: PMC3364168 DOI: 10.1091/mbc.e12-02-0102] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ero1 oxidation of PDI family members drives disulfide bond formation, but parallel pathways support Ero1 function. Relative contributions of known and candidate ER oxidation pathways are ranked by combinatorial RNAi in human hepatoma cells to reveal VKOR as a substantial contributor to ER oxidation, but no role for QSOX1 is observed. The transfer of oxidizing equivalents from the endoplasmic reticulum (ER) oxidoreductin (Ero1) oxidase to protein disulfide isomerase is an important pathway leading to disulfide formation in nascent proteins within the ER. However, Ero1-deficient mouse cells still support oxidative protein folding, which led to the discovery that peroxiredoxin IV (PRDX4) catalyzes a parallel oxidation pathway. To identify additional pathways, we used RNA interference in human hepatoma cells and evaluated the relative contributions to oxidative protein folding and ER redox homeostasis of Ero1, PRDX4, and the candidate oxidants quiescin-sulfhydryl oxidase 1 (QSOX1) and vitamin K epoxide reductase (VKOR). We show that Ero1 is primarily responsible for maintaining cell growth, protein secretion, and recovery from a reductive challenge. We further show by combined depletion with Ero1 that PRDX4 and, for the first time, VKOR contribute to ER oxidation and that depletion of all three activities results in cell death. Of importance, Ero1, PRDX4, or VKOR was individually capable of supporting cell viability, secretion, and recovery after reductive challenge in the near absence of the other two activities. In contrast, no involvement of QSOX1 in ER oxidative processes could be detected. These findings establish VKOR as a significant contributor to disulfide bond formation within the ER.
Collapse
Affiliation(s)
- Lori A Rutkevich
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
83
|
Losi A, Gärtner W. The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:49-72. [PMID: 22136567 DOI: 10.1146/annurev-arplant-042811-105538] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Photoreceptor flavoproteins of the LOV, BLUF, and cryptochrome families are ubiquitous among the three domains of life and are configured as UVA/blue-light systems not only in plants-their original arena-but also in prokaryotes and microscopic algae. Here, we review these proteins' structure and function, their biological roles, and their evolution and impact in the living world, and underline their growing application in biotechnologies. We present novel developments such as the interplay of light and redox stimuli, emerging enzymatic and biological functions, lessons on evolution from picoalgae, metagenomics analysis, and optogenetics applications.
Collapse
Affiliation(s)
- Aba Losi
- Department of Physics, University of Parma, Parma, Italy.
| | | |
Collapse
|