51
|
Phan CW, David P, Sabaratnam V. Edible and Medicinal Mushrooms: Emerging Brain Food for the Mitigation of Neurodegenerative Diseases. J Med Food 2017; 20:1-10. [DOI: 10.1089/jmf.2016.3740] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Chia-Wei Phan
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Pamela David
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
52
|
Dietary Supplementation of Hericium erinaceus Increases Mossy Fiber-CA3 Hippocampal Neurotransmission and Recognition Memory in Wild-Type Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3864340. [PMID: 28115973 PMCID: PMC5237458 DOI: 10.1155/2017/3864340] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 01/25/2023]
Abstract
Hericium erinaceus (Bull.) Pers. is a medicinal mushroom capable of inducing a large number of modulatory effects on human physiology ranging from the strengthening of the immune system to the improvement of cognitive functions. In mice, dietary supplementation with H. erinaceus prevents the impairment of spatial short-term and visual recognition memory in an Alzheimer model. Intriguingly other neurobiological effects have recently been reported like the effect on neurite outgrowth and differentiation in PC12 cells. Until now no investigations have been conducted to assess the impact of this dietary supplementation on brain function in healthy subjects. Therefore, we have faced the problem by considering the effect on cognitive skills and on hippocampal neurotransmission in wild-type mice. In wild-type mice the oral supplementation with H. erinaceus induces, in behaviour test, a significant improvement in the recognition memory and, in hippocampal slices, an increase in spontaneous and evoked excitatory synaptic current in mossy fiber-CA3 synapse. In conclusion, we have produced a series of findings in support of the concept that H. erinaceus induces a boost effect onto neuronal functions also in nonpathological conditions.
Collapse
|
53
|
Erinacine A-enriched Hericium erinaceus mycelium ameliorates Alzheimer's disease-related pathologies in APPswe/PS1dE9 transgenic mice. J Biomed Sci 2016; 23:49. [PMID: 27350344 PMCID: PMC4924315 DOI: 10.1186/s12929-016-0266-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/15/2016] [Indexed: 12/26/2022] Open
Abstract
Background The fruiting body of Hericium erinaceus has been demonstrated to possess anti-dementia activity in mouse model of Alzheimer’s disease and people with mild cognitive impairment. However, the therapeutic potential of Hericium erinaceus mycelia on Alzheimer’s disease remains unclear. In this study, the effects of erinacine A-enriched Hericium erinaceus mycelia (HE-My) on the pathological changes in APPswe/PS1dE9 transgenic mouse model of Alzheimer’s disease are studied. Results After a 30 day oral administration to 5 month-old female APPswe/PS1dE9 transgenic mice, we found that HE-My and its ethanol extracts (HE-Et) attenuated cerebral Aβ plaque burden. It’s worth noting that the attenuated portion of a plaque is the non-compact structure. The level of insulin-degrading enzyme was elevated by both HE-My and HE-Et in cerebral cortex. On the other hand, the number of plaque-activated microglia and astrocytes in cerebral cortex and hippocampus were diminished, the ratio of nerve growth factor (NGF) to NGF precursor (proNGF) was increased and hippocampal neurogenesis was promoted after these administrations. All the mentioned benefits of these administrations may therefore improve the declined activity of daily living skill in APPswe/PS1dE9 transgenic mice. Conclusions These results highlight the therapeutic potential of HE-My and HE-Et on Alzheimer’s disease. Therefore, the effective components of HE-My and HE-Et are worth to be developed to become a therapeutic drug for Alzheimer’s disease.
Collapse
|
54
|
Phan CW, David P, Naidu M, Wong KH, Sabaratnam V. Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol 2016; 35:355-68. [PMID: 24654802 DOI: 10.3109/07388551.2014.887649] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mushrooms have long been used not only as food but also for the treatment of various ailments. Although at its infancy, accumulated evidence suggested that culinary-medicinal mushrooms may play an important role in the prevention of many age-associated neurological dysfunctions, including Alzheimer's and Parkinson's diseases. Therefore, efforts have been devoted to a search for more mushroom species that may improve memory and cognition functions. Such mushrooms include Hericium erinaceus, Ganoderma lucidum, Sarcodon spp., Antrodia camphorata, Pleurotus giganteus, Lignosus rhinocerotis, Grifola frondosa, and many more. Here, we review over 20 different brain-improving culinary-medicinal mushrooms and at least 80 different bioactive secondary metabolites isolated from them. The mushrooms (either extracts from basidiocarps/mycelia or isolated compounds) reduced beta amyloid-induced neurotoxicity and had anti-acetylcholinesterase, neurite outgrowth stimulation, nerve growth factor (NGF) synthesis, neuroprotective, antioxidant, and anti-(neuro)inflammatory effects. The in vitro and in vivo studies on the molecular mechanisms responsible for the bioactive effects of mushrooms are also discussed. Mushrooms can be considered as useful therapeutic agents in the management and/or treatment of neurodegeneration diseases. However, this review focuses on in vitro evidence and clinical trials with humans are needed.
Collapse
Affiliation(s)
- Chia-Wei Phan
- a Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | | | | | | | | |
Collapse
|
55
|
Cheng JH, Tsai CL, Lien YY, Lee MS, Sheu SC. High molecular weight of polysaccharides from Hericium erinaceus against amyloid beta-induced neurotoxicity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:170. [PMID: 27266872 PMCID: PMC4895996 DOI: 10.1186/s12906-016-1154-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/28/2016] [Indexed: 01/10/2023]
Abstract
Background Hericium erinaceus (HE) is a well-known mushroom in traditional Chinese food and medicine. HE extracts from the fruiting body and mycelia not only exhibit immunomodulatory, antimutagenic and antitumor activity but also have neuroprotective properties. Here, we purified HE polysaccharides (HEPS), composed of two high molecular weight polysaccharides (1.7 × 105 Da and 1.1 × 105 Da), and evaluated their protective effects on amyloid beta (Aβ)-induced neurotoxicity in rat pheochromocytoma PC12 cells. Methods HEPS were prepared and purified using a 95 % ethanol extraction method. The components of HEPS were analyzed and the molecular weights of the polysaccharides were determined using high-pressure liquid chromatography (HPLC). The neuroprotective effects of the polysaccharides were evaluated through a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and an MTT assay and by quantifying reactive oxygen species (ROS) and mitochondrial membrane potentials (MMP) of Aβ-induced neurotoxicity in cells. Result Our results showed that 250 μg/ml HEPS was harmless and promoted cell viability with 1.2 μM Aβ treatment. We observed that the free radical scavenging rate exceeded 90 % when the concentration of HEPS was higher than 1 mg/mL in cells. The HEPS decreased the production of ROS from 80 to 58 % in a dose-dependent manner. Cell pretreatment with 250 μg/mL HEPS significantly reduced Aβ-induced high MMPs from 74 to 51 % and 94 to 62 % at 24 and 48 h, respectively. Finally, 250 μg/mL of HEPS prevented Aβ-induced cell shrinkage and nuclear degradation of PC12 cells. Conclusion Our results demonstrate that HEPS exhibit antioxidant and neuroprotective effects on Aβ-induced neurotoxicity in neurons.
