51
|
Lebedeva S, de Jesus Domingues AM, Butter F, Ketting RF. Characterization of genetic loss-of-function of Fus in zebrafish. RNA Biol 2017; 14:29-35. [PMID: 27898262 PMCID: PMC5270537 DOI: 10.1080/15476286.2016.1256532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/24/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022] Open
Abstract
The RNA-binding protein FUS is implicated in transcription, alternative splicing of neuronal genes and DNA repair. Mutations in FUS have been linked to human neurodegenerative diseases such as ALS (amyotrophic lateral sclerosis). We genetically disrupted fus in zebrafish (Danio rerio) using the CRISPR-Cas9 system. The fus knockout animals are fertile and did not show any distinctive phenotype. Mutation of fus induces mild changes in gene expression on the transcriptome and proteome level in the adult brain. We observed a significant influence of genetic background on gene expression and 3'UTR usage, which could mask the effects of loss of Fus. Unlike published fus morphants, maternal zygotic fus mutants do not show motoneuronal degeneration and exhibit normal locomotor activity.
Collapse
Affiliation(s)
| | | | - Falk Butter
- Institute of Molecular Biology, Mainz, Germany
| | | |
Collapse
|
52
|
Schulte C, Ripamonti M, Maffioli E, Cappelluti MA, Nonnis S, Puricelli L, Lamanna J, Piazzoni C, Podestà A, Lenardi C, Tedeschi G, Malgaroli A, Milani P. Scale Invariant Disordered Nanotopography Promotes Hippocampal Neuron Development and Maturation with Involvement of Mechanotransductive Pathways. Front Cell Neurosci 2016; 10:267. [PMID: 27917111 PMCID: PMC5114288 DOI: 10.3389/fncel.2016.00267] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022] Open
Abstract
The identification of biomaterials which promote neuronal maturation up to the generation of integrated neural circuits is fundamental for modern neuroscience. The development of neural circuits arises from complex maturative processes regulated by poorly understood signaling events, often guided by the extracellular matrix (ECM). Here we report that nanostructured zirconia surfaces, produced by supersonic cluster beam deposition of zirconia nanoparticles and characterized by ECM-like nanotopographical features, can direct the maturation of neural networks. Hippocampal neurons cultured on such cluster-assembled surfaces displayed enhanced differentiation paralleled by functional changes. The latter was demonstrated by single-cell electrophysiology showing earlier action potential generation and increased spontaneous postsynaptic currents compared to the neurons grown on the featureless unnaturally flat standard control surfaces. Label-free shotgun proteomics broadly confirmed the functional changes and suggests furthermore a vast impact of the neuron/nanotopography interaction on mechanotransductive machinery components, known to control physiological in vivo ECM-regulated axon guidance and synaptic plasticity. Our results indicate a potential of cluster-assembled zirconia nanotopography exploitable for the creation of efficient neural tissue interfaces and cell culture devices promoting neurogenic events, but also for unveiling mechanotransductive aspects of neuronal development and maturation.
Collapse
Affiliation(s)
- Carsten Schulte
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di MilanoMilan, Italy; Fondazione FilareteMilan, Italy
| | - Maddalena Ripamonti
- Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute San Raffaele, Università Vita-Salute San Raffaele Milan, Italy
| | - Elisa Maffioli
- Fondazione FilareteMilan, Italy; Dipartimento di Medicina Veterinaria, Università degli Studi di MilanoMilan, Italy
| | - Martino A Cappelluti
- Fondazione FilareteMilan, Italy; SEMM - European School of Molecular MedicineMilan, Italy
| | - Simona Nonnis
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano Milan, Italy
| | - Luca Puricelli
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| | - Jacopo Lamanna
- Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute San Raffaele, Università Vita-Salute San Raffaele Milan, Italy
| | - Claudio Piazzoni
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| | - Alessandro Podestà
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| | - Cristina Lenardi
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| | - Gabriella Tedeschi
- Fondazione FilareteMilan, Italy; Dipartimento di Medicina Veterinaria, Università degli Studi di MilanoMilan, Italy
| | - Antonio Malgaroli
- Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute San Raffaele, Università Vita-Salute San Raffaele Milan, Italy
| | - Paolo Milani
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| |
Collapse
|
53
|
Cookson MR. RNA-binding proteins implicated in neurodegenerative diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27659605 DOI: 10.1002/wrna.1397] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/23/2016] [Accepted: 08/27/2016] [Indexed: 12/12/2022]
Abstract
Gene expression is regulated at many levels, including after generation of the primary RNA transcript from DNA but before translation into protein. Such post-translational gene regulation occurs via the action of a multitude of RNA binding proteins and include varied actions from splicing to regulation of association with the translational machinery. Primary evidence that such processes might contribute to disease mechanisms in neurodegenerative disorders comes from the observation of mutations in RNA binding proteins, particularly in diseases in the amyotrophic lateral sclerosis-frontotemporal dementia spectrum and in some forms of ataxia and tremor. The bulk of evidence from recent surveys of the types of RNA species that are affected in these disorders suggests a global deregulation of control rather than a very small number of RNA species, although why some groups of neurons are sensitive to these changes is not well understood. Overall, these data suggest that neurodegeneration can be initiated by mutations in RNA binding proteins and, as a corollary, that neurons are particularly sensitive to loss of control of gene expression at the post-transcriptional level. Such observations have implications not only for understanding the nature of neurodegenerative disorders but also how we might intervene therapeutically in these diseases. WIREs RNA 2017, 8:e1397. doi: 10.1002/wrna.1397 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
