51
|
Biesemann N, Mendler L, Wietelmann A, Hermann S, Schäfers M, Krüger M, Boettger T, Borchardt T, Braun T. Myostatin regulates energy homeostasis in the heart and prevents heart failure. Circ Res 2014; 115:296-310. [PMID: 24807786 DOI: 10.1161/circresaha.115.304185] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Myostatin is a major negative regulator of skeletal muscle mass and initiates multiple metabolic changes, including enhanced insulin sensitivity. However, the function of myostatin in the heart is barely understood, although it is upregulated in the myocardium under several pathological conditions. OBJECTIVE Here, we aimed to decipher the role of myostatin and myostatin-dependent signaling pathways for cardiac function and cardiac metabolism in adult mice. To avoid potential counterregulatory mechanisms occurring in constitutive and germ-line-based myostatin mutants, we generated a mouse model that allows myostatin inactivation in adult cardiomyocytes. METHODS AND RESULTS Cardiac MRI revealed that genetic inactivation of myostatin signaling in the adult murine heart caused cardiac hypertrophy and heart failure, partially recapitulating effects of the age-dependent decline of the myostatin paralog growth and differentiation factor 11. We found that myostatin represses AMP-activated kinase activation in the heart via transforming growth factor-β-activated kinase 1, thereby preventing a metabolic switch toward glycolysis and glycogen accumulation. Furthermore, myostatin stimulated expression of regulator of G-protein signaling 2, a GTPase-activating protein that restricts Gaq and Gas signaling and thereby protects against cardiac failure. Inhibition of AMP-activated kinase in vivo rescued cardiac hypertrophy and prevented enhanced glycolytic flow and glycogen accumulation after inactivation of myostatin in cardiomyocytes. CONCLUSIONS Our results uncover an important role of myostatin in the heart for maintaining cardiac energy homeostasis and preventing cardiac hypertrophy.
Collapse
Affiliation(s)
- Nadine Biesemann
- From the Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (N.B., L.M., A.W., M.K., T. Boettger, T. Borchardt, T. Braun); Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany (N.B.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and European Institute for Molecular Imaging, University of Münster, Münster, Germany (S.H., M.S.)
| | - Luca Mendler
- From the Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (N.B., L.M., A.W., M.K., T. Boettger, T. Borchardt, T. Braun); Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany (N.B.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and European Institute for Molecular Imaging, University of Münster, Münster, Germany (S.H., M.S.)
| | - Astrid Wietelmann
- From the Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (N.B., L.M., A.W., M.K., T. Boettger, T. Borchardt, T. Braun); Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany (N.B.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and European Institute for Molecular Imaging, University of Münster, Münster, Germany (S.H., M.S.)
| | - Sven Hermann
- From the Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (N.B., L.M., A.W., M.K., T. Boettger, T. Borchardt, T. Braun); Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany (N.B.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and European Institute for Molecular Imaging, University of Münster, Münster, Germany (S.H., M.S.)
| | - Michael Schäfers
- From the Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (N.B., L.M., A.W., M.K., T. Boettger, T. Borchardt, T. Braun); Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany (N.B.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and European Institute for Molecular Imaging, University of Münster, Münster, Germany (S.H., M.S.)
| | - Marcus Krüger
- From the Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (N.B., L.M., A.W., M.K., T. Boettger, T. Borchardt, T. Braun); Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany (N.B.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and European Institute for Molecular Imaging, University of Münster, Münster, Germany (S.H., M.S.)
| | - Thomas Boettger
- From the Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (N.B., L.M., A.W., M.K., T. Boettger, T. Borchardt, T. Braun); Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany (N.B.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and European Institute for Molecular Imaging, University of Münster, Münster, Germany (S.H., M.S.)
| | - Thilo Borchardt
- From the Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (N.B., L.M., A.W., M.K., T. Boettger, T. Borchardt, T. Braun); Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany (N.B.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and European Institute for Molecular Imaging, University of Münster, Münster, Germany (S.H., M.S.).
| | - Thomas Braun
- From the Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (N.B., L.M., A.W., M.K., T. Boettger, T. Borchardt, T. Braun); Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany (N.B.); Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Szeged, Hungary (L.M.); and European Institute for Molecular Imaging, University of Münster, Münster, Germany (S.H., M.S.).
| |
Collapse
|
52
|
Kugel S, Mostoslavsky R. Chromatin and beyond: the multitasking roles for SIRT6. Trends Biochem Sci 2014; 39:72-81. [PMID: 24438746 DOI: 10.1016/j.tibs.2013.12.002] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/27/2013] [Accepted: 12/06/2013] [Indexed: 12/12/2022]
Abstract
In recent years there has been a large expansion in our understanding of SIRT6 biology including its structure, regulation, biochemical activity, and biological roles. SIRT6 functions as an ADP-ribosylase and NAD(+)-dependent deacylase of both acetyl groups and long-chain fatty-acyl groups. Through these functions SIRT6 impacts upon cellular homeostasis by regulating DNA repair, telomere maintenance, and glucose and lipid metabolism, thus affecting diseases such diabetes, obesity, heart disease, and cancer. Such roles may contribute to the overall longevity and health of the organism. Until recently, the known functions of SIRT6 were largely restricted to the chromatin. In this article we seek to describe and expand this knowledge with recent advances in understanding the mechanisms of SIRT6 action and their implications for human biology and disease.
Collapse
Affiliation(s)
- Sita Kugel
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Raul Mostoslavsky
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
53
|
Miteva YV, Cristea IM. A proteomic perspective of Sirtuin 6 (SIRT6) phosphorylation and interactions and their dependence on its catalytic activity. Mol Cell Proteomics 2013; 13:168-83. [PMID: 24163442 DOI: 10.1074/mcp.m113.032847] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sirtuin 6 (SIRT6), a member of the mammalian sirtuin family, is a nuclear deacetylase with substrate-specific NAD(+)-dependent activity. SIRT6 has emerged as a critical regulator of diverse processes, including DNA repair, gene expression, telomere maintenance, and metabolism. However, our knowledge regarding its interactions and regulation remains limited. Here, we present a comprehensive proteomics-based analysis of SIRT6 protein interactions and their dependence on SIRT6 catalytic activity. We also identify evolutionarily conserved SIRT6 phosphorylations, including four within a proline-rich disordered region, and show that the conserved S338 phosphorylation can modulate selected SIRT6 interactions. By integrating molecular biology tools, microscopy, immunoaffinity purifications, label-free quantitative mass spectrometry, and bioinformatic analyses, we have established the first large-scale SIRT6 interaction network. Relative protein abundances and gene ontology functional assessment highlighted proteins involved in transcription regulation, chromatin organization, nuclear transport, telomerase function, and RNA processing. Independent immunoisolations under increased stringency distinguished the most stable SIRT6 interactions. One prominent interaction with Ras-GTPase-activating protein-binding protein 1 (G3BP1) was further validated by microscopy, reciprocal purifications, and isolations in different cell types and of endogenous SIRT6. Interestingly, a subset of specific interactions, including G3BP1, were significantly reduced or abolished in isolations of catalytically deficient SIRT6 mutant, revealing previously unknown interplay between SIRT6 activity and its associations. Overall, our study reveals putative means of regulation of SIRT6 functions via interactions and modifications, providing an important resource for future studies on the molecular mechanisms underlying sirtuin functions.
Collapse
Affiliation(s)
- Yana V Miteva
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | | |
Collapse
|