Collapse
|
56
|
Chang CH, Chen Y, Yew XX, Chen HX, Kim JX, Chang CC, Peng CC, Peng RY. Improvement of erinacine A productivity in Hericium erinaceus mycelia and its neuroprotective bioactivity against the glutamate-insulted apoptosis. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
57
|
Chang HC, Yang HL, Pan JH, Korivi M, Pan JY, Hsieh MC, Chao PM, Huang PJ, Tsai CT, Hseu YC. Hericium erinaceus Inhibits TNF-α-Induced Angiogenesis and ROS Generation through Suppression of MMP-9/NF-κB Signaling and Activation of Nrf2-Mediated Antioxidant Genes in Human EA.hy926 Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8257238. [PMID: 26823953 PMCID: PMC4707368 DOI: 10.1155/2016/8257238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 10/14/2015] [Accepted: 10/28/2015] [Indexed: 11/21/2022]
Abstract
Hericium erinaceus (HE) is an edible mushroom that has been shown to exhibit anticancer and anti-inflammatory activities. We investigated the antiangiogenic and antioxidant potentials of ethanol extracts of HE in human endothelial (EA.hy926) cells upon tumor necrosis factor-α- (TNF-α-) stimulation (10 ng/mL). The underlying molecular mechanisms behind the pharmacological efficacies were elucidated. We found that noncytotoxic concentrations of HE (50-200 μg/mL) significantly inhibited TNF-α-induced migration/invasion and capillary-like tube formation of endothelial cells. HE treatment suppressed TNF-α-induced activity and/or overexpression of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1). Furthermore, HE downregulated TNF-α-induced nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) followed by suppression of I-κB (inhibitor-κB) degradation. Data from fluorescence microscopy illustrated that increased intracellular ROS production upon TNF-α-stimulation was remarkably inhibited by HE pretreatment in a dose-dependent manner. Notably, HE triggered antioxidant gene expressions of heme oxygenase-1 (HO-1), γ-glutamylcysteine synthetase (γ-GCLC), and glutathione levels, which may contribute to inhibition of ROS. Increased antioxidant status was associated with upregulated nuclear translocation and transcriptional activation of NF-E2 related factor-2 (Nrf2) in HE treated cells. Our findings conclude that antiangiogenic and anti-inflammatory activities of H. erinaceus may contribute to its anticancer property through modulation of MMP-9/NF-κB and Nrf2-antioxidant signaling pathways.
Collapse
Affiliation(s)
- Hebron C. Chang
- Department of Biotechnology and Bioinformatics, Asia University, Taichung 41354, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Jih-Hao Pan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung 41354, Taiwan
| | - Mallikarjuna Korivi
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Jian-You Pan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung 41354, Taiwan
| | - Meng-Chang Hsieh
- Department of Biotechnology and Bioinformatics, Asia University, Taichung 41354, Taiwan
| | - Pei-Min Chao
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Pei-Jane Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Ching-Tsan Tsai
- Institute of Public Health, China Medical University, Taichung 40402, Taiwan
| | - You-Cheng Hseu
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
58
|
|
59
|
Rahman MA, Abdullah N, Aminudin N. Interpretation of mushroom as a common therapeutic agent for Alzheimer’s disease and cardiovascular diseases. Crit Rev Biotechnol 2015; 36:1131-1142. [DOI: 10.3109/07388551.2015.1100585] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Mohammad Azizur Rahman
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia and
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka Bangladesh
| | - Noorlidah Abdullah
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia and
| | - Norhaniza Aminudin
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia and
| |
Collapse
|
60
|
Thongbai B, Rapior S, Hyde KD, Wittstein K, Stadler M. Hericium erinaceus, an amazing medicinal mushroom. Mycol Prog 2015. [DOI: 10.1007/s11557-015-1105-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
61
|
Friedman M. Chemistry, Nutrition, and Health-Promoting Properties of Hericium erinaceus (Lion's Mane) Mushroom Fruiting Bodies and Mycelia and Their Bioactive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7108-23. [PMID: 26244378 DOI: 10.1021/acs.jafc.5b02914] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The culinary and medicinal mushroom Hericium erinaceus is widely consumed in Asian countries, but apparently not in the United States, for its nutritional and health benefits. To stimulate broader interest in the reported beneficial properties, this overview surveys and consolidates the widely scattered literature on the chemistry (isolation and structural characterization) of polysaccharides and secondary metabolites such as erinacines, hericerins, hericenones, resorcinols, steroids, mono- and diterpenes, and volatile aroma compounds, nutritional composition, food and industrial uses, and exceptional nutritional and health-promoting aspects of H. erinaceus. The reported health-promoting properties of the mushroom fruit bodies, mycelia, and bioactive pure compounds include antibiotic, anticarcinogenic, antidiabetic, antifatigue, antihypertensive, antihyperlipodemic, antisenescence, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties and improvement of anxiety, cognitive function, and depression. The described anti-inflammatory, antioxidative, and immunostimulating properties in cells, animals, and humans seem to be responsible for the multiple health-promoting properties. A wide range of research advances and techniques are described and evaluated. The collated information and suggestion for further research might facilitate and guide further studies to optimize the use of the whole mushrooms and about 70 characterized actual and potential bioactive secondary metabolites to help prevent or treat human chronic, cognitive, and neurological diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| |