54
|
Abstract
Neurodegenerative disorders such as Alzheimer disease (AD), frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), Parkinson disease (PD), Huntington's disease (HD), and multiple sclerosis (MS) affect different neuronal cells, and have a variable age of onset, clinical symptoms, and pathological features. Despite the great progress in understanding the etiology of these disorders, the underlying mechanisms remain largely unclear. Among the processes affected in neurodegenerative diseases, alteration in RNA metabolism is emerging as a crucial player. RNA-binding proteins (RBPs) are involved at all stages of RNA metabolism and display a broad range of functions, including modulation of mRNA transcription, splicing, editing, export, stability, translation and localization and miRNA biogenesis, thus enormously impacting regulation of gene expression. On the other hand, aberrant regulation of RBP expression or activity can contribute to disease onset and progression. Recent reports identified mutations causative of neurological disorders in the genes encoding a family of RBPs named FET (FUS/TLS, EWS and TAF15). This review summarizes recent works documenting the involvement of FET proteins in the pathology of ALS, FTLD, essential tremor (ET) and other neurodegenerative diseases. Moreover, clinical implications of recent advances in FET research are critically discussed.
Collapse
Affiliation(s)
- Francesca Svetoni
- a University of Rome "Foro Italico," , Rome , Italy.,b Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia , Rome , Italy
| | - Paola Frisone
- b Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia , Rome , Italy
| | - Maria Paola Paronetto
- a University of Rome "Foro Italico," , Rome , Italy.,b Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia , Rome , Italy
| |
Collapse
|
55
|
Ratti A, Buratti E. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J Neurochem 2016; 138 Suppl 1:95-111. [PMID: 27015757 DOI: 10.1111/jnc.13625] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 12/12/2022]
Abstract
The multiple roles played by RNA binding proteins in neurodegeneration have become apparent following the discovery of TAR DNA binding protein 43 kDa (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) involvement in amyotrophic lateral sclerosis and frontotemporal lobar dementia. In these two diseases, the majority of patients display the presence of aggregated forms of one of these proteins in their brains. The study of their functional properties currently represents a very promising target for developing the effective therapeutic options that are still lacking. This aim, however, must be preceded by an accurate evaluation of TDP-43 and FUS/TLS biological functions, both in physiological and disease conditions. Recent findings have uncovered several aspects of RNA metabolism that can be affected by misregulation of these two proteins. Progress has also been made in starting to understand how the aggregation of these proteins occurs and spreads from cell to cell. The aim of this review will be to provide a general overview of TDP-43 and FUS/TLS proteins and to highlight their physiological functions. At present, the emerging picture is that TDP-43 and FUS/TLS control several aspects of an mRNA's life, but they can also participate in DNA repair processes and in non-coding RNA metabolism. Although their regulatory activities are similar, they regulate mainly distinct RNA targets and show different pathogenetic mechanisms in amyotrophic lateral sclerosis/frontotemporal lobar dementia diseases. The identification of key events in these processes represents today the best chance of finding targetable options for therapeutic approaches that might actually make a difference at the clinical level. The two major RNA Binding Proteins involved in Amyotrophic Lateral Sclerosisi and Frontotemporal Dementia are TDP-43 and FUST/TLS. Both proteins are involved in regulating all aspects of RNA and RNA life cycle within neurons, from transcription, processing, and transport/stability to the formation of cytoplasmic and nuclear stress granules. For this reason, the aberrant aggregation of these factors during disease can impair multiple RNA metabolic pathways and eventually lead to neuronal death/inactivation. The purpose of this review is to provide an up-to-date perspective on what we know about this issue at the molecular level. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Antonia Ratti
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan, Italy.,Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
56
|
Reber S, Stettler J, Filosa G, Colombo M, Jutzi D, Lenzken SC, Schweingruber C, Bruggmann R, Bachi A, Barabino SM, Mühlemann O, Ruepp MD. Minor intron splicing is regulated by FUS and affected by ALS-associated FUS mutants. EMBO J 2016; 35:1504-21. [PMID: 27252488 DOI: 10.15252/embj.201593791] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/29/2016] [Indexed: 12/11/2022] Open
Abstract
Fused in sarcoma (FUS) is a ubiquitously expressed RNA-binding protein proposed to function in various RNA metabolic pathways, including transcription regulation, pre-mRNA splicing, RNA transport and microRNA processing. Mutations in the FUS gene were identified in patients with amyotrophic lateral sclerosis (ALS), but the pathomechanisms by which these mutations cause ALS are not known. Here, we show that FUS interacts with the minor spliceosome constituent U11 snRNP, binds preferentially to minor introns and directly regulates their removal. Furthermore, a FUS knockout in neuroblastoma cells strongly disturbs the splicing of minor intron-containing mRNAs, among them mRNAs required for action potential transmission and for functional spinal motor units. Moreover, an ALS-associated FUS mutant that forms cytoplasmic aggregates inhibits splicing of minor introns by trapping U11 and U12 snRNAs in these aggregates. Collectively, our findings suggest a possible pathomechanism for ALS in which mutated FUS inhibits correct splicing of minor introns in mRNAs encoding proteins required for motor neuron survival.
