51
|
Melo IS, Santos YMO, Costa MA, Pacheco ALD, Silva NKGT, Cardoso-Sousa L, Pereira UP, Goulart LR, Garcia-Cairasco N, Duzzioni M, Gitaí DLG, Tilelli CQ, Sabino-Silva R, Castro OW. Inhibition of sodium glucose cotransporters following status epilepticus induced by intrahippocampal pilocarpine affects neurodegeneration process in hippocampus. Epilepsy Behav 2016; 61:258-268. [PMID: 27429292 DOI: 10.1016/j.yebeh.2016.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/22/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Temporal lobe epilepsy (TLE) is characterized by spontaneous recurrent seizures, starting from secondary functional disorders due to several insults, including self-sustaining continuous seizures identified as status epilepticus (SE). Although hypoglycemia has been associated with SE, the effect of inhibition of the Na(+)/glucose cotransporters (SGLTs) on hippocampus during SE is still unknown. Here we evaluated the functional role of SGLT in the pattern of limbic seizures and neurodegeneration process after pilocarpine (PILO)-induced SE. Vehicle (VEH, 1μL) or phlorizin, a specific SGLT inhibitor (PZN, 1μL, 50μg/μL), was administered in the hippocampus of rats 30min before PILO (VEH+PILO or PZN+PILO, respectively). The limbic seizures were classified using the Racine's scale, and the amount of wet dog shakes (WDS) was quantified before and during SE. Neurodegeneration process was evaluated by Fluoro-Jade C (FJ-C), and FJ-C-positive neurons (FJ-C+) were counted 24h and 15days after SE. The PZN-treated rats showed higher (p<0.05) number of WDS when compared with VEH+PILO. There was no difference in seizure severity between PZN+PILO and VEH+PILO groups. However, the pattern of limbic seizures significantly changed in PZN+PILO. Indeed, the class 5 seizures repeated themselves more times (p<0.05) than the other classes in the PZN group at 50min after SE induction. The PZN+PILO animals had a higher (p<0.05) number of FJ-C+ cells in the dentate gyrus (DG), hilus, and CA3 and CA1 of hippocampus, when compared with VEH+PILO. The PZN+PILO animals had a decreased number (p<0.05) of FJ-C+ cells in CA1 compared with VEH+PILO 15days after SE induction. Taken together, our data suggest that SGLT inhibition with PZN increased the severity of limbic seizures during SE and increased neurodegeneration in hippocampus 24h after SE, suggesting that SGLT1 and SGLT2 could participate in the modulation of earlier stages of epileptogenic processes.
Collapse
Affiliation(s)
- Igor S Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - Yngrid M O Santos
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - Maísa A Costa
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - Amanda L D Pacheco
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - Nívea K G T Silva
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - L Cardoso-Sousa
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia, MG, Brazil
| | - U P Pereira
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, MG, Brazil
| | - L R Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, MG, Brazil
| | - Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcelo Duzzioni
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - Daniel L G Gitaí
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - Cristiane Q Tilelli
- Campus Centro-Oeste Dona Lindu, Federal University of São João del Rei (UFSJ), Divinópolis, MG, Brazil
| | - Robinson Sabino-Silva
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil; Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia, MG, Brazil.
| | - Olagide W Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, AL, Brazil.
| |
Collapse
|
52
|
Bjørn-Yoshimoto WE, Underhill SM. The importance of the excitatory amino acid transporter 3 (EAAT3). Neurochem Int 2016; 98:4-18. [PMID: 27233497 DOI: 10.1016/j.neuint.2016.05.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022]
Abstract
The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post-synaptic localization can buffer nearby glutamate receptors and modulate excitatory neurotransmission and synaptic plasticity. It is also the main neuronal cysteine uptake system acting as the rate-limiting factor for the synthesis of glutathione, a potent antioxidant, in EAAT3 expressing neurons, while on GABAergic neurons, it is important in supplying glutamate as a precursor for GABA synthesis. Several diseases implicate EAAT3, and modulation of this transporter could prove a useful therapeutic approach. Regulation of EAAT3 could be targeted at several points for functional modulation, including the level of transcription, trafficking and direct pharmacological modulation, and indeed, compounds and experimental treatments have been identified that regulate EAAT3 function at different stages, which together with observations of EAAT3 regulation in patients is giving us insight into the endogenous function of this transporter, as well as the consequences of altered function. This review summarizes work done on elucidating the role and regulation of EAAT3.
Collapse
Affiliation(s)
- Walden E Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Suzanne M Underhill
- National Institute of Mental Health, National Institutes of Health, 35 Convent Drive Room 3A: 210 MSC3742, Bethesda, MD 20892-3742, USA.