Collapse
|
62
|
Yao W, Zhang JC, Dong C, Zhuang C, Hirota S, Inanaga K, Hashimoto K. Effects of amycenone on serum levels of tumor necrosis factor-α, interleukin-10, and depression-like behavior in mice after lipopolysaccharide administration. Pharmacol Biochem Behav 2015; 136:7-12. [PMID: 26150007 DOI: 10.1016/j.pbb.2015.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 01/12/2023]
Abstract
Accumulating evidence suggests that inflammation plays a role in the pathophysiology of depression and that anti-inflammatory substances have antidepressant effects. Amycenone is obtained from extracts of the Yamabushitake (Hericium erinaceum). The purpose of this study is to examine whether amycenone shows anti-inflammatory and antidepressant effects in an inflammation-induced mouse model of depression. First, we examined the effects of amycenone on the serum levels of the pro-inflammatory cytokine, tumor necrosis factor-α (TNF-α), and the anti-inflammatory cytokine, interleukin-10 (IL-10), after intraperitoneal administration of the bacterial endotoxin lipopolysaccharide (LPS). Oral administration of amycenone (50, 100, or 200mg/kg) markedly blocked an increase in the serum TNF-α levels after a single administration of LPS (0.5mg/kg). Furthermore, amycenone (200mg/kg) markedly increased the serum IL-10 levels by a single administration of LPS (0.5mg/kg). Next, we examined the effects of amycenone on depression-like behaviors in the tail-suspension test (TST) and forced swimming test (FST). Pretreatment with amycenone (200mg/kg) significantly attenuated LPS (0.5mg/kg)-induced increase of the immobility time by the TST and FST, indicating antidepressant effects of amycenone. In addition, oral administration of paroxetine (30mg/kg) showed anti-inflammatory and antidepressant effects in the same model. These findings suggest that amycenone has antidepressant effects in LPS-induced inflammation model of depression. Therefore, amycenone could represent a potential supplement to prevent inflammation-related depression.
Collapse
Affiliation(s)
- Wei Yao
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Ji-chun Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Chao Dong
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | | | | | - Kazutoyo Inanaga
- Chikusuikai Institute for Neuroinformation, Chikusuikai Hospital, Yame, Fukuoka, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
63
|
Zabłocka A, Mitkiewicz M, Macała J, Janusz M. Neurotrophic Activity of Cultured Cell Line U87 is Up-Regulated by Proline-Rich Polypeptide Complex and Its Constituent Nonapeptide. Cell Mol Neurobiol 2015; 35:977-86. [PMID: 25841889 PMCID: PMC4572042 DOI: 10.1007/s10571-015-0192-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/31/2015] [Indexed: 01/28/2023]
Abstract
Neurotrophins such as nerve growth factor (NGF) and brain-derived neurotrophic factor, as well as cytokines, for example, interleukin-6 (IL-6) play an important role in neuroprotection and in the control of the central nervous system (CNS) function. Reduced expression of neurotrophic factors can lead to dysregulation of neuron function and neuronal death. There is also evidence for mutual interactions between neurotrophins and IL-6. Therefore, the up-regulating the level of neuroprotective substances is one of the key manners to control the nervous system development and function. It can be a promising aim in the therapy of neurodegenerative disease in which the decreased level of neurotrophins is observed. In our recent studies, the role of proline-rich polypeptide complex (PRP) and its nonapeptide fragment (NP) in the regulation of neurotrophic activity in cultured astrocytes was shown. PRP and NP stimulate human astrocytoma cell line U87 to release the significant amounts of NGF to the extracellular space both in its precursor and mature form. We also provide the evidence that in NP-treated cells, the level of βNGF mRNA was increased. NP-treated cells used in this study produced also increasing amounts of IL-6. This finding indicates that PRP and its nonapeptide fragment NP up-regulate neurotrophic activity of U87 cell line by increase of NGF synthesis and its release into the extracellular space. It was also shown that NP-dependent increased production of IL-6 can enhance the NGF activity.
Collapse
Affiliation(s)
- Agnieszka Zabłocka
- Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland.
| | - Małgorzata Mitkiewicz
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Józefa Macała
- Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland
| | - Maria Janusz
- Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wrocław, Poland
| |
Collapse
|
64
|
Medicinal properties of Hericium erinaceus and its potential to formulate novel mushroom-based pharmaceuticals. Appl Microbiol Biotechnol 2014; 98:7661-70. [PMID: 25070597 DOI: 10.1007/s00253-014-5955-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 01/15/2023]
Abstract
Hericium erinaceus is an important mushroom with edible values and medicinal properties. Both the mycelium and the fruiting bodies contain many bioactive compounds with drug efficacy. Recent evidence demonstrates that it is helpful to various diseases, such as Alzheimer's disease, immunoregulatory, and many types of cancer. Furthermore, emerging pieces of evidence have shown that different active molecules in H. erinaceus have different functions on different organs in different diseases via the different mechanisms. Drawing on current research results, this review mainly focuses on the therapeutic effects of H. erinaceus on various diseases of multiple physiological systems, including the nervous system, digestive system, circulatory system, and immune system. This paper also discusses systematically the efficient protection of H. erinaceus against the diseases from the intricate experimental proofs by using the systematic viewpoints, which provides a framework for future research directions.
