51
|
Chadi G, Maximino JR, Jorge FMDH, Borba FCD, Gilio JM, Callegaro D, Lopes CG, Santos SND, Rebelo GNS. Genetic analysis of patients with familial and sporadic amyotrophic lateral sclerosis in a Brazilian Research Center. Amyotroph Lateral Scler Frontotemporal Degener 2016; 18:249-255. [DOI: 10.1080/21678421.2016.1254245] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gerson Chadi
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Jessica Ruivo Maximino
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Fabrício Castro de Borba
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Joyce Meire Gilio
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Dagoberto Callegaro
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Camila Galvão Lopes
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Samantha Nakamura Dos Santos
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, São Paulo, Brazil
| | | |
Collapse
|
52
|
Götzl JK, Lang CM, Haass C, Capell A. Impaired protein degradation in FTLD and related disorders. Ageing Res Rev 2016; 32:122-139. [PMID: 27166223 DOI: 10.1016/j.arr.2016.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/21/2016] [Accepted: 04/23/2016] [Indexed: 12/12/2022]
Abstract
Impaired protein degradation has been discussed as a cause or consequence of various neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's disease. More recently, evidence accumulated that dysfunctional protein degradation may play a role in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Since in almost all neurodegenerative diseases, protein aggregates are disease-defining hallmarks, it is most likely that impaired protein degradation contributes to disease onset and progression. In the majority of FTD cases, the pathological protein aggregates contain either microtubuleassociated protein tau or TAR DNA-binding protein (TDP)-43. Aggregates are also positive for ubiquitin and p62/sequestosome 1 (SQSTM1) indicating that these aggregates are targeted for degradation. FTD-linked mutations in genes encoding three autophagy adaptor proteins, p62/SQSTM1, ubiquilin 2 and optineurin, indicate that impaired autophagy might cause FTD. Furthermore, the strongest evidence for lysosomal impairment in FTD is provided by the progranulin (GRN) gene, which is linked to FTD and neuronal ceroid lipofuscinosis. In this review, we summarize the observations that have been made during the last years linking the accumulation of disease-associated proteins in FTD to impaired protein degradation pathways. In addition, we take resent findings for nucleocytoplasmic transport defects of TDP-43, as discussed for hexanucleotide repeat expansions in C9orf72 into account and provide a hypothesis how the interplay of altered nuclear transport and protein degradation leads to the accumulation of protein deposits.
Collapse
|
53
|
Nuclear bodies reorganize during myogenesis in vitro and are differentially disrupted by expression of FSHD-associated DUX4. Skelet Muscle 2016; 6:42. [PMID: 27906075 PMCID: PMC5134237 DOI: 10.1186/s13395-016-0113-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022] Open
Abstract
Background Nuclear bodies, such as nucleoli, PML bodies, and SC35 speckles, are dynamic sub-nuclear structures that regulate multiple genetic and epigenetic processes. Additional regulation is provided by RNA/DNA handling proteins, notably TDP-43 and FUS, which have been linked to ALS pathology. Previous work showed that mouse cell line myotubes have fewer but larger nucleoli than myoblasts, and we had found that nuclear aggregation of TDP-43 in human myotubes was induced by expression of DUX4-FL, a transcription factor that is aberrantly expressed and causes pathology in facioscapulohumeral dystrophy (FSHD). However, questions remained about nuclear bodies in human myogenesis and in muscle disease. Methods We examined nucleoli, PML bodies, SC35 speckles, TDP-43, and FUS in myoblasts and myotubes derived from healthy donors and from patients with FSHD, laminin-alpha-2-deficiency (MDC1A), and alpha-sarcoglycan-deficiency (LGMD2D). We further examined how these nuclear bodies and proteins were affected by DUX4-FL expression. Results We found that nucleoli, PML bodies, and SC35 speckles reorganized during differentiation in vitro, with all three becoming less abundant in myotube vs. myoblast nuclei. In addition, though PML bodies did not change in size, both nucleoli and SC35 speckles were larger in myotube than myoblast nuclei. Similar patterns of nuclear body reorganization occurred in healthy control, MDC1A, and LGMD2D cultures, as well as in the large fraction of nuclei that did not show DUX4-FL expression in FSHD cultures. In contrast, nuclei that expressed endogenous or exogenous DUX4-FL, though retaining normal nucleoli, showed disrupted morphology of some PML bodies and most SC35 speckles and also co-aggregation of FUS with TDP-43. Conclusions Nucleoli, PML bodies, and SC35 speckles reorganize during human myotube formation in vitro. These nuclear body reorganizations are likely needed to carry out the distinct gene transcription and splicing patterns that are induced upon myotube formation. DUX4-FL-induced disruption of some PML bodies and most SC35 speckles, along with co-aggregation of TDP-43 and FUS, could contribute to pathogenesis in FSHD, perhaps by locally interfering with genetic and epigenetic regulation of gene expression in the small subset of nuclei that express high levels of DUX4-FL at any one time.
