51
|
Abstract
The cap-binding translation initiation factor eIF4E (eukaryotic initiation factor 4E) is central to protein synthesis in eukaryotes. As an integral component of eIF4F, a complex also containing the large bridging factor eIF4G and eIF4A RNA helicase, eIF4E enables the recruitment of the small ribosomal subunit to the 5' end of mRNAs. The interaction between eIF4E and eIF4G via a YXXXXLϕ motif is regulated by small eIF4E-binding proteins, 4E-BPs, which use the same sequence to competitively bind eIF4E thereby inhibiting cap-dependent translation. Additional eIF4E-binding proteins have been identified in the last 10-15 years, characterized by the YXXXXLϕ motif, and by interactions (many of which remain to be detailed) with RNA-binding proteins, or other factors in complexes that recognize the specific mRNAs. In the present article, we focus on the metazoan 4E-T (4E-transporter)/Cup family of eIF4E-binding proteins, and also discuss very recent examples in yeast, fruitflies and humans, some of which predictably inhibit translation, while others may result in mRNA decay or even enhance translation; altogether considerably expanding our understanding of the roles of eIF4E-binding proteins in gene expression regulation.
Collapse
|
52
|
Ozgur S, Buchwald G, Falk S, Chakrabarti S, Prabu JR, Conti E. The conformational plasticity of eukaryotic RNA-dependent ATPases. FEBS J 2015; 282:850-63. [PMID: 25645110 DOI: 10.1111/febs.13198] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
Abstract
RNA helicases are present in all domains of life and participate in almost all aspects of RNA metabolism, from transcription and processing to translation and decay. The diversity of pathways and substrates that they act on is reflected in the diversity of their individual functions, structures, and mechanisms. However, RNA helicases also share hallmark properties. At the functional level, they promote rearrangements of RNAs and RNP particles by coupling nucleic acid binding and release with ATP hydrolysis. At the molecular level, they contain two domains homologous to the bacterial RecA recombination protein. This conserved catalytic core is flanked by additional domains, which typically regulate the ATPase activity in cis. Binding to effector proteins targets or regulates the ATPase activity in trans. Structural and biochemical studies have converged on the plasticity of RNA helicases as a fundamental property that is used to control their timely activation in the cell. In this review, we focus on the conformational regulation of conserved eukaryotic RNA helicases.
Collapse
Affiliation(s)
- Sevim Ozgur
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
53
|
Rouya C, Siddiqui N, Morita M, Duchaine TF, Fabian MR, Sonenberg N. Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1. RNA (NEW YORK, N.Y.) 2014; 20:1398-409. [PMID: 25035296 PMCID: PMC4138323 DOI: 10.1261/rna.045302.114] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/20/2014] [Indexed: 05/25/2023]
Abstract
MicroRNAs (miRNAs) play critical roles in a variety of biological processes through widespread effects on protein synthesis. Upon association with the miRNA-induced silencing complex (miRISC), miRNAs repress target mRNA translation and accelerate mRNA decay. Degradation of the mRNA is initiated by shortening of the poly(A) tail by the CCR4-NOT deadenylase complex followed by the removal of the 5' cap structure and exonucleolytic decay of the mRNA. Here, we report a direct interaction between the large scaffolding subunit of CCR4-NOT, CNOT1, with the translational repressor and decapping activator protein, DDX6. DDX6 binds to a conserved CNOT1 subdomain in a manner resembling the interaction of the translation initiation factor eIF4A with eIF4G. Importantly, mutations that disrupt the DDX6-CNOT1 interaction impair miRISC-mediated gene silencing in human cells. Thus, CNOT1 facilitates recruitment of DDX6 to miRNA-targeted mRNAs, placing DDX6 as a downstream effector in the miRNA silencing pathway.