Collapse
|
65
|
Kim YO, Lee SW, Kim JS. A comprehensive review of the therapeutic effects of Hericium erinaceus in neurodegenerative disease. ACTA ACUST UNITED AC 2014. [DOI: 10.14480/jm.2014.12.2.77] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
66
|
Sabaratnam V, Kah-Hui W, Naidu M, Rosie David P. Neuronal health - can culinary and medicinal mushrooms help? J Tradit Complement Med 2014; 3:62-8. [PMID: 24716157 PMCID: PMC3924982 DOI: 10.4103/2225-4110.106549] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hericium erinaceus a culinary and medicinal mushroom is a well established candidate for brain and nerve health. Ganoderma lucidum, Grifola frondosa and Sarcodon scabrosus have been reported to have neurite outgrowth and neuronal health benefits. The number of mushrooms, however, studied for neurohealth activity are few compared to the more than 2 000 species of edible and / or medicinal mushrooms identified. In the on-going search for other potent culinary and / or medicinal mushrooms, indigenous mushrooms used in traditional medicines such as Lignosus rhinocerotis and Ganoderma neo-japonicum are also being investigated. Further, the edible mushroom, Pleurotus giganteus can be a potential candidate, too. Can these edible and medicinal mushrooms be tapped to tackle the health concerns of the aging population which is projected to be more than 80-90 million of people age 65 and above in 2050 who may be affected by age-related neurodegenerative disorders. Scientific validation is needed if these mushrooms are to be considered and this can be achieved by understanding the molecular and biochemical mechanisms involved in the stimulation of neurite outgrowth. Though it is difficult to extrapolate the in vitro studies to what may happen in the human brain, studies have shown that there can be improvement in cognitive abilities of the aged if the mushroom is incorporated in their daily diets.
Collapse
Affiliation(s)
- Vikineswary Sabaratnam
- Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia. ; Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wong Kah-Hui
- Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia. ; Department of Anatomy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Murali Naidu
- Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia. ; Department of Anatomy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pamela Rosie David
- Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia. ; Department of Anatomy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
67
|
Rahman MA, Abdullah N, Aminudin N. Inhibitory effect on in vitro LDL oxidation and HMG Co-A reductase activity of the liquid-liquid partitioned fractions of Hericium erinaceus (Bull.) Persoon (lion's mane mushroom). BIOMED RESEARCH INTERNATIONAL 2014; 2014:828149. [PMID: 24959591 PMCID: PMC4052699 DOI: 10.1155/2014/828149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 11/25/2022]
Abstract
Oxidation of low-density lipoprotein (LDL) has been strongly suggested as the key factor in the pathogenesis of atherosclerosis. Mushrooms have been implicated in having preventive effects against chronic diseases due especially to their antioxidant properties. In this study, in vitro inhibitory effect of Hericium erinaceus on LDL oxidation and the activity of the cholesterol biosynthetic key enzyme, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG Co-A) reductase, was evaluated using five liquid-liquid solvent fractions consisting of methanol : dichloromethane (M : DCM), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA), and aqueous residue (AQ). The hexane fraction showed the highest inhibition of oxidation of human LDL as reflected by the increased lag time (100 mins) for the formation of conjugated diene (CD) at 1 µg/mL and decreased production (68.28%, IC50 0.73 mg/mL) of thiobarbituric acid reactive substances (TBARS) at 1 mg/mL. It also mostly inhibited (59.91%) the activity of the HMG Co-A reductase at 10 mg/mL. The GC-MS profiling of the hexane fraction identified the presence of myconutrients: inter alia, ergosterol and linoleic acid. Thus, hexane fraction of Hericium erinaceus was found to be the most potent in vitro inhibitor of both LDL oxidation and HMG Co-A reductase activity having therapeutic potential for the prevention of oxidative stress-mediated vascular diseases.
Collapse
Affiliation(s)
- Mohammad Azizur Rahman
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1340, Bangladesh
| | - Noorlidah Abdullah
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Norhaniza Aminudin
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
68
|
Li IC, Chen YL, Lee LY, Chen WP, Tsai YT, Chen CC, Chen CS. Evaluation of the toxicological safety of erinacine A-enriched Hericium erinaceus in a 28-day oral feeding study in Sprague-Dawley rats. Food Chem Toxicol 2014; 70:61-7. [PMID: 24810469 DOI: 10.1016/j.fct.2014.04.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/11/2014] [Accepted: 04/27/2014] [Indexed: 12/29/2022]
Abstract
Natural products have attained great importance as they are believed to be the new alternative medicines for conventional therapy. As numerous studies have proved the tremendous medicinal values of Hericium erinaceus, it is necessary to take into account its safety as well as its risk for the recipient. However, mushroom mycelium has an identity distinct from mushrooms, as two specific classes of compounds, hericenones and erinacines, can only be extracted from both the fruit body and the cultured mycelium, respectively. Therefore, this is the first report on the evaluation of the toxicity of H.erinaceus mycelium, enriched with 5mg/g erinacine A, by a 28-day repeated oral administration study in Sprague-Dawley rats. Three doses of 1 (Low), 2 (Mid) and 3 (High) g/kg body weight/day were selected for the study while distilled water served as control. All animals survived to the end of the study. No abnormal changes were observed in clinical signs. No adverse or test article-related differences were found in urinalysis, haematology and serum biochemistry parameters, between the treatment and control groups. No gross pathological findings and histopathological differences were seen. Therefore, the no-observed-adverse-effect level of erinacine A-enriched H.erinaceus is greater than 3g/kgbody weight/day.
Collapse
Affiliation(s)
- I-Chen Li
- Grape King Biotechnology Inc., Zhong-Li 320, Taiwan.
| | - Yen-Lien Chen
- Grape King Biotechnology Inc., Zhong-Li 320, Taiwan.
| | - Li-Ya Lee
- Grape King Biotechnology Inc., Zhong-Li 320, Taiwan.
| | - Wan-Ping Chen
- Grape King Biotechnology Inc., Zhong-Li 320, Taiwan.
| | - Yueh-Ting Tsai
- Testing Center, Super Laboratory Inc., Taipei 24890, Taiwan.
| | - Chin-Chu Chen
- Grape King Biotechnology Inc., Zhong-Li 320, Taiwan.