| |
Collapse
|
53
|
PARK7/DJ-1 dysregulation by oxidative stress leads to magnesium deficiency: implications in degenerative and chronic diseases. Clin Sci (Lond) 2015; 129:1143-50. [PMID: 26453619 DOI: 10.1042/cs20150355] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/25/2015] [Indexed: 11/17/2022]
Abstract
Disturbed magnesium (Mg(2+)) homoeostasis and increased levels of OS (oxidative stress) are associated with poor clinical outcomes in patients suffering from neurodegenerative, cardiovascular and metabolic diseases. Data from clinical and animal studies suggest that MD (Mg(2+) deficiency) is correlated with increased production of ROS (reactive oxygen species) in cells, but a straightforward causal relationship (including molecular mechanisms) between the two conditions is lacking. The multifactorial protein PARK7/DJ-1 is a major antioxidant protein, playing a key role in cellular redox homoeostasis, and is a positive regulator of AR (androgen receptor)-dependent transcription. SLC41A1 (solute carrier family 41 member 1), the gene encoding a ubiquitous cellular Mg(2+)E (Mg(2+)efflux) system, has been shown to be regulated by activated AR. We hypothesize that overexpression/up-regulation of PARK7/DJ-1, attributable to OS and related activation of AR, is an important event regulating the expression of SLC41A1 and consequently, modulating the Mg(2+)E capacity. This would involve changes in the transcriptional activity of PARK7/DJ-1, AR and SLC41A1, which may serve as biomarkers of intracellular MD and may have clinical relevance. Imipramine, in use as an antidepressant, has been shown to reduce the Mg(2+)E activity of SLC41A1 and OS. We therefore hypothesize further that administration of imipramine or related drugs will be beneficial in MD- and OS-associated diseases, especially when combined with Mg(2+) supplementation. If proved true, the OS-responsive functional axis, PARK7/DJ-1-AR-SLC41A1, may be a putative mechanism underlying intracellular MD secondary to OS caused by pro-oxidative stimuli, including extracellular MD. Furthermore, it will advance our understanding of the link between OS and MD.
Collapse
|
54
|
Wang X, Hu X, Yang Y, Takata T, Sakurai T. Systemic pyruvate administration markedly reduces neuronal death and cognitive impairment in a rat model of Alzheimer's disease. Exp Neurol 2015; 271:145-54. [DOI: 10.1016/j.expneurol.2015.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 05/22/2015] [Accepted: 06/04/2015] [Indexed: 11/16/2022]
|
55
|
Williams S, Hamil N, Abramov A, Walker M, Kovac S. Status epilepticus results in persistent overproduction of reactive oxygen species, inhibition of which is neuroprotective. Neuroscience 2015; 303:160-5. [DOI: 10.1016/j.neuroscience.2015.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/22/2022]
|
56
|
Aggregated α-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons. Cell Death Dis 2015; 6:e1820. [PMID: 26181201 PMCID: PMC4650719 DOI: 10.1038/cddis.2015.166] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/21/2022]
Abstract
α-Synuclein becomes misfolded and aggregated upon damage by various factors, for example, by reactive oxygen species. These aggregated forms have been proposed to have differential toxicities and their interaction with mitochondria may cause dysfunction within this organelle that contributes to the pathogenesis of Parkinson's disease (PD). In particular, the association of α-synuclein with mitochondria occurs through interaction with mitochondrial complex I and importantly defects of this protein have been linked to the pathogenesis of PD. Therefore, we investigated the relationship between aggregated α-synuclein and mitochondrial dysfunction, and the consequences of this interaction on cell survival. To do this, we studied the effects of α-synuclein on cybrid cell lines harbouring mutations in either mitochondrial complex I or IV. We found that aggregated α-synuclein inhibited mitochondrial complex I in control and complex IV-deficient cells. However, when aggregated α-synuclein was applied to complex I-deficient cells, there was no additional inhibition of mitochondrial function or increase in cell death. This would suggest that as complex I-deficient cells have already adapted to their mitochondrial defect, the subsequent toxic effects of α-synuclein are reduced.
Collapse
|
57
|
Kim DY, Simeone KA, Simeone TA, Pandya JD, Wilke JC, Ahn Y, Geddes JW, Sullivan PG, Rho JM. Ketone bodies mediate antiseizure effects through mitochondrial permeability transition. Ann Neurol 2015; 78:77-87. [PMID: 25899847 DOI: 10.1002/ana.24424] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Ketone bodies (KB) are products of fatty acid oxidation and serve as essential fuels during fasting or treatment with the high-fat antiseizure ketogenic diet (KD). Despite growing evidence that KB exert broad neuroprotective effects, their role in seizure control has not been firmly demonstrated. The major goal of this study was to demonstrate the direct antiseizure effects of KB and to identify an underlying target mechanism. METHODS We studied the effects of both the KD and KB in spontaneously epileptic Kcna1-null mice using a combination of behavioral, planar multielectrode, and standard cellular electrophysiological techniques. Thresholds for mitochondrial permeability transition (mPT) were determined in acutely isolated brain mitochondria. RESULTS KB alone were sufficient to: (1) exert antiseizure effects in Kcna1-null mice, (2) restore intrinsic impairment of hippocampal long-term potentiation and spatial learning-memory defects in Kcna1-null mutants, and (3) raise the threshold for calcium-induced mPT in acutely prepared mitochondria from hippocampi of Kcna1-null animals. Targeted deletion of the cyclophilin D subunit of the mPT complex abrogated the effects of KB on mPT, and in vivo pharmacological inhibition and activation of mPT were found to mirror and reverse, respectively, the antiseizure effects of the KD in Kcna1-null mice. INTERPRETATION The present data reveal the first direct link between mPT and seizure control, and provide a potential mechanistic explanation for the KD. Given that mPT is increasingly being implicated in diverse neurological disorders, our results suggest that metabolism-based treatments and/or metabolic substrates might represent a worthy paradigm for therapeutic development.