Collapse
Affiliation(s)
- Christopher Rouya
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Nadeem Siddiqui
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Masahiro Morita
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Thomas F Duchaine
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| |
Collapse
|
54
|
Human DExD/H RNA helicases: emerging roles in stress survival regulation. Clin Chim Acta 2014; 436:45-58. [PMID: 24835919 DOI: 10.1016/j.cca.2014.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022]
Abstract
Environmental stresses threatening cell homeostasis trigger various cellular responses ranging from the activation of survival pathways to eliciting programmed cell death. Cellular stress response highly depends on the nature and level of the insult as well as the cell type. Notably, the interplay among all these responses will ultimately determine the fate of the stressed cell. Human DExD/H RNA helicases are ubiquitous molecular motors rearranging RNA secondary structure in an ATP-dependent fashion. These highly conserved enzymes participate in nearly all aspects of cellular process involving RNA metabolism. Although numerous functions of DExD/H RNA helicases are well documented, their importance in stress response is only just becoming evident. This review outlines our current knowledge on major mechanistic themes of human DExD/H RNA helicases in response to stressful stimuli, especially on emerging molecular models for the functional roles of these enzymes in the stress survival regulation.
Collapse
|
55
|
Ostareck DH, Naarmann-de Vries IS, Ostareck-Lederer A. DDX6 and its orthologs as modulators of cellular and viral RNA expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:659-78. [PMID: 24788243 DOI: 10.1002/wrna.1237] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 12/21/2022]
Abstract
DDX6 (Rck/p54), a member of the DEAD-box family of helicases, is highly conserved from unicellular eukaryotes to vertebrates. Functions of DDX6 and its orthologs in dynamic ribonucleoproteins contribute to global and transcript-specific messenger RNA (mRNA) storage, translational repression, and decay during development and differentiation in the germline and somatic cells. Its role in pathways that promote mRNA-specific alternative translation initiation has been shown to be linked to cellular homeostasis, deregulated tissue development, and the control of gene expression in RNA viruses. Recently, DDX6 was found to participate in mRNA regulation mediated by miRNA-mediated silencing. DDX6 and its orthologs have versatile functions in mRNA metabolism, which characterize them as important post-transcriptional regulators of gene expression.
Collapse
Affiliation(s)
- Dirk H Ostareck
- Experimental Research Unit, Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
56
|
Mathys H, Basquin J, Ozgur S, Czarnocki-Cieciura M, Bonneau F, Aartse A, Dziembowski A, Nowotny M, Conti E, Filipowicz W. Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mol Cell 2014; 54:751-65. [PMID: 24768538 DOI: 10.1016/j.molcel.2014.03.036] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/04/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) control gene expression by regulating mRNA translation and stability. The CCR4-NOT complex is a key effector of miRNA function acting downstream of GW182/TNRC6 proteins. We show that miRNA-mediated repression requires the central region of CNOT1, the scaffold protein of CCR4-NOT. A CNOT1 domain interacts with CNOT9, which in turn interacts with the silencing domain of TNRC6 in a tryptophan motif-dependent manner. These interactions are direct, as shown by the structure of a CNOT9-CNOT1 complex with bound tryptophan. Another domain of CNOT1 with an MIF4G fold recruits the DEAD-box ATPase DDX6, a known translational inhibitor. Structural and biochemical approaches revealed that CNOT1 modulates the conformation of DDX6 and stimulates ATPase activity. Structure-based mutations showed that the CNOT1 MIF4G-DDX6 interaction is important for miRNA-mediated repression. These findings provide insights into the repressive steps downstream of the GW182/TNRC6 proteins and the role of the CCR4-NOT complex in posttranscriptional regulation in general.