Collapse
|
54
|
Chang CF, Lee YC, Lee KH, Lin HC, Chen CL, Shen CKJ, Huang CC. Therapeutic effect of berberine on TDP-43-related pathogenesis in FTLD and ALS. J Biomed Sci 2016; 23:72. [PMID: 27769241 PMCID: PMC5073438 DOI: 10.1186/s12929-016-0290-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/14/2016] [Indexed: 01/17/2023] Open
Abstract
Background In the central nervous system regions of the sporadic and familial FTLD and ALS patients, TDP-43 has been identified as the major component of UBIs inclusions which is abnormally hyperphosphorylated, ubiquitinated, and cleaved into C-terminal fragments to form detergent-insoluble aggregates. So far, the effective drugs for FTLD and ALS neurodegenerative diseases are yet to be developed. Autophagy has been demonstrated as the major metabolism route of the pathological TDP-43 inclusions, hence activation of autophagy is a potential therapeutic strategy for TDP-43 pathogenesis in FTLD and ALS. Berberine, a traditional herbal medicine, is an inhibitor of mTOR signal and an activator for autophagy. Berberine has been implicated in several kinds of diseases, including the neuronal-related pathogenesis, such as Parkinson’s, Huntington’s and Alzheimer’s diseases. However, the therapeutic effect of berberine on FTLD or ALS pathology has never been investigated. Results Here we studied the molecular mechanism of berberine in cell culture model with TDP-43 proteinopathies, and found that berberine is able to reverse the processing of insoluble TDP-43 aggregates formation through deregulation of mTOR/p70S6K signal and activation of autophagic degradation pathway. And inhibition of autophagy by specific autophagosome inhibitor, 3-MA, reverses the effect of berberine on reducing the accumulation of insoluble TDP-43 and aggregates formation. These results gave us the notion that inhibition of autophagy by 3-MA reverses the effect of berberine on TDP-43 pathogenesis, and activation of mTOR-regulated autophagy plays an important role in berberine-mediated therapeutic effect on TDP-43 proteinopathies. Conclusion We supported an important notion that the traditional herb berberine is a potential alternative therapy for TDP-43-related neuropathology. Here we demonstrated that berberine is able to reverse the processing of insoluble TDP-43 aggregates formation through deregulation of mTOR/p70S6K signal and activation of autophagic degradation pathway. mTOR-autophagy signals plays an important role in berberine-mediated autophagic clearance of TDP-43 aggregates. Exploring the detailed mechanism of berberine on TDP-43 proteinopathy provides a better understanding for the therapeutic development in FTLD and ALS.
Collapse
Affiliation(s)
- Cheng-Fu Chang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chao Lee
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ching Lin
- Institute and Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Ling Chen
- Translational Research Center, Taipei Medical University, Taipei, Taiwan
| | - Che-Kun James Shen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Chi-Chen Huang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
55
|
Wang DW, Peng ZJ, Ren GF, Wang GX. The different roles of selective autophagic protein degradation in mammalian cells. Oncotarget 2016; 6:37098-116. [PMID: 26415220 PMCID: PMC4741918 DOI: 10.18632/oncotarget.5776] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an intracellular pathway for bulk protein degradation and the removal of damaged organelles by lysosomes. Autophagy was previously thought to be unselective; however, studies have increasingly confirmed that autophagy-mediated protein degradation is highly regulated. Abnormal autophagic protein degradation has been associated with multiple human diseases such as cancer, neurological disability and cardiovascular disease; therefore, further elucidation of protein degradation by autophagy may be beneficial for protein-based clinical therapies. Macroautophagy and chaperone-mediated autophagy (CMA) can both participate in selective protein degradation in mammalian cells, but the process is quite different in each case. Here, we summarize the various types of macroautophagy and CMA involved in determining protein degradation. For this summary, we divide the autophagic protein degradation pathways into four categories: the post-translational modification dependent and independent CMA pathways and the ubiquitin dependent and independent macroautophagy pathways, and describe how some non-canonical pathways and modifications such as phosphorylation, acetylation and arginylation can influence protein degradation by the autophagy lysosome system (ALS). Finally, we comment on why autophagy can serve as either diagnostics or therapeutic targets in different human diseases.