Collapse
Affiliation(s)
- Do Young Kim
- Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Kristina A Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE
| | - Timothy A Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE
| | - Jignesh D Pandya
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY
| | - Julianne C Wilke
- Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Younghee Ahn
- Departments of Pediatrics and Clinical Neurosciences, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - James W Geddes
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY
| | - Jong M Rho
- Departments of Pediatrics and Clinical Neurosciences, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
58
|
Ristić AJ, Savić D, Sokić D, Bogdanović Pristov J, Nestorov J, Baščarević V, Raičević S, Savić S, Spasojević I. Hippocampal antioxidative system in mesial temporal lobe epilepsy. Epilepsia 2015; 56:789-99. [DOI: 10.1111/epi.12981] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Aleksandar J. Ristić
- Center for Epilepsy and Sleep Disorders; Neurology Clinic; Clinical Center of Serbia; Belgrade Serbia
| | - Danijela Savić
- Department of Neurobiology; Institute for Biological Research “Siniša Stanković”; University of Belgrade; Belgrade Serbia
| | - Dragoslav Sokić
- Center for Epilepsy and Sleep Disorders; Neurology Clinic; Clinical Center of Serbia; Belgrade Serbia
| | - Jelena Bogdanović Pristov
- Life Sciences Department; Institute for Multidisciplinary Research; University of Belgrade; Belgrade Serbia
| | - Jelena Nestorov
- Department of Biochemistry; Institute for Biological Research “Siniša Stanković”; University of Belgrade; Belgrade Serbia
| | | | - Savo Raičević
- Institute for Neurosurgery; Clinical Center of Serbia; Belgrade Serbia
| | - Slobodan Savić
- Institute of Forensic Medicine; Medical School; University of Belgrade; Belgrade Serbia
| | - Ivan Spasojević
- Life Sciences Department; Institute for Multidisciplinary Research; University of Belgrade; Belgrade Serbia
| |
Collapse
|
59
|
Rowley S, Liang LP, Fulton R, Shimizu T, Day B, Patel M. Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy. Neurobiol Dis 2015; 75:151-8. [PMID: 25600213 DOI: 10.1016/j.nbd.2014.12.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/19/2014] [Accepted: 12/24/2014] [Indexed: 02/07/2023] Open
Abstract
Metabolic alterations have been implicated in the etiology of temporal lobe epilepsy (TLE), but whether or not they have a functional impact on cellular energy producing pathways (glycolysis and/or oxidative phosphorylation) is unknown. The goal of this study was to determine if alterations in cellular bioenergetics occur using real-time analysis of mitochondrial oxygen consumption and glycolytic rates in an animal model of TLE. We hypothesized that increased steady-state levels of reactive oxygen species (ROS) initiated by epileptogenic injury result in impaired mitochondrial respiration. We established methodology for assessment of bioenergetic parameters in isolated synaptosomes from the hippocampus of Sprague-Dawley rats at various times in the kainate (KA) model of TLE. Deficits in indices of mitochondrial respiration were observed at time points corresponding with the acute and chronic phases of epileptogenesis. We asked if mitochondrial bioenergetic dysfunction occurred as a result of increased mitochondrial ROS and if it could be attenuated in the KA model by pharmacologically scavenging ROS. Increased steady-state ROS in mice with forebrain-specific conditional deletion of manganese superoxide dismutase (Sod2(fl/fl)NEX(Cre/Cre)) in mice resulted in profound deficits in mitochondrial oxygen consumption. Pharmacological scavenging of ROS with a catalytic antioxidant restored mitochondrial respiration deficits in the KA model of TLE. Together, these results demonstrate that mitochondrial respiration deficits occur in experimental TLE and ROS mechanistically contribute to these deficits. Furthermore, this study provides novel methodology for assessing cellular metabolism during the entire time course of disease development.
Collapse
Affiliation(s)
- Shane Rowley
- Neuroscience Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ruth Fulton
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba 263-0022, Japan
| | - Brian Day
- National Jewish Health, Denver, CO 80206, USA
| | - Manisha Patel
- Neuroscience Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
60
|
Kovac S, Domijan AM, Walker MC, Abramov AY. Seizure activity results in calcium- and mitochondria-independent ROS production via NADPH and xanthine oxidase activation. Cell Death Dis 2014; 5:e1442. [PMID: 25275601 PMCID: PMC4649505 DOI: 10.1038/cddis.2014.390] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/09/2022]
Abstract
Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and their contribution to seizure-induced cell death. Using live cell imaging techniques in glioneuronal cultures, we show that prolonged seizure-like activity increases ROS production in an NMDA receptor-dependent manner. Unexpectedly, however, mitochondria did not contribute to ROS production during seizure-like activity. ROS were generated primarily by NADPH oxidase and later by xanthine oxidase (XO) activity in a calcium-independent manner. This calcium-independent neuronal ROS production was accompanied by an increase in intracellular [Na(+)] through NMDA receptor activation. Inhibition of NADPH or XO markedly reduced seizure-like activity-induced neuronal apoptosis. These findings demonstrate a critical role for ROS in seizure-induced neuronal cell death and identify novel therapeutic targets.