Collapse
Affiliation(s)
- Hansruedi Mathys
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Jérôme Basquin
- Max Planck Institute of Biochemistry, Department of Structural Cell Biology, 82152 Martinsried/Munich, Germany
| | - Sevim Ozgur
- Max Planck Institute of Biochemistry, Department of Structural Cell Biology, 82152 Martinsried/Munich, Germany
| | - Mariusz Czarnocki-Cieciura
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-109 Warsaw, Poland; Faculty of Biology, University of Warsaw, 02-109 Warsaw, Poland; International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Fabien Bonneau
- Max Planck Institute of Biochemistry, Department of Structural Cell Biology, 82152 Martinsried/Munich, Germany
| | - Aafke Aartse
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-109 Warsaw, Poland; Faculty of Biology, University of Warsaw, 02-109 Warsaw, Poland
| | - Marcin Nowotny
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Elena Conti
- Max Planck Institute of Biochemistry, Department of Structural Cell Biology, 82152 Martinsried/Munich, Germany.
| | - Witold Filipowicz
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland.
| |
Collapse
|
57
|
Jonas S, Izaurralde E. The role of disordered protein regions in the assembly of decapping complexes and RNP granules. Genes Dev 2014; 27:2628-41. [PMID: 24352420 PMCID: PMC3877753 DOI: 10.1101/gad.227843.113] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Removal of the 5′ cap structure is a critical step in mRNA turnover, yet key questions regarding the assembly and regulation of decapping complexes remain unanswered. This review provides comprehensive insight into the structural and biochemical properties of decapping factors. Jonas and Izaurralde highlight the plasticity of the decapping network and cover recent advances that reveal how short linear motifs (SliMs) in disordered regions help maintain interactions between decapping network members. The removal of the 5′ cap structure by the decapping enzyme DCP2 inhibits translation and generally commits the mRNA to irreversible 5′-to-3′ exonucleolytic degradation by XRN1. DCP2 catalytic activity is stimulated by DCP1, and these proteins form the conserved core of the decapping complex. Additional decapping factors orchestrate the recruitment and activity of this complex in vivo. These factors include enhancer of decapping 3 (EDC3), EDC4, like Sm14A (LSm14A), Pat, the LSm1–7 complex, and the RNA helicase DDX6. Decapping factors are often modular and feature folded domains flanked or connected by low-complexity disordered regions. Recent studies have made important advances in understanding how these disordered regions contribute to the assembly of decapping complexes and promote phase transitions that drive RNP granule formation. These studies have also revealed that the decapping network is governed by interactions mediated by short linear motifs (SLiMs) in these disordered regions. Consequently, the network has rapidly evolved, and although decapping factors are conserved, individual interactions between orthologs have been rewired during evolution. The plasticity of the network facilitates the acquisition of additional subunits or domains in pre-existing subunits, enhances opportunities for regulating mRNA degradation, and eventually leads to the emergence of novel functions.
Collapse
Affiliation(s)
- Stefanie Jonas
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
58
|
Hubstenberger A, Noble SL, Cameron C, Evans TC. Translation repressors, an RNA helicase, and developmental cues control RNP phase transitions during early development. Dev Cell 2014; 27:161-173. [PMID: 24176641 DOI: 10.1016/j.devcel.2013.09.024] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/27/2013] [Accepted: 09/26/2013] [Indexed: 12/27/2022]
Abstract
Like membranous organelles, large-scale coassembly of macromolecules can organize functions in cells. Ribonucleoproteins (RNPs) can form liquid or solid aggregates, but control and consequences of these RNP states in living, developing tissue are poorly understood. Here, we show that regulated RNP factor interactions drive transitions among diffuse, semiliquid, or solid states to modulate RNP sorting and exchange in the Caenorhabditis elegans oocyte cytoplasm. Translation repressors induce an intrinsic capacity of RNP components to coassemble into either large semiliquids or solid lattices, whereas a conserved RNA helicase prevents polymerization into nondynamic solids. Developmental cues dramatically alter both fluidity and sorting within large RNP assemblies, inducing a transition from RNP segregation in quiescent oocytes to dynamic exchange in the early embryo. Therefore, large-scale organization of gene expression extends to the cytoplasm, where regulation of supramolecular states imparts specific patterns of RNP dynamics.
