51
|
Mutated PET117 causes complex IV deficiency and is associated with neurodevelopmental regression and medulla oblongata lesions. Hum Genet 2017; 136:759-769. [PMID: 28386624 PMCID: PMC5429353 DOI: 10.1007/s00439-017-1794-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/31/2017] [Indexed: 10/30/2022]
Abstract
The genetic basis of the many progressive, multi systemic, mitochondrial diseases that cause a lack of cellular ATP production is heterogeneous, with defects found both in the mitochondrial genome as well as in the nuclear genome. Many different mutations have been found in the genes encoding subunits of the enzyme complexes of the oxidative phosphorylation system. In addition, mutations in genes encoding proteins involved in the assembly of these complexes are known to cause mitochondrial disorders. Here we describe two sisters with a mitochondrial disease characterized by lesions in the medulla oblongata, as demonstrated by brain magnetic resonance imaging, and an isolated complex IV deficiency and reduced levels of individual complex IV subunits. Whole exome sequencing revealed a homozygous nonsense mutation resulting in a premature stop codon in the gene encoding Pet117, a small protein that has previously been predicted to be a complex IV assembly factor. PET117 has not been identified as a mitochondrial disease gene before. Lentiviral complementation of patient fibroblasts with wild-type PET117 restored the complex IV deficiency, proving that the gene defect is responsible for the complex IV deficiency in the patients, and indicating a pivotal role of this protein in the proper functioning of complex IV. Although previous studies had suggested a possible role of this protein in the insertion of copper into complex IV, studies in patient fibroblasts could not confirm this. This case presentation thus implicates mutations in PET117 as a novel cause of mitochondrial disease.
Collapse
|
52
|
Mitochondrial DNA Hypomethylation Is a Biomarker Associated with Induced Senescence in Human Fetal Heart Mesenchymal Stem Cells. Stem Cells Int 2017; 2017:1764549. [PMID: 28484495 PMCID: PMC5397648 DOI: 10.1155/2017/1764549] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 02/07/2023] Open
Abstract
Background. Fetal heart can regenerate to restore its normal anatomy and function in response to injury, but this regenerative capacity is lost within the first week of postnatal life. Although the specific molecular mechanisms remain to be defined, it is presumed that aging of cardiac stem or progenitor cells may contribute to the loss of regenerative potential. Methods. To study this aging-related dysfunction, we cultured mesenchymal stem cells (MSCs) from human fetal heart tissues. Senescence was induced by exposing cells to chronic oxidative stress/low serum. Mitochondrial DNA methylation was examined during the period of senescence. Results. Senescent MSCs exhibited flattened and enlarged morphology and were positive for the senescence-associated beta-galactosidase (SA-β-Gal). By scanning the entire mitochondrial genome, we found that four CpG islands were hypomethylated in close association with senescence in MSCs. The mitochondrial COX1 gene, which encodes the main subunit of the cytochrome c oxidase complex and contains the differentially methylated CpG island 4, was upregulated in MSCs in parallel with the onset of senescence. Knockdown of DNA methyltransferases (DNMT1, DNMT3a, and DNMT3B) also upregulated COX1 expression and induced cellular senescence in MSCs. Conclusions. This study demonstrates that mitochondrial CpG hypomethylation may serve as a critical biomarker associated with cellular senescence induced by chronic oxidative stress.
Collapse
|
53
|
MR-1S Interacts with PET100 and PET117 in Module-Based Assembly of Human Cytochrome c Oxidase. Cell Rep 2017; 18:1727-1738. [DOI: 10.1016/j.celrep.2017.01.044] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/06/2016] [Accepted: 01/19/2017] [Indexed: 01/04/2023] Open
|
54
|
Cytochrome c Oxidase Biogenesis and Metallochaperone Interactions: Steps in the Assembly Pathway of a Bacterial Complex. PLoS One 2017; 12:e0170037. [PMID: 28107462 PMCID: PMC5249081 DOI: 10.1371/journal.pone.0170037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022] Open
Abstract
Biogenesis of mitochondrial cytochrome c oxidase (COX) is a complex process involving the coordinate expression and assembly of numerous subunits (SU) of dual genetic origin. Moreover, several auxiliary factors are required to recruit and insert the redox-active metal compounds, which in most cases are buried in their protein scaffold deep inside the membrane. Here we used a combination of gel electrophoresis and pull-down assay techniques in conjunction with immunostaining as well as complexome profiling to identify and analyze the composition of assembly intermediates in solubilized membranes of the bacterium Paracoccus denitrificans. Our results show that the central SUI passes through at least three intermediate complexes with distinct subunit and cofactor composition before formation of the holoenzyme and its subsequent integration into supercomplexes. We propose a model for COX biogenesis in which maturation of newly translated COX SUI is initially assisted by CtaG, a chaperone implicated in CuB site metallation, followed by the interaction with the heme chaperone Surf1c to populate the redox-active metal-heme centers in SUI. Only then the remaining smaller subunits are recruited to form the mature enzyme which ultimately associates with respiratory complexes I and III into supercomplexes.