Collapse
Affiliation(s)
- S Kovac
- 1] UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK [2] Department of Neurology, University of Muenster, Muenster 48149, Germany
| | - A-M Domijan
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| | - M C Walker
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - A Y Abramov
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
61
|
Eckel R, Szulc B, Walker MC, Kittler JT. Activation of calcineurin underlies altered trafficking of α2 subunit containing GABAA receptors during prolonged epileptiform activity. Neuropharmacology 2014; 88:82-90. [PMID: 25245802 PMCID: PMC4239296 DOI: 10.1016/j.neuropharm.2014.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 11/29/2022]
Abstract
Fast inhibitory signalling in the mammalian brain is mediated by gamma-aminobutyric acid type A receptors (GABAARs), which are targets for anti-epileptic therapy such as benzodiazepines. GABAARs undergo tightly regulated trafficking processes that are essential for maintenance and physiological modulation of inhibitory strength. The trafficking of GABAARs to and from the membrane is altered during prolonged seizures such as in Status Epilepticus (SE) and has been suggested to contribute to benzodiazepine pharmacoresistance in patients with SE. However, the intracellular signalling mechanisms that cause this modification in GABAAR trafficking remain poorly understood. In this study, we investigate the surface stability of GABAARs during SE utilising the low Mg(2+) model in hippocampal rat neurons. Live-cell imaging of super ecliptic pHluorin (SEP)-tagged α2 subunit containing GABAARs during low Mg(2+) conditions reveals that the somatic surface receptor pool undergoes down-regulation dependent on N-methyl-d-aspartate receptor (NMDAR) activity. Analysis of the intracellular Ca(2+) signal during low Mg(2+) using the Ca(2+)-indicator Fluo4 shows that this reduction of surface GABAARs correlates well with the timeline of intracellular Ca(2+) changes. Furthermore, we show that the activation of the phosphatase calcineurin was required for the decrease in surface GABAARs in neurons undergoing epileptiform activity. These results indicate that somatic modulation of GABAAR trafficking during epileptiform activity in vitro is mediated by calcineurin activation which is linked to changes in intracellular Ca(2+) concentrations. These mechanisms could account for benzodiazepine pharmacoresistance and the maintenance of recurrent seizure activity, and reveal potential novel targets for the treatment of SE.
Collapse
Affiliation(s)
- Ramona Eckel
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Blanka Szulc
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
62
|
Zeng LH, Zhang HD, Xu CJ, Bian YJ, Xu XJ, Xie QM, Zhang RH. Neuroprotective effects of flavonoids extracted from licorice on kainate-induced seizure in mice through their antioxidant properties. J Zhejiang Univ Sci B 2014; 14:1004-12. [PMID: 24190446 DOI: 10.1631/jzus.b1300138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A relationship between status epilepticus (SE) and oxidative stress has recently begun to be recognized. To explore whether the flavonoids extracted from licorice (LFs) have any protective effect on kainate (KA)-induced seizure in mice, we treated mice with LFs before and after KA injection. In KA-treated mice, we found that superoxide dismutase (SOD) activity decreased immediately after the onset of seizure at 1 h and then increased at 6 h. It returned to baseline 1 d after seizure and then increased again at 3, 7, and 28 d, while malondialdehyde (MDA) content remained at a high level at 1 h, 6 h, 3 d, 7 d, and 28 d, indicating a more oxidized status related to the presence of more reactive oxygen species (ROS). Treatment with LFs before KA injection reversed the seizure-induced change in SOD activity and MDA content at 1 h, 6 h, 3 d, 7 d, and 28 d. Treatment with LFs after seizure decreased KA-induced SOD activity and MDA content at 7 and 28 d. Also, LF pre- and post-KA treatments decreased seizure-induced neuronal cell death. Subsequently, Morris water maze tests revealed that the escape latency was significantly decreased and the number of target quadrant crossings was markedly increased in the LF-treated groups. Thus, our data indicate that LFs have protective effects on seizure-induced neuronal cell death and cognitive impairment through their anti-oxidative effects.
Collapse
Affiliation(s)
- Ling-hui Zeng
- Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China; Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
A significant proportion of temporal lobe epilepsy (TLE), a common, intractable brain disorder, arises in children with febrile status epilepticus (FSE). Preventative therapy development is hampered by our inability to identify early the FSE individuals who will develop TLE. In a naturalistic rat model of FSE, we used high-magnetic-field MRI and long-term video EEG to seek clinically relevant noninvasive markers of epileptogenesis and found that reduced amygdala T2 relaxation times in high-magnetic-field MRI hours after FSE predicted experimental TLE. Reduced T2 values likely represented paramagnetic susceptibility effects derived from increased unsaturated venous hemoglobin, suggesting augmented oxygen utilization after FSE termination. Indeed, T2 correlated with energy-demanding intracellular translocation of the injury-sensor high-mobility group box 1 (HMGB1), a trigger of inflammatory cascades implicated in epileptogenesis. Use of deoxyhemoglobin-sensitive MRI sequences enabled visualization of the predictive changes on lower-field, clinically relevant scanners. This novel MRI signature delineates the onset and suggests mechanisms of epileptogenesis that follow experimental FSE.
Collapse
|
64
|
Neary MT, Ng KE, Ludtmann MHR, Hall AR, Piotrowska I, Ong SB, Hausenloy DJ, Mohun TJ, Abramov AY, Breckenridge RA. Hypoxia signaling controls postnatal changes in cardiac mitochondrial morphology and function. J Mol Cell Cardiol 2014; 74:340-52. [PMID: 24984146 PMCID: PMC4121533 DOI: 10.1016/j.yjmcc.2014.06.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 12/17/2022]
Abstract
Fetal cardiomyocyte adaptation to low levels of oxygen in utero is incompletely understood, and is of interest as hypoxia tolerance is lost after birth, leading to vulnerability of adult cardiomyocytes. It is known that cardiac mitochondrial morphology, number and function change significantly following birth, although the underlying molecular mechanisms and physiological stimuli are undefined. Here we show that the decrease in cardiomyocyte HIF-signaling in cardiomyocytes immediately after birth acts as a physiological switch driving mitochondrial fusion and increased postnatal mitochondrial biogenesis. We also investigated mechanisms of ATP generation in embryonic cardiac mitochondria. We found that embryonic cardiac cardiomyocytes rely on both glycolysis and the tricarboxylic acid cycle to generate ATP, and that the balance between these two metabolic pathways in the heart is controlled around birth by the reduction in HIF signaling. We therefore propose that the increase in ambient oxygen encountered by the neonate at birth acts as a key physiological stimulus to cardiac mitochondrial adaptation. The reduction in HIF signaling encountered by the heart following birth acts as a physiological switch. Reduced postnatal cardiac HIF signaling affects mitochondrial number, structure and function. Experimental study of mitochondria is prone to artifacts due to the effect of oxygen. Cardiomyocytes employ multiple strategies to function in low oxygen in utero.