Collapse
Affiliation(s)
- Arnaud Hubstenberger
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Scott L Noble
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Graduate Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cristiana Cameron
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas C Evans
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
59
|
Kramer S, Carrington M. An AU-rich instability element in the 3'UTR mediates an increase in mRNA stability in response to expression of a dhh1 ATPase mutant. ACTA ACUST UNITED AC 2014; 2:e28587. [PMID: 26779405 PMCID: PMC4705827 DOI: 10.4161/trla.28587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/10/2014] [Accepted: 03/18/2014] [Indexed: 12/11/2022]
Abstract
The DEAD box RNA helicase DHH1 acts as a general repressor of translation and activator of decapping but can also act specifically on individual mRNAs. In trypanosomes, DHH1 overexpression or expression of a dhh1 ATPase mutant, dhh1 DEAD:DQAD, resulted in increased or decreased stability of a small group of mRNAs, mainly encoding developmentally regulated genes. Here, four of the mRNAs affected by dhh1 DEAD:DQAD expression have been analyzed to identify cis-elements involved in dhh1 DEAD:DQAD action. For three mRNAs, the 3′ UTR mediated the change in mRNA level and, in one case, both the 5′ and the 3′ UTR contributed. No responsive elements were detected in the protein coding sequences. One mRNA stabilized by dhh1 DEAD:DQAD expression was analyzed in more detail: deletion or mutation of an AU-rich element in the 3′ UTR resulted in mRNA stabilization in the absence of dhh1 DEAD:DQAD and completely abolished the response to dhh1 DEAD:DQAD. While AU-rich instability elements have been previously shown to mediate mRNA decrease or translational exit by recruitment of DHH1, this is, to our knowledge, the first report of an AU-rich instability element that is responsible for a DHH1 mediated increase in mRNA stability. We suggest a novel model for the selective action of dhh1 on individual mRNAs that is based on the change in the turnover rate of stabilizing or destabilizing RNA binding proteins.
Collapse
Affiliation(s)
- Susanne Kramer
- Department of Biochemistry; University of Cambridge; Cambridge, UK
| | - Mark Carrington
- Department of Biochemistry; University of Cambridge; Cambridge, UK
| |
Collapse
|
60
|
Kramer S. RNA in development: how ribonucleoprotein granules regulate the life cycles of pathogenic protozoa. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:263-84. [PMID: 24339376 DOI: 10.1002/wrna.1207] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
Ribonucleoprotein (RNP) granules are important posttranscriptional regulators of messenger RNA (mRNA) fate. Several types of RNP granules specifically regulate gene expression during development of multicellular organisms and are commonly referred to as germ granules. The function of germ granules is not entirely understood and probably diverse, but it is generally agreed that one main function is posttranscriptional regulation of gene expression during early development, when transcription is silent. One example is the translational repression of maternally derived mRNAs in oocytes. Here, I hope to show that the need for regulation of gene expression by RNP granules is not restricted to animal development, but plays an equally important role during the development of pathogenic protozoa. Apicomplexa and Trypanosomatidae have complex life cycles with frequent host changes. The need to quickly adapt gene expression to a new environment as well as the ability to suppress translation to survive latencies is critical for successful completion of life cycles. Posttranscriptional gene regulation is not necessarily simpler in protozoa. Apicomplexa surprise with the presence of micro RNA (miRNAs) and upstream open reading frames (µORFs). Trypanosomes have an unusually large repertoire of different RNP granule types. A better understanding of RNP granules in protozoa may help to gain insight into the evolutionary origin of RNP granules: Trypanosomes for example have two types of granules with interesting similarities to animal germ granules.
Collapse
Affiliation(s)
- Susanne Kramer
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
61
|
Kedersha N, Ivanov P, Anderson P. Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci 2013; 38:494-506. [PMID: 24029419 DOI: 10.1016/j.tibs.2013.07.004] [Citation(s) in RCA: 479] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 12/27/2022]
Abstract
Stress granules (SGs) contain translationally-stalled mRNAs, associated preinitiation factors, and specific RNA-binding proteins. In addition, many signaling proteins are recruited to SGs and/or influence their assembly, which is transient, lasting only until the cells adapt to stress or die. Beyond their role as mRNA triage centers, we posit that SGs constitute RNA-centric signaling hubs analogous to classical multiprotein signaling domains such as transmembrane receptor complexes. As signaling centers, SG formation communicates a 'state of emergency', and their transient existence alters multiple signaling pathways by intercepting and sequestering signaling components. SG assembly and downstream signaling functions may require a cytosolic phase transition facilitated by intrinsically disordered, aggregation-prone protein regions shared by RNA-binding and signaling proteins.