Collapse
Affiliation(s)
- Stefan Reber
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jolanda Stettler
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Giuseppe Filosa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Martino Colombo
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Daniel Jutzi
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Silvia C Lenzken
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Christoph Schweingruber
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Silvia Ml Barabino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
57
|
Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks. Sci Rep 2016; 6:25711. [PMID: 27161996 PMCID: PMC4861959 DOI: 10.1038/srep25711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.
Collapse
|
58
|
Improvements to the HITS-CLIP protocol eliminate widespread mispriming artifacts. BMC Genomics 2016; 17:338. [PMID: 27150721 PMCID: PMC4858895 DOI: 10.1186/s12864-016-2675-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/28/2016] [Indexed: 01/13/2023] Open
Abstract
Background High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) allows for high resolution, genome-wide mapping of RNA-binding proteins. This methodology is frequently used to validate predicted targets of microRNA binding, as well as direct targets of other RNA-binding proteins. Hence, the accuracy and sensitivity of binding site identification is critical. Results We found that substantial mispriming during reverse transcription results in the overrepresentation of sequences complementary to the primer used for reverse transcription. Up to 45 % of peaks in publicly available HITS-CLIP libraries are attributable to this mispriming artifact, and the majority of libraries have detectable levels of mispriming. We also found that standard techniques for validating microRNA-target interactions fail to differentiate between artifactual peaks and physiologically relevant peaks. Conclusions Here, we present a modification to the HITS-CLIP protocol that effectively eliminates this artifact and improves the sensitivity and complexity of resulting libraries. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2675-5) contains supplementary material, which is available to authorized users.
Collapse
|
59
|
Järvelin AI, Noerenberg M, Davis I, Castello A. The new (dis)order in RNA regulation. Cell Commun Signal 2016; 14:9. [PMID: 27048167 PMCID: PMC4822317 DOI: 10.1186/s12964-016-0132-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/21/2016] [Indexed: 02/03/2023] Open
Abstract
RNA-binding proteins play a key role in the regulation of all aspects of RNA metabolism, from the synthesis of RNA to its decay. Protein-RNA interactions have been thought to be mostly mediated by canonical RNA-binding domains that form stable secondary and tertiary structures. However, a number of pioneering studies over the past decades, together with recent proteome-wide data, have challenged this view, revealing surprising roles for intrinsically disordered protein regions in RNA binding. Here, we discuss how disordered protein regions can mediate protein-RNA interactions, conceptually grouping these regions into RS-rich, RG-rich, and other basic sequences, that can mediate both specific and non-specific interactions with RNA. Disordered regions can also influence RNA metabolism through protein aggregation and hydrogel formation. Importantly, protein-RNA interactions mediated by disordered regions can influence nearly all aspects of co- and post-transcriptional RNA processes and, consequently, their disruption can cause disease. Despite growing interest in disordered protein regions and their roles in RNA biology, their mechanisms of binding, regulation, and physiological consequences remain poorly understood. In the coming years, the study of these unorthodox interactions will yield important insights into RNA regulation in cellular homeostasis and disease.