| | - Chin-Shuh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
69
|
Li G, Yu K, Li F, Xu K, Li J, He S, Cao S, Tan G. Anticancer potential of Hericium erinaceus extracts against human gastrointestinal cancers. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:521-530. [PMID: 24631140 DOI: 10.1016/j.jep.2014.03.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/24/2014] [Accepted: 03/01/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hericium is a genus of mushrooms (fungus) in the Hericiaceae family. Hericium erinaceus (HE) has been used for the treatment of digestive diseases for over 2000 years in China. HE possesses many beneficial functions such as anticancer, antiulcer, antiinflammation and antimicrobial effects, immunomodulation and other activities. The aim of the studies was to evaluate the anticancer efficacy of two extracts (HTJ5 and HTJ5A) from the culture broth of HE against three gastrointestinal cancers such as liver, colorectal and gastric cancers in both of in vitro of cancer cell lines and in vivo of tumor xenografts and discover the active compounds. MATERIALS AND METHODS Two HE extracts (HTJ5 and HTJ5A) were used for the studies. For the study of chemical constituents, the HTJ5 and HTJ5A were separated using a combination of macroporous resin with silica gel, HW-40 and LH-20 chromatography then purified by semipreparative high-performance liquid chromatography (HPLC) and determined by nuclear magnetic resonance (NMR) spectra. For the in vitro cytotoxicity studies, HepG2 and Huh-7 liver, HT-29 colon, and NCI-87 gastric cancer cell lines were used and MTT assay was performed to determine the in vitro cytotoxicity. For in vivo antitumor efficacy and toxicity studies, tumor xenograft models of SCID mice bearing liver cancer HepG2 and Huh-7, colon cancer HT-29 and gastric cancer NCI-87 subcutaneously were used and the mice were treated with the vehicle control, HTJ5 and HTJ5A orally (500 and 1000 mg/kg/day) and compared to 5-fluorouraci (5-FU) at the maximum tolerated dose (MTD, 25-30 mg/kg/day) intraperitoneally daily for 5 days when the tumors reached about 180-200 mg (mm(3)). Tumor volumes and body weight were measured daily during the first 10 days and 2-3 times a week thereafter to assess the tumor growth inhibition, tumor doubling time, partial and complete tumor response and toxicity. RESULTS Twenty-two compounds were obtained from the fractions of HTJ5/HTJ5A including seven cycli dipeptides, five indole, pyrimidines, amino acids and derivative, three flavones, one anthraquinone, and six small aromatic compounds. HTJ5 and HTJ5A exhibited concentration-dependent cytotoxicity in vitro against liver cancer HepG2 and Huh-7, colon cancer HT-29, and gastric cancer NCI-87 cells with the IC50 in 2.50±0.25 and 2.00±0.25, 0.80±0.08 and 1.50±0.28, 1.25±0.06 and 1.25±0.05, and 5.00±0.22 and 4.50±0.14 mg/ml; respectively. For in vivo tumor xenograft studies, HTJ5 and HTJ5A showed significantly antitumor efficacy against all four xenograft models of HepG2, Huh-7, HT-29 and NCI-87 without toxicity to the host. Furthermore, HTJ5 and HTJ5A are more effective than that of 5-FU against the four tumors with less toxicity. CONCLUSION HE extracts (HTJ5 and HTJ5A) are active against liver cancer HepG2 and Huh-7, colon cancer HT-29 and gastric cancer NCI-87 cells in vitro and tumor xenografts bearing in SCID mice in vivo. They are more effective and less toxic compared to 5-FU in all four in vivo tumor models. The compounds have the potential for development into anticancer agents for the treatment of gastrointestinal cancer used alone and/or in combination with clinical used chemotherapeutic drugs. However, further studies are required to find out the active chemical constituents and understand the mechanism of action associated with the super in vivo anticancer efficacy. In addition, future studies are needed to confirm our preliminary results of in vivo synergistic antitumor efficacy in animal models of tumor xenografts with the combination of HE extracts and clinical used anticancer drugs such as 5-FU, cisplatin and doxurubicin for the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Guang Li
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Kai Yu
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Fushuang Li
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Kangping Xu
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jing Li
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Shujin He
- Hunan Xinhui Pharmaceutical Co., Ltd., Changsha, Hunan 410200, China
| | - Shousong Cao
- Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Guishan Tan
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
70
|
Phan CW, Lee GS, Hong SL, Wong YT, Brkljača R, Urban S, Abd Malek SN, Sabaratnam V. Hericium erinaceus (Bull.: Fr) Pers. cultivated under tropical conditions: isolation of hericenones and demonstration of NGF-mediated neurite outgrowth in PC12 cells via MEK/ERK and PI3K-Akt signaling pathways. Food Funct 2014; 5:3160-9. [DOI: 10.1039/c4fo00452c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hericium erinaceus is an edible and medicinal mushroom used traditionally to improve memory.
Collapse
Affiliation(s)
- Chia-Wei Phan
- Mushroom Research Centre
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences
- Faculty of Science
| | - Guan-Serm Lee
- Mushroom Research Centre
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences
- Faculty of Science
| | - Sok-Lai Hong
- Mushroom Research Centre
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences
- Faculty of Science
| | - Yuin-Teng Wong
- Mushroom Research Centre
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences
- Faculty of Science
| | - Robert Brkljača
- School of Applied Sciences (Discipline of Chemistry)
- Health Innovations Research Institute (HIRi)
- RMIT University
- Melbourne, Australia
| | - Sylvia Urban
- School of Applied Sciences (Discipline of Chemistry)
- Health Innovations Research Institute (HIRi)
- RMIT University
- Melbourne, Australia
| | - Sri Nurestri Abd Malek
- Mushroom Research Centre
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences
- Faculty of Science
| | - Vikineswary Sabaratnam
- Mushroom Research Centre
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences
- Faculty of Science
| |
Collapse
|
71
|
Wang M, Gao Y, Xu D, Konishi T, Gao Q. Hericium erinaceus (Yamabushitake): a unique resource for developing functional foods and medicines. Food Funct 2014; 5:3055-64. [DOI: 10.1039/c4fo00511b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This article provides valuable scientific information for Hericium erinaceus and shows its potential for the development of new functional foods and drugs.