Collapse
Affiliation(s)
- Marianne T Neary
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA
| | - Keat-Eng Ng
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA
| | | | - Andrew R Hall
- The Hatter Cardiovascular Institute, London WC1E 6HX
| | | | - Sang-Bing Ong
- The Hatter Cardiovascular Institute, London WC1E 6HX
| | | | - Timothy J Mohun
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA
| | | | - Ross A Breckenridge
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA; UCL Division of Medicine, London WC1E 6JJ
| |
Collapse
|
65
|
Abstract
The ketogenic diet (KD) is a broad-spectrum therapy for medically intractable epilepsy and is receiving growing attention as a potential treatment for neurological disorders arising in part from bioenergetic dysregulation. The high-fat/low-carbohydrate "classic KD", as well as dietary variations such as the medium-chain triglyceride diet, the modified Atkins diet, the low-glycemic index treatment, and caloric restriction, enhance cellular metabolic and mitochondrial function. Hence, the broad neuroprotective properties of such therapies may stem from improved cellular metabolism. Data from clinical and preclinical studies indicate that these diets restrict glycolysis and increase fatty acid oxidation, actions which result in ketosis, replenishment of the TCA cycle (i.e., anaplerosis), restoration of neurotransmitter and ion channel function, and enhanced mitochondrial respiration. Further, there is mounting evidence that the KD and its variants can impact key signaling pathways that evolved to sense the energetic state of the cell, and that help maintain cellular homeostasis. These pathways, which include PPARs, AMP-activated kinase, mammalian target of rapamycin, and the sirtuins, have all been recently implicated in the neuroprotective effects of the KD. Further research in this area may lead to future therapeutic strategies aimed at mimicking the pleiotropic neuroprotective effects of the KD.
Collapse
Affiliation(s)
- Lindsey B Gano
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado, Denver, CO
| | - Manisha Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado, Denver, CO
| | - Jong M Rho
- Departments of Pediatrics and Clinical Neurosciences, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
66
|
Toloe J, Mollajew R, Kügler S, Mironov SL. Metabolic differences in hippocampal 'Rett' neurons revealed by ATP imaging. Mol Cell Neurosci 2014; 59:47-56. [PMID: 24394521 DOI: 10.1016/j.mcn.2013.12.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 12/12/2013] [Accepted: 12/27/2013] [Indexed: 12/30/2022] Open
Abstract
Understanding metabolic control of neuronal function requires detailed knowledge of ATP handling in living neurons. We imaged ATP in organotypic hippocampal slices using genetically encoded sensor Ateam 1.03 modified to selectively transduce neurons in the tissue. ATP imaging indicated distinct differences in ATP production and consumption in dentate gyrus and cornu ammonis (CA) areas. Removal of extracellular Mg(2+) from the bath evoked epileptiform-like activity that was accompanied by ATP decline from 2-3 to 1-2mM. The slices fully recovered from treatment and showed persistent spontaneous activity. Neuronal discharges were followed by transient ATP changes and periodic activation of ATP-sensitive K(+) (K-ATP) channels. The biggest ATP decreases during epileptiform-like episodes of activity were observed in CA1 and CA3 neurons. Examination of neurons from the Rett model mice MeCP2(-/y) showed that seizure-like activity had earlier onset and subsequent spontaneous activity demonstrated more frequent discharges. Hippocampal MeCP2(-/y) neurons had higher resting ATP levels and showed bigger ATP decreases during epileptiform-like activity. More intense ATP turnover in MeCP2(-/y) neurons may result from necessity to maintain hippocampal function in Rett syndrome. Elevated ATP may make, in turn, Rett hippocampus more prone to epilepsy due to inadequate activity of K-ATP channels.
Collapse
Affiliation(s)
- J Toloe
- DFG-Centre of Molecular Physiology of the Brain, Institute of Neuro- and Sensory Physiology, Georg-August-University, Göttingen 37073, Germany; DFG-Centre of Molecular Physiology of the Brain, Department of Neurology, Georg-August-University, Göttingen 37073, Germany
| | - R Mollajew
- DFG-Centre of Molecular Physiology of the Brain, Institute of Neuro- and Sensory Physiology, Georg-August-University, Göttingen 37073, Germany
| | - S Kügler
- DFG-Centre of Molecular Physiology of the Brain, Department of Neurology, Georg-August-University, Göttingen 37073, Germany
| | - S L Mironov
- DFG-Centre of Molecular Physiology of the Brain, Institute of Neuro- and Sensory Physiology, Georg-August-University, Göttingen 37073, Germany.