Collapse
Affiliation(s)
- Aino I. Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Marko Noerenberg
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
60
|
Yasuda K, Mili S. Dysregulated axonal RNA translation in amyotrophic lateral sclerosis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:589-603. [PMID: 27038103 PMCID: PMC5071740 DOI: 10.1002/wrna.1352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult‐onset motor neuron disease that has been associated with a diverse array of genetic changes. Prominent among these are mutations in RNA‐binding proteins (RBPs) or repeat expansions that give rise to toxic RNA species. RBPs are additionally central components of pathologic aggregates that constitute a disease hallmark, suggesting that dysregulation of RNA metabolism underlies disease progression. In the context of neuronal physiology, transport of RNAs and localized RNA translation in axons are fundamental to neuronal survival and function. Several lines of evidence suggest that axonal RNA translation is a central process perturbed by various pathogenic events associated with ALS. Dysregulated translation of specific RNA groups could underlie feedback effects that connect and reinforce disease manifestations. Among such candidates are RNAs encoding proteins involved in the regulation of microtubule dynamics. Further understanding of axonally dysregulated RNA targets and of the feedback mechanisms they induce could provide useful therapeutic insights. WIREs RNA 2016, 7:589–603. doi: 10.1002/wrna.1352 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kyota Yasuda
- Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Stavroula Mili
- Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
61
|
Masuda A, Takeda JI, Ohno K. FUS-mediated regulation of alternative RNA processing in neurons: insights from global transcriptome analysis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:330-40. [PMID: 26822113 DOI: 10.1002/wrna.1338] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/18/2015] [Indexed: 12/13/2022]
Abstract
Fused in sarcoma (FUS) is an RNA-binding protein that is causally associated with oncogenesis and neurodegeneration. Recently, the role of FUS in neurodegeneration has been extensively studied, because mutations in FUS are associated with amyotrophic lateral sclerosis (ALS), and the FUS protein has been identified as a major component of intracellular inclusions in neurodegenerative disorders including ALS and frontotemporal lobar degeneration. FUS is a key molecule in transcriptional regulation and RNA processing including processes such as pre-messenger RNA (mRNA) splicing and polyadenylation. Interaction of FUS with various components of the transcription machinery, spliceosome, and the 3'-end processing machinery has been identified. Furthermore, recent advances in high-throughput transcriptomic profiling approaches have enabled us to determine the mechanisms of FUS-dependent RNA processing networks at a cellular level. These analyses have revealed that depletion of FUS in neuronal cells affects alternative splicing and alternative polyadenylation of thousands of mRNAs. Gene ontology analysis has suggested that FUS-modulated genes are implicated in neuronal functions and development. CLIP-seq of FUS has shown that FUS is frequently clustered around these alternative sites of nascent RNA. ChIP-seq of RNA polymerase II (RNAP II) has demonstrated that an interaction between FUS and nascent RNA downregulates local transcriptional activity of RNAP II, which is critically involved in RNA processing. Both alternative splicing and alternative polyadenylation are fundamental processes by which cells expand their transcriptomic diversity, and are particularly essential in the nervous system. Dependence of transcriptomic diversity on FUS makes the nervous system vulnerable to neurodegeneration, when FUS is functionally compromised. WIREs RNA 2016, 7:330-340. doi: 10.1002/wrna.1338 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
62
|
Maragkakis M, Alexiou P, Nakaya T, Mourelatos Z. CLIPSeqTools--a novel bioinformatics CLIP-seq analysis suite. RNA (NEW YORK, N.Y.) 2016; 22:1-9. [PMID: 26577377 PMCID: PMC4691824 DOI: 10.1261/rna.052167.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/18/2015] [Indexed: 05/22/2023]
Abstract
Immunoprecipitation of RNA binding proteins (RBPs) after in vivo crosslinking, coupled with sequencing of associated RNA footprints (HITS-CLIP, CLIP-seq), is a method of choice for the identification of RNA targets and binding sites for RBPs. Compared with RNA-seq, CLIP-seq analysis is widely diverse and depending on the RBPs that are analyzed, the approaches vary significantly, necessitating the development of flexible and efficient informatics tools. In this study, we present CLIPSeqTools, a novel, highly flexible computational suite that can perform analysis from raw sequencing data with minimal user input. It contains a wide array of tools to provide an in-depth view of CLIP-seq data sets. It supports extensive customization and promotes improvization, a critical virtue, since CLIP-seq analysis is rarely well defined a priori. To highlight CLIPSeqTools capabilities, we used the suite to analyze Ago-miRNA HITS-CLIP data sets that we prepared from human brains.
Collapse
Affiliation(s)
- Manolis Maragkakis
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Panagiotis Alexiou
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tadashi Nakaya
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
63
|
Abstract
The human transcriptome is composed of a vast RNA population that undergoes further diversification by splicing. Detecting specific splice sites in this large sequence pool is the responsibility of the major and minor spliceosomes in collaboration with numerous splicing factors. This complexity makes splicing susceptible to sequence polymorphisms and deleterious mutations. Indeed, RNA mis-splicing underlies a growing number of human diseases with substantial societal consequences. Here, we provide an overview of RNA splicing mechanisms followed by a discussion of disease-associated errors, with an emphasis on recently described mutations that have provided new insights into splicing regulation. We also discuss emerging strategies for splicing-modulating therapy.