Collapse
Affiliation(s)
- Da-wei Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhen-ju Peng
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-fang Ren
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-xin Wang
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
56
|
Crippa V, Cicardi ME, Ramesh N, Seguin SJ, Ganassi M, Bigi I, Diacci C, Zelotti E, Baratashvili M, Gregory JM, Dobson CM, Cereda C, Pandey UB, Poletti A, Carra S. The chaperone HSPB8 reduces the accumulation of truncated TDP-43 species in cells and protects against TDP-43-mediated toxicity. Hum Mol Genet 2016; 25:3908-3924. [PMID: 27466192 PMCID: PMC5291228 DOI: 10.1093/hmg/ddw232] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 06/21/2016] [Accepted: 07/08/2016] [Indexed: 12/13/2022] Open
Abstract
Aggregation of TAR-DNA-binding protein 43 (TDP-43) and of its fragments TDP-25 and TDP-35 occurs in amyotrophic lateral sclerosis (ALS). TDP-25 and TDP-35 act as seeds for TDP-43 aggregation, altering its function and exerting toxicity. Thus, inhibition of TDP-25 and TDP-35 aggregation and promotion of their degradation may protect against cellular damage. Upregulation of HSPB8 is one possible approach for this purpose, since this chaperone promotes the clearance of an ALS associated fragments of TDP-43 and is upregulated in the surviving motor neurones of transgenic ALS mice and human patients. We report that overexpression of HSPB8 in immortalized motor neurones decreased the accumulation of TDP-25 and TDP-35 and that protection against mislocalized/truncated TDP-43 was observed for HSPB8 in Drosophila melanogaster. Overexpression of HSP67Bc, the functional ortholog of human HSPB8, suppressed the eye degeneration caused by the cytoplasmic accumulation of a TDP-43 variant with a mutation in the nuclear localization signal (TDP-43-NLS). TDP-43-NLS accumulation in retinal cells was counteracted by HSP67Bc overexpression. According with this finding, downregulation of HSP67Bc increased eye degeneration, an effect that is consistent with the accumulation of high molecular weight TDP-43 species and ubiquitinated proteins. Moreover, we report a novel Drosophila model expressing TDP-35, and show that while TDP-43 and TDP-25 expression in the fly eyes causes a mild degeneration, TDP-35 expression leads to severe neurodegeneration as revealed by pupae lethality; the latter effect could be rescued by HSP67Bc overexpression. Collectively, our data demonstrate that HSPB8 upregulation mitigates TDP-43 fragment mediated toxicity, in mammalian neuronal cells and flies.