| |
Collapse
|
67
|
Müller L, Müller S, Sellmann T, Groeneweg L, Tokay T, Köhling R, Kirschstein T. Effects of oxygen insufflation during pilocarpine-induced status epilepticus on mortality, tissue damage and seizures. Epilepsy Res 2014; 108:90-7. [DOI: 10.1016/j.eplepsyres.2013.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 09/28/2013] [Accepted: 10/31/2013] [Indexed: 11/16/2022]
|
68
|
Lane MC, Jackson JG, Krizman EN, Rothstein JD, Porter BE, Robinson MB. Genetic deletion of the neuronal glutamate transporter, EAAC1, results in decreased neuronal death after pilocarpine-induced status epilepticus. Neurochem Int 2013; 73:152-8. [PMID: 24334055 DOI: 10.1016/j.neuint.2013.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 11/24/2022]
Abstract
Excitatory amino acid carrier 1 (EAAC1 also called EAAT3) is a Na(+)-dependent glutamate transporter expressed by both glutamatergic and GABAergic neurons. It provides precursors for the syntheses of glutathione and GABA and contributes to the clearance of synaptically released glutamate. Mice deleted of EAAC1 are more susceptible to neurodegeneration in models of ischemia, Parkinson's disease, and aging. Antisense knock-down of EAAC1 causes an absence seizure-like phenotype. Additionally, EAAC1 expression increases after chemonvulsant-induced seizures in rodent models and in tissue specimens from patients with refractory epilepsy. The goal of the present study was to determine if the absence of EAAC1 affects the sensitivity of mice to seizure-induced cell death. A chemoconvulsant dose of pilocarpine was administered to EAAC1(-/-) mice and to wild-type controls. Although EAAC1(-/-) mice experienced increased latency to seizure onset, no significant differences in behavioral seizure severity or mortality were observed. We examined EAAC1 immunofluorescence 24h after pilocarpine administration and confirmed that pilocarpine causes an increase in EAAC1 protein. Forty-eight hours after induction of seizures, cell death was measured in hippocampus and in cortex using Fluoro-Jade C. Surprisingly, there was ∼2-fold more cell death in area CA1 of wild-type mice than in the corresponding regions of the EAAC1(-/-) mice. Together, these studies indicate that absence of EAAC1 results in either a decrease in pilocarpine-induced seizures that is not detectable by behavioral criteria (surprising, since EAAC1 provides glutamate for GABA synthesis), or that the absence of EAAC1 results in less pilocarpine/seizure-induced cell death, possible explanations as discussed.
Collapse
Affiliation(s)
- Meredith C Lane
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua G Jackson
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth N Krizman
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffery D Rothstein
- Department of Neurology and Neuroscience, Johns Hopkins University, Brain Sciences Institute, Baltimore, MD 21205, USA
| | - Brenda E Porter
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael B Robinson
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pharmacology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
69
|
Clerc P, Young CA, Bordt EA, Grigore AM, Fiskum G, Polster BM. Magnesium sulfate protects against the bioenergetic consequences of chronic glutamate receptor stimulation. PLoS One 2013; 8:e79982. [PMID: 24236167 PMCID: PMC3827425 DOI: 10.1371/journal.pone.0079982] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/28/2013] [Indexed: 11/26/2022] Open
Abstract
Extracellular glutamate is elevated following brain ischemia or trauma and contributes to neuronal injury. We tested the hypothesis that magnesium sulfate (MgSO4, 3 mM) protects against metabolic failure caused by excitotoxic glutamate exposure. Rat cortical neuron preparations treated in medium already containing a physiological concentration of Mg2+ (1 mM) could be segregated based on their response to glutamate (100 µM). Type I preparations responded with a decrease or small transient increase in oxygen consumption rate (OCR). Type II neurons responded with >50% stimulation in OCR, indicating a robust response to increased energy demand without immediate toxicity. Pre-treatment with MgSO4 improved the initial bioenergetic response to glutamate and ameliorated subsequent loss of spare respiratory capacity, measured following addition of the uncoupler FCCP, in Type I but not Type II neurons. Spare respiratory capacity in Type I neurons was also improved by incubation with MgSO4 or NMDA receptor antagonist MK801 in the absence of glutamate treatment. This finding indicates that the major difference between Type I and Type II preparations is the amount of endogenous glutamate receptor activity. Incubation of Type II neurons with 5 µM glutamate prior to excitotoxic (100 µM) glutamate exposure recapitulated a Type I phenotype. MgSO4 protected against an excitotoxic glutamate-induced drop in neuronal ATP both with and without prior 5 µM glutamate exposure. Results indicate that MgSO4 protects against chronic moderate glutamate receptor stimulation and preserves cellular ATP following treatment with excitotoxic glutamate.
Collapse
Affiliation(s)
- Pascaline Clerc
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Christina A. Young
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Evan A. Bordt
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alina M. Grigore
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Gary Fiskum
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Brian M. Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
70
|
Pathak D, Berthet A, Nakamura K. Energy failure: does it contribute to neurodegeneration? Ann Neurol 2013; 74:506-16. [PMID: 24038413 PMCID: PMC4092015 DOI: 10.1002/ana.24014] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/09/2013] [Accepted: 08/16/2013] [Indexed: 12/11/2022]
Abstract
Energy failure from mitochondrial dysfunction is proposed to be a central mechanism leading to neuronal death in a range of neurodegenerative diseases. However, energy failure has never been directly demonstrated in affected neurons in these diseases, nor has it been proved to produce degeneration in disease models. Therefore, despite considerable indirect evidence, it is not known whether energy failure truly occurs in susceptible neurons, and whether this failure is responsible for their death. This limited understanding results primarily from a lack of sensitivity and resolution of available tools and assays and the inherent limitations of in vitro model systems. Major advances in these methodologies and approaches should greatly enhance our understanding of the relationship between energy failure, neuronal dysfunction, and death, and help us to determine whether boosting bioenergetic function would be an effective therapeutic approach. Here we review the current evidence that energy failure occurs in and contributes to neurodegenerative disease, and consider new approaches that may allow us to better address this central issue.