Collapse
Affiliation(s)
- Marina M Scotti
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32610-3610 USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32610-3610 USA
| |
Collapse
|
64
|
Luo Y, Blechingberg J, Fernandes AM, Li S, Fryland T, Børglum AD, Bolund L, Nielsen AL. EWS and FUS bind a subset of transcribed genes encoding proteins enriched in RNA regulatory functions. BMC Genomics 2015; 16:929. [PMID: 26573619 PMCID: PMC4647676 DOI: 10.1186/s12864-015-2125-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022] Open
Abstract
Background FUS (TLS) and EWS (EWSR1) belong to the FET-protein family of RNA and DNA binding proteins. FUS and EWS are structurally and functionally related and participate in transcriptional regulation and RNA processing. FUS and EWS are identified in translocation generated cancer fusion proteins and involved in the human neurological diseases amyotrophic lateral sclerosis and fronto-temporal lobar degeneration. Results To determine the gene regulatory functions of FUS and EWS at the level of chromatin, we have performed chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Our results show that FUS and EWS bind to a subset of actively transcribed genes, that binding often is downstream the poly(A)-signal, and that binding overlaps with RNA polymerase II. Functional examinations of selected target genes identified that FUS and EWS can regulate gene expression at different levels. Gene Ontology analyses showed that FUS and EWS target genes preferentially encode proteins involved in regulatory processes at the RNA level. Conclusions The presented results yield new insights into gene interactions of EWS and FUS and have identified a set of FUS and EWS target genes involved in pathways at the RNA regulatory level with potential to mediate normal and disease-associated functions of the FUS and EWS proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2125-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yonglun Luo
- Department of Biomedicine, Aarhus University, The Bartholin Building, Aarhus, DK-8000, Denmark.
| | - Jenny Blechingberg
- Department of Biomedicine, Aarhus University, The Bartholin Building, Aarhus, DK-8000, Denmark. .,Present address: Clinical Microbiological Section, Lillebælt Hospital, Vejle, Denmark.
| | - Ana Miguel Fernandes
- Department of Biomedicine, Aarhus University, The Bartholin Building, Aarhus, DK-8000, Denmark. .,Present address: Epigenetic Regulation and Chromatin Architecture group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany.
| | - Shengting Li
- Department of Biomedicine, Aarhus University, The Bartholin Building, Aarhus, DK-8000, Denmark. .,Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark. .,Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark.
| | - Tue Fryland
- Department of Biomedicine, Aarhus University, The Bartholin Building, Aarhus, DK-8000, Denmark. .,Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark. .,Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark.
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, The Bartholin Building, Aarhus, DK-8000, Denmark. .,Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark. .,Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark. .,Psychiatric Department P, Aarhus University Hospital, Aarhus, Denmark.
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, The Bartholin Building, Aarhus, DK-8000, Denmark. .,Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark. .,BGI-Shenzhen, Shenzhen, China.
| | - Anders Lade Nielsen
- Department of Biomedicine, Aarhus University, The Bartholin Building, Aarhus, DK-8000, Denmark. .,Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark. .,Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
65
|
Colombrita C, Onesto E, Buratti E, de la Grange P, Gumina V, Baralle FE, Silani V, Ratti A. From transcriptomic to protein level changes in TDP-43 and FUS loss-of-function cell models. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1398-410. [PMID: 26514432 DOI: 10.1016/j.bbagrm.2015.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/08/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
The full definition of the physiological RNA targets regulated by TDP-43 and FUS RNA-binding proteins (RBPs) represents an important issue in understanding the pathogenic mechanisms associated to these two proteins in amyotrophic lateral sclerosis and frontotemporal dementia. In the last few years several high-throughput screenings have generated a plethora of data, which are difficult to compare due to the different experimental designs and models explored. In this study by using the Affymetrix Exon Arrays, we were able to assess and compare the effects of both TDP-43 and FUS loss-of-function on the whole transcriptome using the same human neuronal SK-N-BE cell model. We showed that TDP-43 and FUS depletion induces splicing and gene expression changes mainly distinct for the two RBPs, although they may regulate common pathways, including neuron differentiation and cytoskeleton organization as evidenced by functional annotation analysis. In particular, TDP-43 and FUS were found to regulate splicing and expression of genes related to neuronal (SEPT6, SULT4A1, TNIK) and RNA metabolism (DICER, ELAVL3/HuC, POLDIP3). Our extended analysis at protein level revealed that these changes have also impact on the protein isoform ratio and content, not always in a direct correlation with transcriptomic data. Contrarily to a loss-of-function mechanism, we showed that mutant TDP-43 proteins maintained their splicing activity in human ALS fibroblasts and experimental cell lines. Our findings further contribute to define the biological functions of these two RBPs in physiological and disease state, strongly encouraging the evaluation of the identified transcriptomic changes at protein level in neuronal experimental models.
Collapse
Affiliation(s)
- Claudia Colombrita
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan 20122, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Elisa Onesto
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Trieste 34149, Italy
| | | | - Valentina Gumina
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Francisco E Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Trieste 34149, Italy
| | - Vincenzo Silani
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan 20122, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Antonia Ratti
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan 20122, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy.
| |
Collapse
|
66
|
Aulas A, Vande Velde C. Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS? Front Cell Neurosci 2015; 9:423. [PMID: 26557057 PMCID: PMC4615823 DOI: 10.3389/fncel.2015.00423] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/06/2015] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are RNA-containing cytoplasmic foci formed in response to stress exposure. Since their discovery in 1999, over 120 proteins have been described to be localized to these structures (in 154 publications). Most of these components are RNA binding proteins (RBPs) or are involved in RNA metabolism and translation. SGs have been linked to several pathologies including inflammatory diseases, cancer, viral infection, and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In ALS and FTD, the majority of cases have no known etiology and exposure to external stress is frequently proposed as a contributor to either disease initiation or the rate of disease progression. Of note, both ALS and FTD are characterized by pathological inclusions, where some well-known SG markers localize with the ALS related proteins TDP-43 and FUS. We propose that TDP-43 and FUS serve as an interface between genetic susceptibility and environmental stress exposure in disease pathogenesis. Here, we will discuss the role of TDP-43 and FUS in SG dynamics and how disease-linked mutations affect this process.