Collapse
Affiliation(s)
- Valeria Crippa
- Genomic and post-Genomic Center, C. Mondino National Institute of Neurology Foundation, 27100 Pavia, Italy
| | - Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milano, Italy
| | - Nandini Ramesh
- Department of Pediatrics, Division of Child Neurology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Samuel J Seguin
- Department of Biomedical, Metabolic and Neuronal Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Massimo Ganassi
- Department of Biomedical, Metabolic and Neuronal Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ilaria Bigi
- Department of Biomedical, Metabolic and Neuronal Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Chiara Diacci
- Department of Biomedical, Metabolic and Neuronal Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elena Zelotti
- Department of Biomedical, Metabolic and Neuronal Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Madina Baratashvili
- Department of Cell Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Jenna M Gregory
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Cristina Cereda
- Genomic and post-Genomic Center, C. Mondino National Institute of Neurology Foundation, 27100 Pavia, Italy
| | - Udai Bhan Pandey
- Department of Pediatrics, Division of Child Neurology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, 20133 Milano, Italy
| | - Serena Carra
- Department of Biomedical, Metabolic and Neuronal Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
57
|
Manghera M, Ferguson-Parry J, Douville RN. TDP-43 regulates endogenous retrovirus-K viral protein accumulation. Neurobiol Dis 2016; 94:226-36. [PMID: 27370226 DOI: 10.1016/j.nbd.2016.06.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/30/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022] Open
Abstract
The concomitant expression of neuronal TAR DNA binding protein 43 (TDP-43) and human endogenous retrovirus-K (ERVK) is a hallmark of ALS. Since the involvement of TDP-43 in retrovirus replication remains controversial, we sought to evaluate whether TDP-43 exerts an effect on ERVK expression. In this study, TDP-43 bound the ERVK promoter in the context of inflammation or proteasome inhibition, with no effect on ERVK transcription. However, over-expression of ALS-associated aggregating forms of TDP-43, but not wild-type TDP-43, significantly enhanced ERVK viral protein accumulation. Human astrocytes and neurons further demonstrated cell-type specific differences in their ability to express and clear ERVK proteins during inflammation and proteasome inhibition. Astrocytes, but not neurons, were able to clear excess ERVK proteins through stress granule formation and autophagy. In vitro findings were validated in autopsy motor cortex tissue from patients with ALS and neuro-normal controls. We further confirmed marked enhancement of ERVK in cortical neurons of patients with ALS. Despite evidence of enhanced stress granule and autophagic response in ALS cortical neurons, these cells failed to clear excess ERVK protein accumulation. This highlights how multiple cellular pathways, in conjunction with disease-associated mutations, can converge to modulate the expression and clearance of viral gene products from genomic elements such as ERVK. In ALS, ERVK protein aggregation is a novel aspect of TDP-43 misregulation contributing towards the pathology of this neurodegenerative disease.
Collapse
Affiliation(s)
- Mamneet Manghera
- Department of Biology, University of Winnipeg, 599 Portage Avenue, Winnipeg, Manitoba R3B 2G3, Canada
| | - Jennifer Ferguson-Parry
- Department of Biology, University of Winnipeg, 599 Portage Avenue, Winnipeg, Manitoba R3B 2G3, Canada
| | - Renée N Douville
- Department of Biology, University of Winnipeg, 599 Portage Avenue, Winnipeg, Manitoba R3B 2G3, Canada; Department of Immunology, University of Manitoba, 750 McDermot Avenue, Winnipeg, Manitoba R3E 0T5, Canada.
| |
Collapse
|
58
|
Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases. Sci Rep 2016; 6:22827. [PMID: 26961006 PMCID: PMC4785366 DOI: 10.1038/srep22827] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/22/2016] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (NDs) are often associated with the presence of misfolded protein inclusions. The chaperone HSPB8 is upregulated in mice, the human brain and muscle structures affected during NDs progression. HSPB8 exerts a potent pro-degradative activity on several misfolded proteins responsible for familial NDs forms. Here, we demonstrated that HSPB8 also counteracts accumulation of aberrantly localized misfolded forms of TDP-43 and its 25 KDa fragment involved in most sporadic cases of Amyotrophic Lateral Sclerosis (sALS) and of Fronto Lateral Temporal Dementia (FLTD). HSPB8 acts with BAG3 and the HSP70/HSC70-CHIP complex enhancing the autophagic removal of misfolded proteins. We performed a high-through put screening (HTS) to find small molecules capable of inducing HSPB8 in neurons for therapeutic purposes. We identified two compounds, colchicine and doxorubicin, that robustly up-regulated HSPB8 expression. Both colchicine and doxorubicin increased the expression of the master regulator of autophagy TFEB, the autophagy linker p62/SQSTM1 and the autophagosome component LC3. In line, both drugs counteracted the accumulation of TDP-43 and TDP-25 misfolded species responsible for motoneuronal death in sALS. Thus, analogs of colchicine and doxorubicin able to induce HSPB8 and with better safety and tolerability may result beneficial in NDs models.