Collapse
|
55
|
Bourens M, Barrientos A. A CMC1-knockout reveals translation-independent control of human mitochondrial complex IV biogenesis. EMBO Rep 2017; 18:477-494. [PMID: 28082314 DOI: 10.15252/embr.201643103] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 11/09/2022] Open
Abstract
Defects in mitochondrial respiratory chain complex IV (CIV) frequently cause encephalocardiomyopathies. Human CIV assembly involves 14 subunits of dual genetic origin and multiple nucleus-encoded ancillary factors. Biogenesis of the mitochondrion-encoded copper/heme-containing COX1 subunit initiates the CIV assembly process. Here, we show that the intermembrane space twin CX9C protein CMC1 forms an early CIV assembly intermediate with COX1 and two assembly factors, the cardiomyopathy proteins COA3 and COX14. A TALEN-mediated CMC1 knockout HEK293T cell line displayed normal COX1 synthesis but decreased CIV activity owing to the instability of newly synthetized COX1. We demonstrate that CMC1 stabilizes a COX1-COA3-COX14 complex before the incorporation of COX4 and COX5a subunits. Additionally, we show that CMC1 acts independently of CIV assembly factors relevant to COX1 metallation (COX10, COX11, and SURF1) or late stability (MITRAC7). Furthermore, whereas human COX14 and COA3 have been proposed to affect COX1 mRNA translation, our data indicate that CMC1 regulates turnover of newly synthesized COX1 prior to and during COX1 maturation, without affecting the rate of COX1 synthesis.
Collapse
Affiliation(s)
- Myriam Bourens
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA .,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
56
|
Cao X, Qin Y. Mitochondrial translation factors reflect coordination between organelles and cytoplasmic translation via mTOR signaling: Implication in disease. Free Radic Biol Med 2016; 100:231-237. [PMID: 27101739 DOI: 10.1016/j.freeradbiomed.2016.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Abstract
Mitochondria are semi-autonomous organelle possessing their own translation machinery to biosynthesize mitochondrial DNA (mtDNA)-encoded polypeptides, which are the core subunits of oxidative phosphorylation (OXPHOS) complexes. Mitochondrial translation elongation factor 4 (mtEF4) is a key quality control factor in mitochondrial translation (mt-translation) that regulates mitochondrial tRNA translocation and modulates cellular responses by influencing cytoplasmic translation (ct-translation). In addition to mtEF4, mt-translational activators, mitochondrial microRNAs (mitomiRs), and MITRAC have been reported recently as crucial mt-translation regulators. Here, we focus on the novel ways how these factors regulate mt-translation, discuss the main cellular response of mammalian target of rapamycin (mTOR) signalling upon mt-translation defects, and summarize the related human diseases.