Collapse
Affiliation(s)
- Anaïs Aulas
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal Montréal, QC, Canada ; Department of Biochemistry, Université de Montréal Montréal, QC, Canada
| | - Christine Vande Velde
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal Montréal, QC, Canada ; Department of Neurosciences, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
67
|
Coady TH, Manley JL. ALS mutations in TLS/FUS disrupt target gene expression. Genes Dev 2015; 29:1696-706. [PMID: 26251528 PMCID: PMC4561479 DOI: 10.1101/gad.267286.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/22/2015] [Indexed: 12/12/2022]
Abstract
In this study, Coadey et al. investigated how mutations in the RNA/DNA-binding protein TLS/FUS (FUS), caused by ALS, affect target gene expression. They used several FUS derivatives with ALS mutations and showed that FUS-containing aggregates can alter gene expression by a toxic gain-of-function mechanism. These findings establish that ALS mutations in FUS can strongly impact target gene expression. Amyotrophic lateral sclerosis (ALS) is caused by mutations in a number of genes, including the gene encoding the RNA/DNA-binding protein translocated in liposarcoma or fused in sarcoma (TLS/FUS or FUS). Previously, we identified a number of FUS target genes, among them MECP2. To investigate how ALS mutations in FUS might impact target gene expression, we examined the effects of several FUS derivatives harboring ALS mutations, such as R521C (FUSC), on MECP2 expression in transfected human U87 cells. Strikingly, FUSC and other mutants not only altered MECP2 alternative splicing but also markedly increased mRNA abundance, which we show resulted from sharply elevated stability. Paradoxically, however, MeCP2 protein levels were significantly reduced in cells expressing ALS mutant derivatives. Providing a parsimonious explanation for these results, biochemical fractionation and in vivo localization studies revealed that MECP2 mRNA colocalized with cytoplasmic FUSC in insoluble aggregates, which are characteristic of ALS mutant proteins. Together, our results establish that ALS mutations in FUS can strongly impact target gene expression, reflecting a dominant effect of FUS-containing aggregates.
Collapse
Affiliation(s)
- Tristan H Coady
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
68
|
Masuda A, Takeda JI, Okuno T, Okamoto T, Ohkawara B, Ito M, Ishigaki S, Sobue G, Ohno K. Position-specific binding of FUS to nascent RNA regulates mRNA length. Genes Dev 2015; 29:1045-57. [PMID: 25995189 PMCID: PMC4441052 DOI: 10.1101/gad.255737.114] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More than half of all human genes produce prematurely terminated polyadenylated short mRNAs. Masuda et al. show that FUS is frequently clustered around an alternative polyadenylation (APA) site of nascent RNA, stalls RNAP II, and prematurely terminates transcription in neuronal cells. Position-specific regulation of mRNA lengths by FUS is operational in two-thirds of transcripts in neuronal cells, with enrichment in genes involved in synaptic activities. More than half of all human genes produce prematurely terminated polyadenylated short mRNAs. However, the underlying mechanisms remain largely elusive. CLIP-seq (cross-linking immunoprecipitation [CLIP] combined with deep sequencing) of FUS (fused in sarcoma) in neuronal cells showed that FUS is frequently clustered around an alternative polyadenylation (APA) site of nascent RNA. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing) of RNA polymerase II (RNAP II) demonstrated that FUS stalls RNAP II and prematurely terminates transcription. When an APA site is located upstream of an FUS cluster, FUS enhances polyadenylation by recruiting CPSF160 and up-regulates the alternative short transcript. In contrast, when an APA site is located downstream from an FUS cluster, polyadenylation is not activated, and the RNAP II-suppressing effect of FUS leads to down-regulation of the alternative short transcript. CAGE-seq (cap analysis of gene expression [CAGE] combined with deep sequencing) and PolyA-seq (a strand-specific and quantitative method for high-throughput sequencing of 3' ends of polyadenylated transcripts) revealed that position-specific regulation of mRNA lengths by FUS is operational in two-thirds of transcripts in neuronal cells, with enrichment in genes involved in synaptic activities.