Collapse
Affiliation(s)
- Mingxing Wang
- Affiliated hospital
- Changchun University of Chinese Medicine
- Changchun, China
- International Collaborative Research Center
- Changchun University of Chinese Medicine
| | - Yang Gao
- Research and Development Center
- Changchun University of Chinese Medicine
- Changchun, China
| | - Duoduo Xu
- Research and Development Center
- Changchun University of Chinese Medicine
- Changchun, China
| | - Tetsuya Konishi
- International Collaborative Research Center
- Changchun University of Chinese Medicine
- Changchun, China
- Niigata University of Pharmacy and Applied Life Sciences (NUPALS)
- Niigata, Japan
| | - Qipin Gao
- International Collaborative Research Center
- Changchun University of Chinese Medicine
- Changchun, China
- Research and Development Center
- Changchun University of Chinese Medicine
| |
Collapse
|
72
|
|
73
|
Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. FUNGAL DIVERS 2013. [DOI: 10.1007/s13225-013-0265-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
74
|
Ling-Sing Seow S, Naidu M, David P, Wong KH, Sabaratnam V. Potentiation of neuritogenic activity of medicinal mushrooms in rat pheochromocytoma cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:157. [PMID: 23822837 PMCID: PMC3720279 DOI: 10.1186/1472-6882-13-157] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/28/2013] [Indexed: 01/27/2023]
Abstract
BACKGROUND Senescence of the neurons is believed to be a focal factor in the development of age-related neurodegenerative diseases such as Alzheimer's disease. Diminutions in the levels of nerve growth factor (NGF) lead to major declines in brain cell performance. Functional foods, believed to mitigate this deficiency, will be reaching a plateau in the near future market of alternative and preventive medicine. In the search for neuroactive compounds that mimic the NGF activity for the prevention of neurodegenerative diseases, the potential medicinal values of culinary and medicinal mushrooms attract intense interest. METHODS Cytotoxic effects of aqueous extracts of three medicinal mushrooms basidiocarps, Ganoderma lucidum, Ganoderma neo-japonicum and Grifola frondosa towards rat pheochromocytoma (PC-12) cells were determined by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The potentiation of neuritogenic activity was assessed by neurite outgrowth stimulation assay. Involvement of cellular signaling pathways, mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK1/2) and phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) in mushrooms-stimulated neuritogenesis were examined by using specific pharmacological inhibitors. Alteration of neuronal morphology by inhibitors was visualized by immunofluorescence staining of the neurofilament. RESULTS All the aqueous extracts tested caused a marked stimulation of neuritogenesis with no detectable cytotoxic effects towards PC-12 cells. The aqueous extract of G. neo-japonicum triggered maximal stimulation of neurite outgrowth at a lower concentration (50 μg/ml) with 14.22 ± 0.43% of neurite-bearing cells, compared to G. lucidum and G. frondosa that act at a higher concentration (75 μg/ml), with 12.61 ± 0.11% and 12.07 ± 0.46% of neurite-bearing cells, respectively. The activation of MEK/ERK1/2 and PI3K/Akt signaling pathways were necessary for the NGF and aqueous extracts to promote neuritogenesis. CONCLUSIONS Ganoderma lucidum, G. neo-japonicum and G. frondosa may contain NGF-like bioactive compound(s) for maintaining and regenerating the neuronal communications network. The present study reports the first evidence of the neuritogenic effects of aqueous extracts of basidiocarps of G. neo-japonicum in-vitro and showed the involvement of MEK/ERK1/2 and P13K/Akt signaling pathways for neuritogenesis in PC-12 cells.
Collapse
Affiliation(s)
- Syntyche Ling-Sing Seow
- Mushroom Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Murali Naidu
- Mushroom Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Anatomy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pamela David
- Mushroom Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Anatomy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kah-Hui Wong
- Mushroom Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Anatomy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
75
|
Species complexes in Hericium (Russulales, Agaricomycota) and a new species - Hericium rajchenbergii - from southern South America. Mycol Prog 2012. [DOI: 10.1007/s11557-012-0848-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
76
|
Phan CW, Wong WL, David P, Naidu M, Sabaratnam V. Pleurotus giganteus (Berk.) Karunarathna & K.D. Hyde: Nutritional value and in vitro neurite outgrowth activity in rat pheochromocytoma cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:102. [PMID: 22812497 PMCID: PMC3416657 DOI: 10.1186/1472-6882-12-102] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 07/19/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Drugs dedicated to alleviate neurodegenerative diseases like Parkinson's and Alzheimer's have always been associated with debilitating side effects. Medicinal mushrooms which harness neuropharmacological compounds offer a potential possibility for protection against such diseases. Pleurotus giganteus (formerly known as Panus giganteus) has been consumed by the indigenous people in Peninsular Malaysia for many years. Domestication of this wild mushroom is gaining popularity but to our knowledge, medicinal properties reported for this culinary mushroom are minimal. METHODS The fruiting bodies P. giganteus were analysed for its nutritional values. Cytotoxicity of the mushroom's aqueous and ethanolic extracts towards PC12, a rat pheochromocytoma cell line was assessed by using 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Neurite outgrowth stimulation assay was carried out with nerve growth factor (NGF) as control. To elucidate signaling mechanisms involved by mushroom extract-induced neurite outgrowth, treatment of specific inhibitor for MEK/ERK and PI3K signalling pathway was carried out. RESULTS The fruiting bodies of P. giganteus were found to have high carbohydrate, dietary fibre, potassium, phenolic compounds and triterpenoids. Both aqueous and ethanolic extracts induced neurite outgrowth of PC12 cells in a dose- and time-dependant manner with no detectable cytotoxic effect. At day 3, 25 μg/ml of aqueous extract and 15 μg/ml of ethanolic extract showed the highest percentage of neurite-bearing cells, i.e. 31.7 ± 1.1% and 33.3 ± 0.9%; respectively. Inhibition treatment results suggested that MEK/ERK and PI3K/Akt are responsible for neurite outgrowth of PC12 cells stimulated by P. giganteus extract. The high potassium content (1345.7 mg/100 g) may be responsible for promoting neurite extension, too. CONCLUSIONS P. giganteus contains bioactive compounds that mimic NGF and are responsible for neurite stimulation. Hence, this mushroom may be developed as a nutraceutical for the mitigation of neurodegenerative diseases.