Collapse
Affiliation(s)
- Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Smith 652, One Jimmy Fund Way, Boston, MA 02115, USA
| | | | | |
Collapse
|
62
|
Sharif H, Ozgur S, Sharma K, Basquin C, Urlaub H, Conti E. Structural analysis of the yeast Dhh1-Pat1 complex reveals how Dhh1 engages Pat1, Edc3 and RNA in mutually exclusive interactions. Nucleic Acids Res 2013; 41:8377-90. [PMID: 23851565 PMCID: PMC3783180 DOI: 10.1093/nar/gkt600] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Translational repression and deadenylation of eukaryotic mRNAs result either in the sequestration of the transcripts in a nontranslatable pool or in their degradation. Removal of the 5′ cap structure is a crucial step that commits deadenylated mRNAs to 5′-to-3′ degradation. Pat1, Edc3 and the DEAD-box protein Dhh1 are evolutionary conserved factors known to participate in both translational repression and decapping, but their interplay is currently unclear. We report the 2.8 Å resolution structure of yeast Dhh1 bound to the N-terminal domain of Pat1. The structure shows how Pat1 wraps around the C-terminal RecA domain of Dhh1, docking onto the Phe-Asp-Phe (FDF) binding site. The FDF-binding site of Dhh1 also recognizes Edc3, revealing why the binding of Pat1 and Edc3 on Dhh1 are mutually exclusive events. Using co-immunoprecipitation assays and structure-based mutants, we demonstrate that the mode of Dhh1-Pat1 recognition is conserved in humans. Pat1 and Edc3 also interfere and compete with the RNA-binding properties of Dhh1. Mapping the RNA-binding sites on Dhh1 with a crosslinking–mass spectrometry approach shows a large RNA-binding surface around the C-terminal RecA domain, including the FDF-binding pocket. The results suggest a model for how Dhh1-containing messenger ribonucleoprotein particles might be remodeled upon Pat1 and Edc3 binding.
Collapse
Affiliation(s)
- Humayun Sharif
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried/Munich, D-82152 Germany and Cellular Biochemistry Department, Max Planck Institute of Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
63
|
Huys A, Thibault PA, Wilson JA. Modulation of hepatitis C virus RNA accumulation and translation by DDX6 and miR-122 are mediated by separate mechanisms. PLoS One 2013; 8:e67437. [PMID: 23826300 PMCID: PMC3691176 DOI: 10.1371/journal.pone.0067437] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/17/2013] [Indexed: 01/27/2023] Open
Abstract
DDX6 and other P-body proteins are required for efficient replication of Hepatitis C Virus (HCV) by unknown mechanisms. DDX6 has been implicated in miRNA induced gene silencing, and since efficient HCV replication and translation relies on the cellular microRNA, miR-122, we hypothesized that DDX6 had a role in the mechanism of action of miR-122. However, by using multiple HCV translation and replication assays we have found this is not the case. DDX6 silencing decreased HCV replication and translation, but did not affect the ability of miR-122 to stimulate HCV translation or promote HCV RNA accumulation. In addition, the negative effect of DDX6 silencing on HCV replication and translation was not dependent on miR-122 association with the HCV genome. Thus, DDX6 does not have a role in the activity of miR-122, and it appears that DDX6 and miR-122 modulate HCV through distinct pathways. This effect was seen in both Huh7.5 cells and in Hep3B cells, indicating that the effects are not cell type specific. Since infections by other viruses in the Flaviviridae family, including Dengue and West Nile Virus, also disrupt P-bodies and are regulated by DDX6, we speculate that DDX6 may have a common function that support the replication of several Flaviviruses.