Collapse
Affiliation(s)
- Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Jun-ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Tatsuya Okuno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Takaaki Okamoto
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan
| | - Shinsuke Ishigaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Showa-ku, Nagoya 466-8550, Japan;
| |
Collapse
|
69
|
Robinson HK, Deykin AV, Bronovitsky EV, Ovchinnikov RK, Ustyugov AA, Shelkovnikova TA, Kukharsky MS, Ermolkevich TG, Goldman IL, Sadchikova ER, Kovrazhkina EA, Bachurin SO, Buchman VL, Ninkina NN. Early lethality and neuronal proteinopathy in mice expressing cytoplasm-targeted FUS that lacks the RNA recognition motif. Amyotroph Lateral Scler Frontotemporal Degener 2015; 16:402-9. [PMID: 25991062 DOI: 10.3109/21678421.2015.1040994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations to the RNA binding protein, fused in sarcoma (FUS) occur in ∼5% of familial ALS and FUS-positive cytoplasmic inclusions are commonly observed in these patients. Altered RNA metabolism is increasingly implicated in ALS, yet it is not understood how the specificity with which FUS interacts with RNA in the cytoplasm can affect its aggregation in vivo. To further understand this, we expressed, in mice, a form of FUS (FUS ΔRRMcyt) that lacked the RNA recognition motif (RRM), thought to impart specificity to FUS-RNA interactions, and carried an ALS-associated point mutation, R522G, retaining the protein in the cytoplasm. Here we report the phenotype and results of histological assessment of the brain of transgenic mice expressing this isoform of FUS. Results demonstrated that neuronal expression of FUS ΔRRMcyt caused early lethality often preceded by severe tremor. Large FUS-positive cytoplasmic inclusions were found in many brain neurons; however, neither neuronal loss nor neuroinflammatory response was observed. In conclusion, the extensive FUS proteinopathy and severe phenotype of these mice suggests that affecting the interactions of FUS with RNA in vivo may augment its aggregation in the neuronal cytoplasm and the severity of disease processes.
Collapse
Affiliation(s)
- Hannah K Robinson
- a School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue , Cardiff , UK
| | - Alexey V Deykin
- b Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russian Federation
| | - Evgeny V Bronovitsky
- c Institute of Physiologically Active Compounds Russian Academy of Sciences , Chernogolovka, Moscow Region , Russian Federation
| | - Ruslan K Ovchinnikov
- c Institute of Physiologically Active Compounds Russian Academy of Sciences , Chernogolovka, Moscow Region , Russian Federation
| | - Alexey A Ustyugov
- a School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue , Cardiff , UK.,c Institute of Physiologically Active Compounds Russian Academy of Sciences , Chernogolovka, Moscow Region , Russian Federation
| | - Tatyana A Shelkovnikova
- a School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue , Cardiff , UK.,c Institute of Physiologically Active Compounds Russian Academy of Sciences , Chernogolovka, Moscow Region , Russian Federation
| | - Michail S Kukharsky
- c Institute of Physiologically Active Compounds Russian Academy of Sciences , Chernogolovka, Moscow Region , Russian Federation
| | - Tatyana G Ermolkevich
- b Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russian Federation
| | - Igor L Goldman
- b Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russian Federation
| | - Elena R Sadchikova
- b Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russian Federation
| | - Elena A Kovrazhkina
- d Pirogov Russian National Research Medical University , Moscow , Russian Federation
| | - Sergey O Bachurin
- c Institute of Physiologically Active Compounds Russian Academy of Sciences , Chernogolovka, Moscow Region , Russian Federation
| | - Vladimir L Buchman
- a School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue , Cardiff , UK
| | - Natalia N Ninkina
- a School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue , Cardiff , UK.,c Institute of Physiologically Active Compounds Russian Academy of Sciences , Chernogolovka, Moscow Region , Russian Federation
| |
Collapse
|
70
|
Bahrami-Samani E, Vo DT, de Araujo PR, Vogel C, Smith AD, Penalva LOF, Uren PJ. Computational challenges, tools, and resources for analyzing co- and post-transcriptional events in high throughput. WILEY INTERDISCIPLINARY REVIEWS. RNA 2015; 6:291-310. [PMID: 25515586 PMCID: PMC4397117 DOI: 10.1002/wrna.1274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 11/10/2022]
Abstract
Co- and post-transcriptional regulation of gene expression is complex and multifaceted, spanning the complete RNA lifecycle from genesis to decay. High-throughput profiling of the constituent events and processes is achieved through a range of technologies that continue to expand and evolve. Fully leveraging the resulting data is nontrivial, and requires the use of computational methods and tools carefully crafted for specific data sources and often intended to probe particular biological processes. Drawing upon databases of information pre-compiled by other researchers can further elevate analyses. Within this review, we describe the major co- and post-transcriptional events in the RNA lifecycle that are amenable to high-throughput profiling. We place specific emphasis on the analysis of the resulting data, in particular the computational tools and resources available, as well as looking toward future challenges that remain to be addressed.