Collapse
Affiliation(s)
- Divya Pathak
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA
| | | | | |
Collapse
|
71
|
Khurana DS, Valencia I, Goldenthal MJ, Legido A. Mitochondrial dysfunction in epilepsy. Semin Pediatr Neurol 2013; 20:176-87. [PMID: 24331359 DOI: 10.1016/j.spen.2013.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epilepsy is the most common neurologic disorder worldwide and is characterized by recurrent unprovoked seizures. The mitochondrial (mt) respiratory chain is the final common pathway for cellular energy production through the process of oxidative phosphorylation. As neurons are terminally differentiated cells that lack significant regenerative capacity and have a high energy demand, they are more vulnerable to mt dysfunction. Therefore, epileptic seizures have been well described in several diseases such as mt encephalomyopathy, lactic acidosis, and stroke-like episodes and myoclonic epilepsy and ragged red fibers, which are caused by gene mutations in mtDNA, among others. Mutations in nuclear DNA regulating mt function are also being described (eg, POLG gene mutation). The role of mitochondria (mt) in acquired epilepsies, which account for about 60% of all epilepsies, is equally important but less well understood. Oxidative stress is one of the possible mechanisms in the pathogenesis of epilepsy resulting from mt dysfunction gradually disrupting the intracellular Ca(2+) homeostasis, which modulates neuronal excitability and synaptic transmission, making neurons more vulnerable to additional stress, and leading to energy failure and neuronal loss in epilepsy. Antiepileptic drugs (AEDs) also affect mt function in several ways. There must be caution when treating epilepsy in patients with known mt disorders as some AEDs are toxic to the mt. This review summarizes our current knowledge of the effect of mt disorders on epilepsy, of epileptic seizures on mt, and of AEDs on mt function and the implications of all these interactions for the management of epilepsy in patients with or without mt disease.
Collapse
Affiliation(s)
- Divya S Khurana
- Section of Neurology, Departments of Pediatrics and Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA.
| | - Ignacio Valencia
- Section of Neurology, Departments of Pediatrics and Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA
| | - Michael J Goldenthal
- Section of Neurology, Departments of Pediatrics and Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA
| | - Agustín Legido
- Section of Neurology, Departments of Pediatrics and Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
72
|
Effects of blockade of NMDA receptors on cerebral oxygen consumption during hyperosmolar BBB disruption in rats. J Neurol Sci 2013; 326:29-34. [PMID: 23357315 DOI: 10.1016/j.jns.2013.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/28/2012] [Accepted: 01/03/2013] [Indexed: 02/04/2023]
Abstract
Hyperosmolar blood-brain barrier (BBB) disruption has been reported to increase cerebral O2 consumption. This study was performed to test whether blockade of N-methyl-d-aspartate (NMDA) receptor would affect cerebral O2 consumption during hyperosmolar BBB disruption. A competitive NMDA receptor antagonist CGS-19755 10mg/kg was injected iv 15min before intracarotid infusion of 25% mannitol. Twelve min after BBB disruption, the BBB transfer coefficient (Ki) of (14)C-α-aminoisobutyric acid ((14)C-AIB) was measured. Regional cerebral blood flow (rCBF), regional arteriolar and venular O2 saturation (SaO2 and SvO2 respectively), and O2 consumption were determined using (14)C-iodoantipyrine autoradiography and cryomicrospectrophotometry in alternate slices of the brain tissue. The Ki of (14)C-AIB was markedly increased with hyperosmolar mannitol in both the control (5.8×) and the CGS treated rats (5.2×). With BBB disruption, the O2 consumption was significantly increased (+39%) only in the control but not in the CGS treated rats and was significantly lower (-29%) in the CGS treated than the control rats. The distribution of SvO2 was significantly shifted to the higher concentrations with CGS treatment. Our data demonstrated an increase of O2 consumption by hyperosmolar BBB disruption and attenuation of the increase with NMDA blockade without affecting the degree of BBB disruption.
Collapse
|
73
|
Surin AM, Khiroug S, Gorbacheva LR, Khodorov BI, Pinelis VG, Khiroug L. Comparative analysis of cytosolic and mitochondrial ATP synthesis in embryonic and postnatal hippocampal neuronal cultures. Front Mol Neurosci 2013; 5:102. [PMID: 23335879 PMCID: PMC3541538 DOI: 10.3389/fnmol.2012.00102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/20/2012] [Indexed: 11/18/2022] Open
Abstract
ATP in neurons is commonly believed to be synthesized mostly by mitochondria via oxidative phosphorylation. Neuronal mitochondria have been studied primarily in culture, i.e., in neurons isolated either from embryos or from neonatal pups. Although it is generally assumed that both embryonic and postnatal cultured neurons derive their ATP from mitochondrial oxidative phosphorylation, this has never been tested experimentally. We expressed the FRET-based ATP sensor AT1.03 in cultured hippocampal neurons isolated either from E17 to E18 rat embryos or from P1 to P2 rat pups and monitored [ATP]c simultaneously with mitochondrial membrane potential (ΔΨm; TMRM) and NAD(P)H autofluorescence. In embryonic neurons, transient glucose deprivation induced a near-complete decrease in [ATP]c, which was partially reversible and was accelerated by inhibition of glycolysis with 2-deoxyglucose. In the absence of glucose, pyruvate did not cause any significant increase in [ATP]c in 84% of embryonic neurons, and inhibition of mitochondrial ATP synthase with oligomycin failed to decrease [ATP]c. Moreover, ΔΨm was significantly reduced by oligomycin, indicating that mitochondria acted as consumers rather than producers of ATP in embryonic neurons. In sharp contrast, in postnatal neurons pyruvate added during glucose deprivation significantly increased [ATP]c (by 54 ± 8%), whereas oligomycin induced a sharp decline in [ATP]c and increased ΔΨm. These signs of oxidative phosphorylation were observed in all tested P1-P2 neurons. Measurement of ΔΨm with the potential-sensitive probe JC-1 revealed that neuronal mitochondrial membrane potential was significantly reduced in embryonic cultures compared to the postnatal ones, possibly due to increased proton permeability of inner mitochondrial membrane. We conclude that, in embryonic, but not postnatal neuronal cultures, ATP synthesis is predominantly glycolytic and the oxidative phosphorylation-mediated synthesis of ATP by mitochondrial F1Fo-ATPase is insignificant.