Collapse
Affiliation(s)
- Xintao Cao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Qin
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
57
|
Richter-Dennerlein R, Oeljeklaus S, Lorenzi I, Ronsör C, Bareth B, Schendzielorz AB, Wang C, Warscheid B, Rehling P, Dennerlein S. Mitochondrial Protein Synthesis Adapts to Influx of Nuclear-Encoded Protein. Cell 2016; 167:471-483.e10. [PMID: 27693358 PMCID: PMC5055049 DOI: 10.1016/j.cell.2016.09.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/01/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022]
Abstract
Mitochondrial ribosomes translate membrane integral core subunits of the oxidative phosphorylation system encoded by mtDNA. These translation products associate with nuclear-encoded, imported proteins to form enzyme complexes that produce ATP. Here, we show that human mitochondrial ribosomes display translational plasticity to cope with the supply of imported nuclear-encoded subunits. Ribosomes expressing mitochondrial-encoded COX1 mRNA selectively engage with cytochrome c oxidase assembly factors in the inner membrane. Assembly defects of the cytochrome c oxidase arrest mitochondrial translation in a ribosome nascent chain complex with a partially membrane-inserted COX1 translation product. This complex represents a primed state of the translation product that can be retrieved for assembly. These findings establish a mammalian translational plasticity pathway in mitochondria that enables adaptation of mitochondrial protein synthesis to the influx of nuclear-encoded subunits. Mitochondrial ribosomes display translational plasticity COX1 translation in mitochondria is stalled in the absence of nuclear-encoded COX4 A ribosome nascent chain complex of COX1 is a primed state for complex IV assembly MITRAC regulates translation via COX1 ribosome nascent chain complexes interaction
Collapse
Affiliation(s)
- Ricarda Richter-Dennerlein
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, 37073 Göttingen, Germany
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Faculty of Biology, University Freiburg, 79104 Freiburg, Germany
| | - Isotta Lorenzi
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, 37073 Göttingen, Germany
| | - Christin Ronsör
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, 37073 Göttingen, Germany
| | - Bettina Bareth
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, 37073 Göttingen, Germany
| | | | - Cong Wang
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, 37073 Göttingen, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Faculty of Biology, University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, 37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, 37073 Göttingen, Germany
| |
Collapse
|
58
|
Inan M, Zhao M, Manuszak M, Karakaya C, Rajadhyaksha AM, Pickel VM, Schwartz TH, Goldstein PA, Manfredi G. Energy deficit in parvalbumin neurons leads to circuit dysfunction, impaired sensory gating and social disability. Neurobiol Dis 2016; 93:35-46. [PMID: 27105708 DOI: 10.1016/j.nbd.2016.04.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022] Open
Abstract
Parvalbumin-expressing, fast spiking interneurons have high-energy demands, which make them particularly susceptible to energy impairment. Recent evidence suggests a link between mitochondrial dysfunction in fast spiking cortical interneurons and neuropsychiatric disorders. However, the effect of mitochondrial dysfunction restricted to parvalbumin interneurons has not been directly addressed in vivo. To investigate the consequences of mitochondrial dysfunction in parvalbumin interneurons in vivo, we generated conditional knockout mice with a progressive decline in oxidative phosphorylation by deleting cox10 gene selectively in parvalbumin neurons (PV-Cox10 CKO). Cox10 ablation results in defective assembly of cytochrome oxidase, the terminal enzyme of the electron transfer chain, and leads to mitochondrial bioenergetic dysfunction. PV-Cox10 CKO mice showed a progressive loss of cytochrome oxidase in cortical parvalbumin interneurons. Cytochrome oxidase protein levels were significantly reduced starting at postnatal day 60, and this was not associated with a change in parvalbumin interneuron density. Analyses of intrinsic electrophysiological properties in layer 5 primary somatosensory cortex revealed that parvalbumin interneurons could not sustain their typical high frequency firing, and their overall excitability was enhanced. An increase in both excitatory and inhibitory input onto parvalbumin interneurons was observed in PV-Cox10 CKO mice, resulting in a disinhibited network with an imbalance of excitation/inhibition. Investigation of network oscillations in PV-Cox10 CKO mice, using local field potential recordings in anesthetized mice, revealed significantly increased gamma and theta frequency oscillation power in both medial prefrontal cortex and hippocampus. PV-Cox10 CKO mice did not exhibit muscle strength or gross motor activity deficits in the time frame of the experiments, but displayed impaired sensory gating and sociability. Taken together, these data reveal that mitochondrial dysfunction in parvalbumin interneurons can alter their intrinsic physiology and network connectivity, resulting in behavioral alterations similar to those observed in neuropsychiatric disorders, such as schizophrenia and autism.
Collapse
Affiliation(s)
- Melis Inan
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| | - Mingrui Zhao
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States; Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, United States
| | - Monica Manuszak
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| | - Cansu Karakaya
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| | - Anjali M Rajadhyaksha
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States; Department of Pediatric Neurology, Weill Cornell Medical College, New York, NY, United States; Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States
| | - Virginia M Pickel
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| | - Theodore H Schwartz
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States; Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, United States
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States; Department of Medicine, Weill Cornell Medical College, New York, NY, United States.
| | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
59
|
Mammalian elongation factor 4 regulates mitochondrial translation essential for spermatogenesis. Nat Struct Mol Biol 2016; 23:441-9. [DOI: 10.1038/nsmb.3206] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 03/17/2016] [Indexed: 11/08/2022]
|
60
|
Turakhiya U, von der Malsburg K, Gold VAM, Guiard B, Chacinska A, van der Laan M, Ieva R. Protein Import by the Mitochondrial Presequence Translocase in the Absence of a Membrane Potential. J Mol Biol 2016; 428:1041-1052. [PMID: 26827728 DOI: 10.1016/j.jmb.2016.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/15/2015] [Accepted: 01/01/2016] [Indexed: 11/17/2022]
Abstract
The highly organized mitochondrial inner membrane harbors enzymes that produce the bulk of cellular ATP via oxidative phosphorylation. The majority of inner membrane protein precursors are synthesized in the cytosol. Precursors with a cleavable presequence are imported by the presequence translocase (TIM23 complex), while other precursors containing internal targeting signals are imported by the carrier translocase (TIM22 complex). Both TIM23 and TIM22 are activated by the transmembrane electrochemical potential. Many small inner membrane proteins, however, do not resemble canonical TIM23 or TIM22 substrates and their mechanism of import is unknown. We report that subunit e of the F1Fo-ATP synthase, a small single-spanning inner membrane protein that is critical for inner membrane organization, is imported by TIM23 in a process that does not require activation by the membrane potential. Absence of positively charged residues at the matrix-facing amino-terminus of subunit e facilitates membrane potential-independent import. Instead, engineered positive charges establish a dependence of the import reaction on the electrochemical potential. Our results have two major implications. First, they reveal an unprecedented pathway of protein import into the mitochondrial inner membrane, which is mediated by TIM23. Second, they directly demonstrate the role of the membrane potential in driving the electrophoretic transport of positively charged protein segments across the inner membrane.
Collapse
Affiliation(s)
- Uma Turakhiya
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School for Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Karina von der Malsburg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Vicki A M Gold
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France
| | - Agnieszka Chacinska
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Martin van der Laan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Raffaele Ieva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de la Recherche Scientifique, Université Paul Sabatier, 31077 Toulouse, France.
| |
Collapse
|
61
|
Richter-Dennerlein R, Dennerlein S, Rehling P. Integrating mitochondrial translation into the cellular context. Nat Rev Mol Cell Biol 2015; 16:586-92. [PMID: 26535422 DOI: 10.1038/nrm4051] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial-encoded subunits of the oxidative phosphorylation system assemble with nuclear-encoded subunits into enzymatic complexes. Recent findings showed that mitochondrial translation is linked to other mitochondrial functions, as well as to cellular processes. The supply of mitochondrial-encoded proteins is coordinated by the coupling of mitochondrial protein synthesis with assembly of respiratory chain complexes. MicroRNAs imported from the cytoplasm into mitochondria were, surprisingly, found to act as regulators of mitochondrial translation. In turn, translation in mitochondria controls cellular proliferation, and mitochondrial ribosomal subunits contribute to the cytoplasmic stress response. Thus, translation in mitochondria is apparently integrated into cellular processes.
Collapse
|
62
|
Dennerlein S, Oeljeklaus S, Jans D, Hellwig C, Bareth B, Jakobs S, Deckers M, Warscheid B, Rehling P. MITRAC7 Acts as a COX1-Specific Chaperone and Reveals a Checkpoint during Cytochrome c Oxidase Assembly. Cell Rep 2015; 12:1644-55. [PMID: 26321642 DOI: 10.1016/j.celrep.2015.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/16/2015] [Accepted: 08/03/2015] [Indexed: 11/29/2022] Open
Abstract
Cytochrome c oxidase, the terminal enzyme of the respiratory chain, is assembled from mitochondria- and nuclear-encoded subunits. The MITRAC complex represents the central assembly intermediate during this process as it receives imported subunits and regulates mitochondrial translation of COX1 mRNA. The molecular processes that promote and regulate the progression of assembly downstream of MITRAC are still unknown. Here, we identify MITRAC7 as a constituent of a late form of MITRAC and as a COX1-specific chaperone. MITRAC7 is required for cytochrome c oxidase biogenesis. Surprisingly, loss of MITRAC7 or an increase in its amount causes selective cytochrome c oxidase deficiency in human cells. We demonstrate that increased MITRAC7 levels stabilize and trap COX1 in MITRAC, blocking progression in the assembly process. In contrast, MITRAC7 deficiency leads to turnover of newly synthesized COX1. Accordingly, MITRAC7 affects the biogenesis pathway by stabilizing newly synthesized COX1 in assembly intermediates, concomitantly preventing turnover.