Collapse
Affiliation(s)
- Adam Huys
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Patricia A. Thibault
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Joyce A. Wilson
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
64
|
Nagarajan VK, Jones CI, Newbury SF, Green PJ. XRN 5'→3' exoribonucleases: structure, mechanisms and functions. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:590-603. [PMID: 23517755 PMCID: PMC3742305 DOI: 10.1016/j.bbagrm.2013.03.005] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 01/11/2023]
Abstract
The XRN family of 5'→3' exoribonucleases is critical for ensuring the fidelity of cellular RNA turnover in eukaryotes. Highly conserved across species, the family is typically represented by one cytoplasmic enzyme (XRN1/PACMAN or XRN4) and one or more nuclear enzymes (XRN2/RAT1 and XRN3). Cytoplasmic and/or nuclear XRNs have proven to be essential in all organisms tested, and deficiencies can have severe developmental phenotypes, demonstrating that XRNs are indispensable in fungi, plants and animals. XRNs degrade diverse RNA substrates during general RNA decay and function in specialized processes integral to RNA metabolism, such as nonsense-mediated decay (NMD), gene silencing, rRNA maturation, and transcription termination. Here, we review current knowledge of XRNs, highlighting recent work of high impact and future potential. One example is the breakthrough in our understanding of how XRN1 processively degrades 5' monophosphorylated RNA, revealed by its crystal structure and mutational analysis. The expanding knowledge of XRN substrates and interacting partners is outlined and the functions of XRNs are interpreted at the organismal level using available mutant phenotypes. Finally, three case studies are discussed in more detail to underscore a few of the most exciting areas of research on XRN function: XRN4 involvement in small RNA-associated processes in plants, the roles of XRN1/PACMAN in Drosophila development, and the function of human XRN2 in nuclear transcriptional quality control. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Vinay K. Nagarajan
- Delaware Biotechnology Institute, Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Christopher I. Jones
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| | - Sarah F. Newbury
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| | - Pamela J. Green
- Delaware Biotechnology Institute, Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
65
|
Robert F, Pelletier J. Perturbations of RNA helicases in cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:333-49. [PMID: 23658027 DOI: 10.1002/wrna.1163] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Helicases are implicated in most stages of the gene expression pathway, ranging from DNA replication, RNA transcription, splicing, RNA transport, ribosome biogenesis, mRNA translation, RNA storage and decay. These enzymes utilize energy derived from nucleotide triphosphate hydrolysis to remodel ribonucleoprotein complexes, RNA, or DNA and in this manner affect the information content or output of RNA. Several RNA helicases have been implicated in the oncogenic process--either through altered expression levels, mutations, or due to their role in pathways required for tumor initiation, progression, maintenance, or chemosensitivity. The purpose of this review is to highlight those RNA helicases for which there is significant evidence implicating them in cancer biology.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
66
|
Lloyd RE. Regulation of stress granules and P-bodies during RNA virus infection. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:317-31. [PMID: 23554219 PMCID: PMC3652661 DOI: 10.1002/wrna.1162] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RNA granules are structures within cells that play major roles in gene expression and homeostasis. Two principle kinds of RNA granules are conserved from yeast to mammals: stress granules (SGs), which contain stalled translation initiation complexes, and processing bodies (P‐bodies, PBs), which are enriched with factors involved in RNA turnover. Since RNA granules are associated with silenced transcripts, viruses subvert RNA granule function for replicative advantages. This review, focusing on RNA viruses, discusses mechanisms that manipulate stress granules and P‐bodies to promote synthesis of viral proteins. Three main themes have emerged for how viruses manipulate RNA granules; (1) cleavage of key host factors, (2) control of protein kinase R (PKR) activation, and (3) redirecting RNA granule components for new or parallel roles in viral reproduction, at the same time disrupting RNA granules. Viruses utilize one or more of these routes to achieve robust and productive infection. WIREs RNA 2013, 4:317–331. doi: 10.1002/wrna.1162 This article is categorized under:
RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
67
|
Abstract
The DEAD box RNA helicase Rck and the scaffold protein Pat1b participate in controlling gene expression at the post-transcriptional level by suppressing mRNA translation and promoting mRNA decapping. In addition, both proteins are required for the assembly of processing (P)-bodies, cytoplasmic foci that contain stalled mRNAs and numerous components of the mRNA decay machinery. The C-terminal RecA-like domain of Rck interacts with the N-terminal acidic domain of Pat1b. Here, we identified point mutations in human Rck and Pat1b that prevent the two proteins from binding to each other. By analyzing interaction-deficient mutants in combination with knockdown and rescue strategies in human HeLa cells, we found that Pat1b assembles P-bodies and suppresses expression of tethered mRNAs in the absence of Rck binding. In contrast, Rck requires the Pat1b-binding site in order to promote P-body assembly and associate with the decapping enzyme Dcp2 as well as Ago2 and TNRC6A, two core components of the RNA-induced silencing complex. Our data indicate that P-body assembly occurs in a step-wise manner, where Rck participates in the initial suppression of mRNA translation, whereas Pat1b in a second step triggers P-body assembly and promotes mRNA decapping.