Collapse
Affiliation(s)
- Alexander M. Surin
- Neuroscience Center, University of HelsinkiHelsinki, Finland
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical SciencesMoscow, Russia
- Scientific Center for Children's Health, Russian Academy of Medical SciencesMoscow, Russia
| | - Serguei Khiroug
- Neuroscience Center, University of HelsinkiHelsinki, Finland
| | | | - Boris I. Khodorov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical SciencesMoscow, Russia
| | - Vsevolod G. Pinelis
- Scientific Center for Children's Health, Russian Academy of Medical SciencesMoscow, Russia
| | - Leonard Khiroug
- Neuroscience Center, University of HelsinkiHelsinki, Finland
| |
Collapse
|
74
|
Anitha A, Nakamura K, Thanseem I, Yamada K, Iwayama Y, Toyota T, Matsuzaki H, Miyachi T, Yamada S, Tsujii M, Tsuchiya KJ, Matsumoto K, Iwata Y, Suzuki K, Ichikawa H, Sugiyama T, Yoshikawa T, Mori N. Brain region-specific altered expression and association of mitochondria-related genes in autism. Mol Autism 2012; 3:12. [PMID: 23116158 PMCID: PMC3528421 DOI: 10.1186/2040-2392-3-12] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/04/2012] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED BACKGROUND Mitochondrial dysfunction (MtD) has been observed in approximately five percent of children with autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. METHODS For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG), motor cortex (MC) and thalamus (THL)) from autism patients (n=8) and controls (n=10) were obtained from the Autism Tissue Program (Princeton, NJ, USA). Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct) method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. RESULTS Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2), neurofilament, light polypeptide (NEFL) and solute carrier family 25, member 27 (SLC25A27) showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066) and SLC25A27 (P = 0.046; Z-score 1.990) showed genetic association with autism in Caucasian and Japanese samples, respectively. The expression of DNAJC19, DNM1L, LRPPRC, SLC25A12, SLC25A14, SLC25A24 and TOMM20 were reduced in at least two of the brain regions of autism patients. CONCLUSIONS Our study, though preliminary, brings to light some new genes associated with MtD in autism. If MtD is detected in early stages, treatment strategies aimed at reducing its impact may be adopted.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Kazuhiko Nakamura
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Ismail Thanseem
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Kazuo Yamada
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, 351 0198, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, 351 0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, 351 0198, Japan
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Taishi Miyachi
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Satoru Yamada
- Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, 183 8561, Japan
| | - Masatsugu Tsujii
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan.,Faculty of Sociology, Chukyo University, 101 Tokodachi, Toyota, 470 0393, Japan
| | - Kenji J Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Kaori Matsumoto
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Yasuhide Iwata
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Katsuaki Suzuki
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Hironobu Ichikawa
- Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, 183 8561, Japan
| | - Toshiro Sugiyama
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, 351 0198, Japan
| | - Norio Mori
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan.,Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| |
Collapse
|
75
|
Kovac S, Abramov AY, Walker MC. Energy depletion in seizures: anaplerosis as a strategy for future therapies. Neuropharmacology 2012; 69:96-104. [PMID: 22659085 DOI: 10.1016/j.neuropharm.2012.05.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/08/2012] [Accepted: 05/11/2012] [Indexed: 01/11/2023]
Abstract
Seizure activity can lead to energy failure and neuronal injury, resulting in neurological and cognitive sequelae. Moreover, mutations affecting genes encoding for proteins that maintain energy homeostasis within the cell often result in an epileptic phenotype, implying that energy failure can contribute to epileptogenesis. Indeed, there is evidence to indicate that the efficacy of the ketogenic diet, a treatment for refractory epilepsy, can be partly explained by its effect on increasing energetic substrates. The ATP level, reflecting the energy level of a cell, is maintained by the potential gradient across the mitochondrial membrane. This potential gradient is maintained by NADH/H(+) equivalents, produced by reactions within the tricarboxylic acid cycle (TCA-cycle). Anaplerosis, the replenishment of TCA-cycle substrates, therefore represents an appealing strategy to address energy failure such as occurs in seizures. There is accumulating evidence that pyruvate, a classical anaplerotic substrate, has seizure suppressive effects and protects against seizure induced cell death. This review summarizes the evidence for the contribution of TCA cycle deficits in generating seizures. We highlight the role for TCA substrate supplementation in protecting against seizures and seizure induced cell death, and propose that these are important targets for future translational research addressing energy depletion in seizures. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Stjepana Kovac
- UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG London, UK.
| | | | | |
Collapse
|