Collapse
|
77
|
Lignosus rhinocerus (Cooke) Ryvarden: A Medicinal Mushroom That Stimulates Neurite Outgrowth in PC-12 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:320308. [PMID: 22203867 PMCID: PMC3235797 DOI: 10.1155/2012/320308] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 11/17/2022]
Abstract
A national treasure mushroom, Lignosus rhinocerus, has been used to treat variety of ailments by local and indigenous communities in Malaysia. The aim of this study was to investigate the potential of the most valuable part of L. rhinocerus, the sclerotium, on neurite outgrowth activity by using PC-12Adh cell line. Differentiated cells with one thin extension at least double the length of the cell diameter were scored positive. Our results showed that aqueous sclerotium L. rhinocerus extract induced neurite outgrowths of 24.4% and 42.1% at 20 μg/mL (w/v) of aqueous extract alone and a combination of 20 μg/mL (w/v) aqueous extract and 30 ng/mL (w/v) of NGF, respectively. Combination of NGF and sclerotium extract had additive effects and enhanced neurite outgrowth. Neuronal differentiation was demonstrated by indirect immunofluorescence of neurofilament protein. Aqueous sclerotium extract contained neuroactive compounds that stimulated neurite outgrowth in vitro. To our knowledge this is the first report on neurite-stimulating activities of L. rhinocerus.
Collapse
|
78
|
Kim YO, Lee SW, Oh CH, Rhee YH. Hericium erinaceus suppresses LPS-induced pro-inflammation gene activation in RAW264.7 macrophages. Immunopharmacol Immunotoxicol 2011; 34:504-12. [PMID: 22126451 DOI: 10.3109/08923973.2011.633527] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The aim of this study was to investigate the anti-inflammatory properties of each fraction of Hericium erinaceus (HE). The ethanol extract from HE was partitioned with different solvents in the order of increasing polarity. The treatment with 10-100 μg/mL of each fraction did not reduce RAW 264.7 cell viability except ethyl acetate fraction. Among the various extracts, the chloroform fraction showed the most potent activity against nitric oxide (NO), prostaglandin E(2) (PGE(2)) and reactive oxygen species (ROS). The western blotting and reverse transcriptase polymerase chain reaction (RT-PCR) analyses revealed that chloroform fraction from HE (CHE) significantly reduced the protein level of iNOS and cyclooxygenase-2 (COX-2) or mRNA levels of iNOS in lipopolysaccharide-induced macrophages. Furthermore, CHE inhibited the translocation of nuclear factor (NF)-κB p65 subunit, phsophorylation of I-κB, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) in a dose-dependent manner. Furthermore, the activation of both activator protein-1 (AP-1) and NF κB in the nucleus were abrogated by CHE with luciferase assay. In conclusion, these results indicate that CHE may provide an anti-inflammatory effect by attenuating the generation of excessive NO, PGE(2), and ROS and by suppressing the expression of pro-inflammatory genes through the inhibition of NF-κB and JNK activity.
Collapse
Affiliation(s)
- Young-Ock Kim
- Medicinal Crops Division, Ginseng and Medicinal Plants Research Institute Rural Development Administration, Eumseong, Republic of Korea
| | | | | | | |
Collapse
|
79
|
Mori K, Obara Y, Moriya T, Inatomi S, Nakahata N. Effects of Hericium erinaceus on amyloid β(25-35) peptide-induced learning and memory deficits in mice. ACTA ACUST UNITED AC 2011; 32:67-72. [PMID: 21383512 DOI: 10.2220/biomedres.32.67] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mushroom Hericium erinaceus has been used as a food and herbal medicine since ancient times in East Asia. It has been reported that H. erinaceus promotes nerve growth factor secretion in vitro and in vivo. Nerve growth factor is involved in maintaining and organizing cholinergic neurons in the central nervous system. These findings suggest that H. erinaceus may be appropriate for the prevention or treatment of dementia. In the present study, we examined the effects of H. erinaceus on amyloid β(25-35) peptide-induced learning and memory deficits in mice. Mice were administered 10 µg of amyloid β(25-35) peptide intracerebroventricularly on days 7 and 14, and fed a diet containing H. erinaceus over a 23-d experimental period. Memory and learning function was examined using behavioral pharmacological methods including the Y-maze test and the novel-object recognition test. The results revealed that H. erinaceus prevented impairments of spatial short-term and visual recognition memory induced by amyloid β(25-35) peptide. This finding indicates that H. erinaceus may be useful in the prevention of cognitive dysfunction.
Collapse
Affiliation(s)
- Koichiro Mori
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan.
| | | | | | | | | |
Collapse
|
80
|
Le Hericium erinaceus: des propriétés essentiellement dépendantes du neuronal growth factor. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s10298-010-0601-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
81
|
Ishiuchi K, Kubota T, Ishiyama H, Hayashi S, Shibata T, Mori K, Obara Y, Nakahata N, Kobayashi J. Lyconadins D and E, and complanadine E, new Lycopodium alkaloids from Lycopodium complanatum. Bioorg Med Chem 2011; 19:749-53. [DOI: 10.1016/j.bmc.2010.12.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 11/30/2022]
|
82
|
Mori K, Kikuchi H, Obara Y, Iwashita M, Azumi Y, Kinugasa S, Inatomi S, Oshima Y, Nakahata N. Inhibitory effect of hericenone B from Hericium erinaceus on collagen-induced platelet aggregation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:1082-1085. [PMID: 20637576 DOI: 10.1016/j.phymed.2010.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/26/2010] [Accepted: 05/21/2010] [Indexed: 05/29/2023]
Abstract
Platelet aggregation in the blood vessel causes thrombosis. Therefore, inhibitors of platelet aggregation promise to be preventive or therapeutic agents of various vascular diseases, including myocardial infarction and stroke. In the present study, we found that hericenone B had a strong anti-platelet activity and it might be a novel compound for antithrombotic therapy possessing a novel mechanism. Prior to this study, we examined anti-platelet aggregation activity of ethanol extracts of several species of mushrooms, and found that extract of Hericium erinaceus potently inhibited platelet aggregation induced by collagen. Therefore, we first fractionated the ethanol extract of H. erinaceus to identify the active substances. The anti-platelet activity of each fraction was determined using washed rabbit platelets. As a result, an active component was isolated and identified as hericenone B. Hericenone B selectively inhibited collagen-induced platelet aggregation, but it did not suppress the aggregation induced by U46619 (TXA₂ analogue), ADP, thrombin, or adrenaline. Furthermore, hericenone B did not inhibit arachidonic acid- or convulxin (GPVI agonist)-induced platelet aggregation. Therefore, hericenone B was considered to block collagen signaling from integrin α2/β1 to arachidonic acid release. Moreover, we found that collagen-induced aggregation was inhibited by hericenone B in human platelets, similar to in rabbit platelets.