Collapse
|
59
|
Chiang CH, Grauffel C, Wu LS, Kuo PH, Doudeva LG, Lim C, Shen CKJ, Yuan HS. Structural analysis of disease-related TDP-43 D169G mutation: linking enhanced stability and caspase cleavage efficiency to protein accumulation. Sci Rep 2016; 6:21581. [PMID: 26883171 PMCID: PMC4756693 DOI: 10.1038/srep21581] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
The RNA-binding protein TDP-43 forms intracellular inclusions in amyotrophic lateral sclerosis (ALS). While TDP-43 mutations have been identified in ALS patients, how these mutations are linked to ALS remains unclear. Here we examined the biophysical properties of six ALS-linked TDP-43 mutants and found that one of the mutants, D169G, had higher thermal stability than wild-type TDP-43 and that it was cleaved by caspase 3 more efficiently, producing increased levels of the C-terminal 35 kD fragments (TDP-35) in vitro and in neuroblastoma cells. The crystal structure of the TDP-43 RRM1 domain containing the D169G mutation in complex with DNA along with molecular dynamics simulations reveal that the D169G mutation induces a local conformational change in a β turn and increases the hydrophobic interactions in the RRM1 core, thus enhancing the thermal stability of the RRM1 domain. Our results provide the first crystal structure of TDP-43 containing a disease-linked D169G mutation and a disease-related mechanism showing that D169G mutant is more susceptible to proteolytic cleavage by caspase 3 into the pathogenic C-terminal 35-kD fragments due to its increased stability in the RRM1 domain. Modulation of TDP-43 stability and caspase cleavage efficiency could present an avenue for prevention and treatment of TDP-43-linked neurodegeneration.
Collapse
Affiliation(s)
- Chien-Hao Chiang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsin Chu, 30013, Taiwan
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Lien-Szu Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Pan-Hsien Kuo
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | | | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | | | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
60
|
Karademir B, Corek C, Ozer NK. Endoplasmic reticulum stress and proteasomal system in amyotrophic lateral sclerosis. Free Radic Biol Med 2015; 88:42-50. [PMID: 26073124 DOI: 10.1016/j.freeradbiomed.2015.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022]
Abstract
Protein processing including folding, unfolding and degradation is involved in the mechanisms of many diseases. Unfolded protein response and/or endoplasmic reticulum stress are accepted to be the first steps which should be completed via protein degradation. In this direction, proteasomal system and autophagy play important role as the degradation pathways and controlled via complex mechanisms. Amyotrophic lateral sclerosis is a multifactorial neurodegenerative disease which is also known as the most catastrophic one. Mutation of many different genes are involved in the pathogenesis such as superoxide dismutase 1, chromosome 9 open reading frame 72 and ubiquilin 2. These genes are mainly related to the antioxidant defense systems, endoplasmic reticulum stress related proteins and also protein aggregation, degradation pathways and therefore mutation of these genes cause related disorders.This review focused on the role of protein processing via endoplasmic reticulum and proteasomal system in amyotrophic lateral sclerosis which are the main players in the pathology. In this direction, dysfunction of endoplasmic reticulum associated degradation and related cell death mechanisms that are autophagy/apoptosis have been detailed.
Collapse
Affiliation(s)
- Betul Karademir
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Ceyda Corek
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
61
|
Cheng CW, Lin MJ, Shen CKJ. Rapamycin alleviates pathogenesis of a newDrosophilamodel of ALS-TDP. J Neurogenet 2015. [DOI: 10.3109/01677063.2015.1077832] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
62
|
Chaperone-mediated autophagy and neurodegeneration: connections, mechanisms, and therapeutic implications. Neurosci Bull 2015. [PMID: 26206600 DOI: 10.1007/s12264-015-1542-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lysosomes degrade dysfunctional intracellular components via three pathways: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Unlike the other two, CMA degrades cytosolic proteins with a recognized KFERQ-like motif in lysosomes and is important for cellular homeostasis. CMA activity declines with age and is altered in neurodegenerative diseases. Its impairment leads to the accumulation of aggregated proteins, some of which may be directly tied to the pathogenic processes of neurodegenerative diseases. Its induction may accelerate the clearance of pathogenic proteins and promote cell survival, representing a potential therapeutic approach for the treatment of neurodegenerative diseases. In this review, we summarize the current findings on how CMA is involved in neurodegenerative diseases, especially in Parkinson's disease.