Collapse
Affiliation(s)
- Sevim Ozgur
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center DKFZ--ZMBH Alliance, Heidelberg, Germany
| | | |
Collapse
|
68
|
Putnam AA, Jankowsky E. DEAD-box helicases as integrators of RNA, nucleotide and protein binding. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:884-93. [PMID: 23416748 DOI: 10.1016/j.bbagrm.2013.02.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 01/10/2023]
Abstract
DEAD-box helicases perform diverse cellular functions in virtually all steps of RNA metabolism from Bacteria to Humans. Although DEAD-box helicases share a highly conserved core domain, the enzymes catalyze a wide range of biochemical reactions. In addition to the well established RNA unwinding and corresponding ATPase activities, DEAD-box helicases promote duplex formation and displace proteins from RNA. They can also function as assembly platforms for larger ribonucleoprotein complexes, and as metabolite sensors. This review aims to provide a perspective on the diverse biochemical features of DEAD-box helicases and connections to structural information. We discuss these data in the context of a model that views the enzymes as integrators of RNA, nucleotide, and protein binding. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Andrea A Putnam
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
69
|
de Vries S, Naarmann-de Vries IS, Urlaub H, Lue H, Bernhagen J, Ostareck DH, Ostareck-Lederer A. Identification of DEAD-box RNA helicase 6 (DDX6) as a cellular modulator of vascular endothelial growth factor expression under hypoxia. J Biol Chem 2013; 288:5815-27. [PMID: 23293030 DOI: 10.1074/jbc.m112.420711] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF) is a crucial proangiogenic factor, which regulates blood vessel supply under physiologic and pathologic conditions. The VEGF mRNA 5'-untranslated region (5'-UTR) bears internal ribosome entry sites (IRES), which confer sustained VEGF mRNA translation under hypoxia when 5'-cap-dependent mRNA translation is inhibited. VEGF IRES-mediated initiation of translation requires the modulated interaction of trans-acting factors. To identify trans-acting factors that control VEGF mRNA translation under hypoxic conditions we established an in vitro translation system based on human adenocarcinoma cells (MCF-7). Cytoplasmic extracts of MCF-7 cells grown under hypoxia (1% oxygen) recapitulate VEGF IRES-mediated reporter mRNA translation. Employing the VEGF mRNA 5'-UTR and 3'-UTR in an RNA affinity approach we isolated interacting proteins from translational active MCF-7 extract prepared from cells grown under normoxia or hypoxia. Interestingly, mass spectrometry analysis identified the DEAD-box RNA helicase 6 (DDX6) that interacts with the VEGF mRNA 5'-UTR. Recombinant DDX6 inhibits VEGF IRES-mediated translation in normoxic MCF-7 extract. Under hypoxia the level of DDX6 declines, and its interaction with VEGF mRNA is diminished in vivo. Depletion of DDX6 by RNAi further promotes VEGF expression in MCF-7 cells. Increased secretion of VEGF from DDX6 knockdown cells positively affects vascular tube formation of human umbilical vein endothelial cells (HUVEC) in vitro. Our results indicate that the decrease of DDX6 under hypoxia contributes to the activation of VEGF expression and promotes its proangiogenic function.