Collapse
Affiliation(s)
- Koichiro Mori
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Kim H, Jeong JH, Hwang JH, Jeong HS, Lee HY, Yu KW. Enhancement of immunostimulation and anti-metastasis in submerged culture of bearded tooth mushroom (Hericium erinaceum) mycelia by addition of ginseng extract. Food Sci Biotechnol 2010. [DOI: 10.1007/s10068-010-0180-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
84
|
Dixon E, Schweibenz T, Hight A, Kang B, Dailey A, Kim S, Chen MY, Kim Y, Neale S, Groth A, Ike T, Khan S, Schweibenz B, Lieu D, Stone D, Orellana T, Couch RD. Bacteria-induced static batch fungal fermentation of the diterpenoid cyathin A(3), a small-molecule inducer of nerve growth factor. J Ind Microbiol Biotechnol 2010; 38:607-15. [PMID: 20714781 DOI: 10.1007/s10295-010-0805-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 07/31/2010] [Indexed: 01/19/2023]
Abstract
Cyathin A(3), produced by the fungus Cyathus helenae, is a member of the cyathane family of diterpene natural products. While many of the cyathanes display antibacterial/antimicrobial activity or have cytotoxic activity against human cancer cell lines, their most exciting therapeutic potential is derived from their ability to induce nerve growth factor (NGF) release from glial cells, making the cyathanes attractive lead molecules for the development of neuroprotective therapeutics to prevent/treat Alzheimer's disease. To investigate if cyathin A(3) has NGF-inducing activity, we set out to obtain it using published C. helenae bench-scale fungal fermentations. However, to overcome nonproducing fermentations, we developed an alternative, bacteria-induced static batch fermentation approach to the production of cyathin A(3), as described in this report. HPLC, UV absorption spectra, and mass spectrometry identify cyathin A(3) in fungal fermentations induced by the timely addition of Escherichia coli K12 or Bacillus megabacterium. Pre-filtration of the bacterial culture abolishes cyathin A(3) induction, suggesting that bacteria-associated media changes or physical interaction between the fungus and bacteria underlie the induction mechanism. Through alteration of incubation conditions, including agitation, the timing of induction, and media composition, we optimized the fermentation to yield nearly 1 mg cyathin A(3)/ml media, a sixfold increase over previously described yields. Additionally, by comparison of fermentation profiles, we reveal that cyathin A(3) biosynthesis is regulated by carbon catabolite repression. We have used an enzyme-linked immunosorbent assay to illustrate that cyathin A(3) induces NGF release from cultured glial cells, and therefore cyathin A(3) warrants further examination in the development of neuroprotective therapeutics.
Collapse
Affiliation(s)
- Emma Dixon
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Ma BJ, Shen JW, Yu HY, Ruan Y, Wu TT, Zhao X. Hericenones and erinacines: stimulators of nerve growth factor (NGF) biosynthesis inHericium erinaceus. Mycology 2010. [DOI: 10.1080/21501201003735556] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
86
|
Hazekawa M, Kataoka A, Hayakawa K, Uchimasu T, Furuta R, Irie K, Akitake Y, Yoshida M, Fujioka T, Egashira N, Oishi R, Mishima K, Mishima K, Uchida T, Iwasaki K, Fujiwara M. Neuroprotective Effect of Repeated Treatment with Hericium erinaceum in Mice Subjected to Middle Cerebral Artery Occlusion. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.296] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mai Hazekawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women's University
| | - Aiko Kataoka
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Kazuhide Hayakawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Takeshi Uchimasu
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Riyo Furuta
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Keiichi Irie
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
- Advanced Materials Institute, Fukuoka University
| | - Yoshiharu Akitake
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Miyako Yoshida
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women's University
- Department of Instrumental Analysis, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Toshihiro Fujioka
- Department of Instrumental Analysis, Faculty of Pharmaceutical Sciences, Fukuoka University
| | | | - Ryozo Oishi
- Department of Pharmacy, Kyushu University Hospital
| | - Kenji Mishima
- Department of Chemical Engineering, Fukuoka University
| | - Kenichi Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
- Advanced Materials Institute, Fukuoka University
| | - Takahiro Uchida
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women's University
| | - Katunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
- Advanced Materials Institute, Fukuoka University
| | - Michihiro Fujiwara
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| |
Collapse
|
87
|
Yoshida H, Metoki N, Ishikawa A, Imaizumi T, Matsumiya T, Tanji K, Ota K, Ohyama C, Satoh K. Edaravone improves the expression of nerve growth factor in human astrocytes subjected to hypoxia/reoxygenation. Neurosci Res 2009; 66:284-9. [PMID: 19954754 DOI: 10.1016/j.neures.2009.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/03/2009] [Accepted: 11/24/2009] [Indexed: 12/14/2022]
Abstract
Edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, is known to ameliorate postischemic neuronal dysfunction. Nerve growth factor (NGF) is essential for neuronal growth and survival. We have addressed the effect of edaravone on the NGF expression in astrocytes exposed to hypoxia/reoxygenation. Normal human astrocytes in culture were incubated under hypoxia for 3h and then treated with edaravone under normal culture condition for up to 72h. The levels of NGF mRNA were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) or real-time quantitative PCR and NGF protein levels were measured by enzyme-linked immunosorbent assay (ELISA). Edaravone enhanced, in time- and concentration-dependent manners, the expressions of NGF mRNA and protein in astrocytes under reoxygenation condition. After the treatment for 72h, 1mmol/L edaravone enhanced the levels of NGF protein in astrocyte-conditioned media by 1.7-fold of the control. An inhibitor of c-Jun N-terminal kinase (JNK) suppressed the effect of edaravone on the NGF expression, and cellular levels of phospho-JNK were increased in response to edaravone. We conclude that edaravone enhances, via the JNK pathway, NGF expression in astrocytes. This agent may exert a neurotrophic effect in the therapy of brain injury in ischemia/reperfusion.
Collapse
Affiliation(s)
- Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Zaifu-cho, Hirosaki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|