Collapse
|
63
|
Kenney DL, Benarroch EE. The autophagy-lysosomal pathway: General concepts and clinical implications. Neurology 2015. [PMID: 26203091 DOI: 10.1212/wnl.0000000000001860] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Daniel L Kenney
- From the Departments of Child and Adolescent Neurology (D.L.K.) and Neurology (E.E.B.), Mayo Clinic, Rochester, MN
| | - Eduardo E Benarroch
- From the Departments of Child and Adolescent Neurology (D.L.K.) and Neurology (E.E.B.), Mayo Clinic, Rochester, MN.
| |
Collapse
|
64
|
Abstract
The transactive response DNA binding protein (TDP-43) has long been characterized as a main hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U, also known as FTLD-TDP). Several studies have indicated TDP-43 deposits in Alzheimer's disease (AD) brains and have robust connection with AD clinical phenotype. FTLD-U, which was symptomatically connected with AD, may be predictable for the comprehension of the role TDP-43 in AD. TDP-43 may contribute to AD through both β-amyloid (Aβ)-dependent and Aβ-independent pathways. In this article, we summarize the latest studies concerning the role of TDP-43 in AD and explore TDP-43 modulation as a potential therapeutic strategy for AD. However, to date, little of pieces of the research on TDP-43 have been performed to investigate the role in AD; more investigations need to be confirmed in the future.
Collapse
|
65
|
Scotter EL, Chen HJ, Shaw CE. TDP-43 Proteinopathy and ALS: Insights into Disease Mechanisms and Therapeutic Targets. Neurotherapeutics 2015; 12:352-63. [PMID: 25652699 PMCID: PMC4404432 DOI: 10.1007/s13311-015-0338-x] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Therapeutic options for patients with amyotrophic lateral sclerosis (ALS) are currently limited. However, recent studies show that almost all cases of ALS, as well as tau-negative frontotemporal dementia (FTD), share a common neuropathology characterized by the deposition of TAR-DNA binding protein (TDP)-43-positive protein inclusions, offering an attractive target for the design and testing of novel therapeutics. Here we demonstrate how diverse environmental stressors linked to stress granule formation, as well as mutations in genes encoding RNA processing proteins and protein degradation adaptors, initiate ALS pathogenesis via TDP-43. We review the progressive development of TDP-43 proteinopathy from cytoplasmic mislocalization and misfolding through to macroaggregation and the addition of phosphate and ubiquitin moieties. Drawing from cellular and animal studies, we explore the feasibility of therapeutics that act at each point in pathogenesis, from mitigating genetic risk using antisense oligonucleotides to modulating TDP-43 proteinopathy itself using small molecule activators of autophagy, the ubiquitin-proteasome system, or the chaperone network. We present the case that preventing the misfolding of TDP-43 and/or enhancing its clearance represents the most important target for effectively treating ALS and frontotemporal dementia.
Collapse
Affiliation(s)
- Emma L. Scotter
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, de Crespigny Park, London, SE5 8AF UK
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Han-Jou Chen
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, de Crespigny Park, London, SE5 8AF UK
| | - Christopher E. Shaw
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, de Crespigny Park, London, SE5 8AF UK
| |
Collapse
|
66
|
Autophagy in neuronal cells: general principles and physiological and pathological functions. Acta Neuropathol 2015; 129:337-62. [PMID: 25367385 DOI: 10.1007/s00401-014-1361-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 12/12/2022]
Abstract
Autophagy delivers cytoplasmic components and organelles to lysosomes for degradation. This pathway serves to degrade nonfunctional or unnecessary organelles and aggregate-prone and oxidized proteins to produce substrates for energy production and biosynthesis. Macroautophagy delivers large aggregates and whole organelles to lysosomes by first enveloping them into autophagosomes that then fuse with lysosomes. Chaperone-mediated autophagy (CMA) degrades proteins containing the KFERQ-like motif in their amino acid sequence, by transporting them from the cytosol across the lysosomal membrane into the lysosomal lumen. Autophagy is especially important for the survival and homeostasis of postmitotic cells like neurons, because these cells are not able to dilute accumulating detrimental substances and damaged organelles by cell division. Our current knowledge on the autophagic pathways and molecular mechanisms and regulation of autophagy will be summarized in this review. We will describe the physiological functions of macroautophagy and CMA in neuronal cells. Finally, we will summarize the current evidence showing that dysfunction of macroautophagy and/or CMA contributes to neuronal diseases. We will give an overview of our current knowledge on the role of autophagy in aging neurons, and focus on the role of autophagy in four types of neurodegenerative diseases, i.e., amyotrophic lateral sclerosis and frontotemporal dementia, prion diseases, lysosomal storage diseases, and Parkinson's disease.