Collapse
Affiliation(s)
- Sven Dennerlein
- Department of Cellular Biochemistry, University of Göttingen, 37073 Göttingen, Germany
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Daniel Jans
- Department of NanoBiophotonics, Mitochondrial Structure and Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Christin Hellwig
- Department of Cellular Biochemistry, University of Göttingen, 37073 Göttingen, Germany
| | - Bettina Bareth
- Department of Cellular Biochemistry, University of Göttingen, 37073 Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Mitochondrial Structure and Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Department of Neurology, University of Göttingen, 37073 Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University of Göttingen, 37073 Göttingen, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University of Göttingen, 37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
63
|
Xu S, Andrews D, Hill BC. The affinity of yeast and bacterial SCO proteins for CU(I) and CU(II). A capture and release strategy for copper transfer. Biochem Biophys Rep 2015; 4:10-19. [PMID: 29124182 PMCID: PMC5668878 DOI: 10.1016/j.bbrep.2015.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022] Open
Abstract
SCO (Synthesis of Cytochrome c Oxidase) proteins are present in prokaryotic and eukaryotic cells, and are often required for efficient synthesis of the respiratory enzyme cytochrome c oxidase. The Bacillus subtilis version of SCO (i.e., BsSCO) has much greater affinity for Cu(II) than it does for Cu(I) (Davidson and Hill, 2009), and this has been contrasted to mitochondrial SCO proteins that are characterized as being specific for Cu(I) (Nittis, George and Winge, 2001). This differential affinity has been proposed to reflect the different physiological environments in which these two members of the SCO protein family reside. In this study the affinity of mitochondrial SCO1 from yeast is compared directly to that of BsSCO in vitro. We find that the yeast SCO1 protein has similar preference for Cu(II) over Cu(I), as does BsSCO. We propose a mechanism for SCO function which would involve high-affinity binding to capture Cu(II), and relatively weak binding of Cu(I) to facilitate copper transfer. Yeast SCO1 prefers Cu(II) over Cu(I) by many orders of magnitude. Yeast SCO1 has similar copper-species preference as a bacterial SCO protein. High affinity binding of Cu(II) by SCO may be initial step in copper transfer. Conversion of SCO-Cu(II) to SCO-Cu(I) is required for copper transfer. A second cysteine pair in yeast SCO1 may be involved in redox sensing.
Collapse
Affiliation(s)
- Shuai Xu
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L3N6 Canada
| | - Diann Andrews
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L3N6 Canada
| | - Bruce C. Hill
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L3N6 Canada
- Protein Function Discovery Research Group, Queen’s University, Kingston, ON K7L3N6 Canada
- Corresponding author at: Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L3N6 Canada.Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonON K7L3N6Canada
| |
Collapse
|
64
|
Abstract
The ultrastructure of the cardiac myocyte is remarkable for the high density of mitochondria tightly packed between sarcomeres. This structural organization is designed to provide energy in the form of ATP to fuel normal pump function of the heart. A complex system comprised of regulatory factors and energy metabolic machinery, encoded by both mitochondrial and nuclear genomes, is required for the coordinate control of cardiac mitochondrial biogenesis, maturation, and high-capacity function. This process involves the action of a transcriptional regulatory network that builds and maintains the mitochondrial genome and drives the expression of the energy transduction machinery. This finely tuned system is responsive to developmental and physiological cues, as well as changes in fuel substrate availability. Deficiency of components critical for mitochondrial energy production frequently manifests as a cardiomyopathic phenotype, underscoring the requirement to maintain high respiration rates in the heart. Although a precise causative role is not clear, there is increasing evidence that perturbations in this regulatory system occur in the hypertrophied and failing heart. This review summarizes current knowledge and highlights recent advances in our understanding of the transcriptional regulatory factors and signaling networks that serve to regulate mitochondrial biogenesis and function in the mammalian heart.
Collapse
Affiliation(s)
- Rick B Vega
- From the Diabetes and Obesity Research Center, Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL
| | - Julie L Horton
- From the Diabetes and Obesity Research Center, Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL
| | - Daniel P Kelly
- From the Diabetes and Obesity Research Center, Cardiovascular Pathobiology Program, Sanford-Burnham Medical Research Institute, Orlando, FL.
| |
Collapse
|