Collapse
Affiliation(s)
- Sebastian de Vries
- Experimental Research Unit, Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
70
|
Reineke LC, Lloyd RE. Diversion of stress granules and P-bodies during viral infection. Virology 2013; 436:255-67. [PMID: 23290869 PMCID: PMC3611887 DOI: 10.1016/j.virol.2012.11.017] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/05/2012] [Accepted: 11/28/2012] [Indexed: 02/02/2023]
Abstract
RNA granules are structures within cells that impart key regulatory measures on gene expression. Two general types of RNA granules are conserved from yeast to mammals: stress granules (SGs), which contain many translation initiation factors, and processing bodies (P-bodies, PBs), which are enriched for proteins involved in RNA turnover. Because of the inverse relationship between appearance of RNA granules and persistence of translation, many viruses must subvert RNA granule function for replicative purposes. Here we discuss the viruses and mechanisms that manipulate stress granules and P-bodies to promote synthesis of viral proteins. Several themes have emerged for manipulation of RNA granules by viruses: (1) disruption of RNA granules at the mid-phase of infection, (2) prevention of RNA granule assembly throughout infection and (3) co-opting of RNA granule proteins for new or parallel roles in viral reproduction. Viruses must employ one or multiple of these routes for a robust and productive infection to occur. The possible role for RNA granules in promoting innate immune responses poses an additional reason why viruses must counteract the effects of RNA granules for efficient replication.
Collapse
Affiliation(s)
- Lucas C Reineke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77035, USA
| | | |
Collapse
|
71
|
Abstract
Members of the DEAD box family of RNA helicases are known to be involved in most cellular processes that require manipulation of RNA structure and, in many cases, exhibit other functions in addition to their established ATP-dependent RNA helicase activities. They thus play critical roles in cellular metabolism and in many cases have been implicated in cellular proliferation and/or neoplastic transformation. These proteins generally act as components of multi-protein complexes; therefore their precise role is likely to be influenced by their interacting partners and to be highly context-dependent. This may also provide an explanation for the sometimes conflicting reports suggesting that DEAD box proteins have both pro- and anti-proliferative roles in cancer.
Collapse
Affiliation(s)
- Frances V Fuller-Pace
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland.
| |
Collapse
|
72
|
Arribas-Layton M, Wu D, Lykke-Andersen J, Song H. Structural and functional control of the eukaryotic mRNA decapping machinery. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:580-9. [PMID: 23287066 DOI: 10.1016/j.bbagrm.2012.12.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/15/2012] [Accepted: 12/17/2012] [Indexed: 01/12/2023]
Abstract
The regulation of mRNA degradation is critical for proper gene expression. Many major pathways for mRNA decay involve the removal of the 5' 7-methyl guanosine (m(7)G) cap in the cytoplasm to allow for 5'-to-3' exonucleolytic decay. The most well studied and conserved eukaryotic decapping enzyme is Dcp2, and its function is aided by co-factors and decapping enhancers. A subset of these factors can act to enhance the catalytic activity of Dcp2, while others might stimulate the remodeling of proteins bound to the mRNA substrate that may otherwise inhibit decapping. Structural studies have provided major insights into the mechanisms by which Dcp2 and decapping co-factors activate decapping. Additional mRNA decay factors can function by recruiting components of the decapping machinery to target mRNAs. mRNA decay factors, decapping factors, and mRNA substrates can be found in cytoplasmic foci named P bodies that are conserved in eukaryotes, though their function remains unknown. In addition to Dcp2, other decapping enzymes have been identified, which may serve to supplement the function of Dcp2 or act in independent decay or quality control pathways. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|