Collapse
|
67
|
Li Q, Yokoshi M, Okada H, Kawahara Y. The cleavage pattern of TDP-43 determines its rate of clearance and cytotoxicity. Nat Commun 2015; 6:6183. [PMID: 25630387 DOI: 10.1038/ncomms7183] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/30/2014] [Indexed: 12/12/2022] Open
Abstract
TAR DNA-binding protein of 43 kDa (TDP-43) and its C-terminal fragment of 25 kDa (CTF25) play critical roles in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Although the overexpression of TDP-43 in cultured cells and animals results in the production of CTF25, the cleavage site that generates CTF25 and biological significance of the cleavage remain undetermined. Here we identify Asp174 as a cleavage site for CTF25. TDP-43 is cleaved initially after Asp174, which activates caspase-3/7 to accelerate TDP-43 fragmentation. Consequently, blockage of this cleavage results in a severe delay in TDP-43 clearance and prolonged necrotic cell death. We further show that the endoplasmic reticulum membrane-bound caspase-4 is the enzyme responsible for the cleavage after Asp174 and inhibition of caspase-4 activity slows TDP-43 fragmentation and reduces cell viability. These findings suggest that caspase-4-mediated cleavage after Asp174 is an initiator of TDP-43 clearance, which is required to avoid cell death induced by overexpressed TDP-43.
Collapse
Affiliation(s)
- Quan Li
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Moe Yokoshi
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hitomi Okada
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
68
|
Homma S, Beermann ML, Boyce FM, Miller JB. Expression of FSHD-related DUX4-FL alters proteostasis and induces TDP-43 aggregation. Ann Clin Transl Neurol 2015; 2:151-66. [PMID: 25750920 PMCID: PMC4338956 DOI: 10.1002/acn3.158] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 11/17/2022] Open
Abstract
Objective Pathogenesis in facioscapulohumeral muscular dystrophy (FSHD) appears to be due to aberrant expression, particularly in skeletal muscle nuclei, of the full-length isoform of DUX4 (DUX4-FL). Expression of DUX4-FL is known to alter gene expression and to be cytotoxic, but cell responses to DUX4-FL are not fully understood. Our study was designed to identify cellular mechanisms of pathogenesis caused by DUX4-FL expression. Methods We used human myogenic cell cultures to analyze the effects of DUX4-FL when it was expressed either from its endogenous promoter in FSHD cells or by exogenous expression using BacMam vectors. We focused on determining the effects of DUX4-FL on protein ubiquitination and turnover and on aggregation of TDP-43. Results Human FSHD myotubes with endogenous DUX4-FL expression showed both altered nuclear and cytoplasmic distributions of ubiquitinated proteins and aggregation of TDP-43 in DUX4-FL-expressing nuclei. Similar changes were found upon exogenous expression of DUX4-FL, but were not seen upon expression of the non-toxic short isoform DUX4-S. DUX4-FL expression also inhibited protein turnover in a model system and increased the amounts of insoluble ubiquitinated proteins and insoluble TDP-43. Finally, inhibition of the ubiquitin–proteasome system with MG132 produced TDP-43 aggregation similar to DUX4-FL expression. Interpretations Our results identify DUX4-FL-induced inhibition of protein turnover and aggregation of TDP-43, which are pathological changes also found in diseases such as amyotrophic lateral sclerosis and inclusion body myopathy, as potential pathological mechanisms in FSHD.
Collapse
Affiliation(s)
- Sachiko Homma
- Neuromuscular Biology & Disease Group, Departments of Neurology and Physiology & Biophysics, Boston University School of Medicine Boston, Massachusetts, 02118
| | - Mary Lou Beermann
- Neuromuscular Biology & Disease Group, Departments of Neurology and Physiology & Biophysics, Boston University School of Medicine Boston, Massachusetts, 02118
| | - Frederick M Boyce
- Department of Neurology, Massachusetts General Hospital Boston, Massachusetts, 02114
| | - Jeffrey Boone Miller
- Neuromuscular Biology & Disease Group, Departments of Neurology and Physiology & Biophysics, Boston University School of Medicine Boston, Massachusetts, 02118
| |
Collapse
|