51
|
Wang JY, Yu IS, Huang CC, Chen CY, Wang WP, Lin SW, Jeang KT, Chi YH. Sun1 deficiency leads to cerebellar ataxia in mice. Dis Model Mech 2015; 8:957-67. [PMID: 26035387 PMCID: PMC4527285 DOI: 10.1242/dmm.019240] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/23/2015] [Indexed: 01/22/2023] Open
Abstract
Migration and organization of the nucleus are essential for the proliferation and differentiation of cells, including neurons. However, the relationship between the positioning of the nucleus and cellular morphogenesis remains poorly understood. Inherited recessive cerebellar ataxia has been attributed to mutations in SYNE1, a component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Regardless, Syne1-mutant mice present with normal cerebellar development. The Sad1-Unc-84 homology (SUN)-domain proteins are located at the inner nuclear membrane and recruit Syne proteins through the KASH domain to the outer nuclear membrane. Here, we report an unrecognized contribution of Sun1 and Sun2 to the postnatal development of murine cerebellum. Mice depleted of Sun1 showed a marked reduction in the cerebellar volume, and this phenotype is exacerbated with additional loss of a Sun2 allele. Consistent with these histological changes, Sun1(-/-) and Sun1(-/-)Sun2(+/-) mice exhibited defective motor coordination. Results of immunohistochemical analyses suggested that Sun1 is highly expressed in Purkinje cells and recruits Syne2 to the periphery of the nucleus. Approximately 33% of Purkinje cells in Sun1(-/-) mice and 66% of Purkinje cells in Sun1(-/-)Sun2(+/-) mice were absent from the surface of the internal granule layer (IGL), whereas the proliferation and migration of granule neurons were unaffected. Furthermore, the Sun1(-/-)Sun2(+/-) Purkinje cells exhibited retarded primary dendrite specification, reduced dendritic complexity and aberrant patterning of synapses. Our findings reveal a cell-type-specific role for Sun1 and Sun2 in nucleokinesis during cerebellar development, and we propose the use of Sun-deficient mice as a model for studying cerebellar ataxia that is associated with mutation of human SYNE genes or loss of Purkinje cells.
Collapse
Affiliation(s)
- Jing-Ya Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - I-Shing Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University Hospital, Taipei 10048, Taiwan Center of Genomic Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Chien-Chi Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Chia-Yen Chen
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wan-Ping Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University Hospital, Taipei 10048, Taiwan Center of Genomic Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10048, Taiwan Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Kuan-Teh Jeang
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya-Hui Chi
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
52
|
Abstract
The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. In this review, Osmanagic-Myers et al. focus on the role of nuclear lamins in mechanosensing and also discuss how disease-linked lamin mutants may impair the response of cells to mechanical stimuli and influence the properties of the extracellular matrix. The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. B-type lamins confer elasticity, while A-type lamins lend viscosity and stiffness to nuclei. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. The mechanical roles of lamins and their functions in gene regulation are often viewed as independent activities, but recent findings suggest a highly cross-linked and interdependent regulation of these different functions, particularly in mechanosignaling. In this newly emerging concept, lamins act as a “mechanostat” that senses forces from outside and responds to tension by reinforcing the cytoskeleton and the extracellular matrix. A-type lamins, emerin, and the linker of the nucleoskeleton and cytoskeleton (LINC) complex directly transmit forces from the extracellular matrix into the nucleus. These mechanical forces lead to changes in the molecular structure, modification, and assembly state of A-type lamins. This in turn activates a tension-induced “inside-out signaling” through which the nucleus feeds back to the cytoskeleton and the extracellular matrix to balance outside and inside forces. These functions regulate differentiation and may be impaired in lamin-linked diseases, leading to cellular phenotypes, particularly in mechanical load-bearing tissues.
Collapse
|
53
|
Gruenbaum Y, Foisner R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem 2015; 84:131-64. [PMID: 25747401 DOI: 10.1146/annurev-biochem-060614-034115] [Citation(s) in RCA: 402] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lamins are intermediate filament proteins that form a scaffold, termed nuclear lamina, at the nuclear periphery. A small fraction of lamins also localize throughout the nucleoplasm. Lamins bind to a growing number of nuclear protein complexes and are implicated in both nuclear and cytoskeletal organization, mechanical stability, chromatin organization, gene regulation, genome stability, differentiation, and tissue-specific functions. The lamin-based complexes and their specific functions also provide insights into possible disease mechanisms for human laminopathies, ranging from muscular dystrophy to accelerated aging, as observed in Hutchinson-Gilford progeria and atypical Werner syndromes.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | | |
Collapse
|
54
|
Bone CR, Tapley EC, Gorjánácz M, Starr DA. The Caenorhabditis elegans SUN protein UNC-84 interacts with lamin to transfer forces from the cytoplasm to the nucleoskeleton during nuclear migration. Mol Biol Cell 2014; 25:2853-65. [PMID: 25057012 PMCID: PMC4161519 DOI: 10.1091/mbc.e14-05-0971] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The nucleoplasmic domain of the Caenorhabditis elegans SUN protein UNC-84 interacts with lamin. If this interaction is disrupted, a partial failure in nuclear migration occurs. Nuclear migration is a critical component of many cellular and developmental processes. The nuclear envelope forms a barrier between the cytoplasm, where mechanical forces are generated, and the nucleoskeleton. The LINC complex consists of KASH proteins in the outer nuclear membrane and SUN proteins in the inner nuclear membrane that bridge the nuclear envelope. How forces are transferred from the LINC complex to the nucleoskeleton is poorly understood. The Caenorhabditis elegans lamin, LMN-1, is required for nuclear migration and interacts with the nucleoplasmic domain of the SUN protein UNC-84. This interaction is weakened by the unc-84(P91S) missense mutation. These mutant nuclei have an intermediate nuclear migration defect—live imaging of nuclei or LMN-1::GFP shows that many nuclei migrate normally, others initiate migration before subsequently failing, and others fail to begin migration. At least one other component of the nucleoskeleton, the NET5/Samp1/Ima1 homologue SAMP-1, plays a role in nuclear migration. We propose a nut-and-bolt model to explain how forces are dissipated across the nuclear envelope during nuclear migration. In this model, SUN/KASH bridges serve as bolts through the nuclear envelope, and nucleoskeleton components LMN-1 and SAMP-1 act as both nuts and washers on the inside of the nucleus.
Collapse
Affiliation(s)
- Courtney R Bone
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618
| | - Erin C Tapley
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618
| | - Mátyás Gorjánácz
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618
| |
Collapse
|