Collapse
Affiliation(s)
- Emad Bahrami-Samani
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Dat T. Vo
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Patricia Rosa de Araujo
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY
| | - Andrew D. Smith
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Luiz O. F. Penalva
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Philip J. Uren
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| |
Collapse
|
71
|
Nussbacher JK, Batra R, Lagier-Tourenne C, Yeo GW. RNA-binding proteins in neurodegeneration: Seq and you shall receive. Trends Neurosci 2015; 38:226-36. [PMID: 25765321 PMCID: PMC4403644 DOI: 10.1016/j.tins.2015.02.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 12/13/2022]
Abstract
As critical players in gene regulation, RNA binding proteins (RBPs) are taking center stage in our understanding of cellular function and disease. In our era of bench-top sequencers and unprecedented computational power, biological questions can be addressed in a systematic, genome-wide manner. Development of high-throughput sequencing (Seq) methodologies provides unparalleled potential to discover new mechanisms of disease-associated perturbations of RNA homeostasis. Complementary to candidate single-gene studies, these innovative technologies may elicit the discovery of unexpected mechanisms, and enable us to determine the widespread influence of the multifunctional RBPs on their targets. Given that the disruption of RNA processing is increasingly implicated in neurological diseases, these approaches will continue to provide insights into the roles of RBPs in disease pathogenesis.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecule Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ranjan Batra
- Department of Cellular and Molecule Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA.
| | - Gene W Yeo
- Department of Cellular and Molecule Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA; Department of Physiology, National University of Singapore, Singapore.
| |
Collapse
|
72
|
Walsh MJ, Cooper-Knock J, Dodd JE, Stopford MJ, Mihaylov SR, Kirby J, Shaw PJ, Hautbergue GM. Invited review: decoding the pathophysiological mechanisms that underlie RNA dysregulation in neurodegenerative disorders: a review of the current state of the art. Neuropathol Appl Neurobiol 2015; 41:109-34. [PMID: 25319671 PMCID: PMC4329338 DOI: 10.1111/nan.12187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022]
Abstract
Altered RNA metabolism is a key pathophysiological component causing several neurodegenerative diseases. Genetic mutations causing neurodegeneration occur in coding and noncoding regions of seemingly unrelated genes whose products do not always contribute to the gene expression process. Several pathogenic mechanisms may coexist within a single neuronal cell, including RNA/protein toxic gain-of-function and/or protein loss-of-function. Genetic mutations that cause neurodegenerative disorders disrupt healthy gene expression at diverse levels, from chromatin remodelling, transcription, splicing, through to axonal transport and repeat-associated non-ATG (RAN) translation. We address neurodegeneration in repeat expansion disorders [Huntington's disease, spinocerebellar ataxias, C9ORF72-related amyotrophic lateral sclerosis (ALS)] and in diseases caused by deletions or point mutations (spinal muscular atrophy, most subtypes of familial ALS). Some neurodegenerative disorders exhibit broad dysregulation of gene expression with the synthesis of hundreds to thousands of abnormal messenger RNA (mRNA) molecules. However, the number and identity of aberrant mRNAs that are translated into proteins - and how these lead to neurodegeneration - remain unknown. The field of RNA biology research faces the challenge of identifying pathophysiological events of dysregulated gene expression. In conclusion, we discuss current research limitations and future directions to improve our characterization of pathological mechanisms that trigger disease onset and progression.
Collapse
Affiliation(s)
- M J Walsh
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J E Dodd
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - M J Stopford
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - S R Mihaylov
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - G M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| |
Collapse
|
73
|
ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nat Commun 2015; 6:6171. [PMID: 25625564 PMCID: PMC4338613 DOI: 10.1038/ncomms7171] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 12/23/2014] [Indexed: 12/12/2022] Open
Abstract
The RNA-binding protein FUS/TLS, mutation in which is causative of the fatal motor neuron disease ALS, is demonstrated to directly bind to the U1-snRNP and SMN complexes. ALS-causative mutations in FUS/TLS are shown to abnormally enhance their interaction with SMN and dysregulate its function, including loss of Gems and altered levels of small nuclear RNAs (snRNAs). The same mutants are found to have reduced association with U1-snRNP. Correspondingly, global RNA analysis reveals a mutant-dependent loss of splicing activity, with ALS-linked mutants failing to reverse changes caused by loss of wild-type FUS/TLS. Furthermore, a common FUS/TLS mutant-associated RNA splicing signature is identified in ALS patient fibroblasts. Taken together, these studies establish potentially converging disease mechanisms in ALS and spinal muscular atrophy, with ALS-causative mutants acquiring properties representing both gain (dysregulation of SMN) and loss (reduced RNA processing mediated by U1-snRNP) of function.
Collapse
|
74
|
A loss of FUS/TLS function leads to impaired cellular proliferation. Cell Death Dis 2014; 5:e1572. [PMID: 25501833 PMCID: PMC4649830 DOI: 10.1038/cddis.2014.508] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/12/2014] [Accepted: 10/21/2014] [Indexed: 12/13/2022]
Abstract
Fused in sarcoma/translocated in liposarcoma (FUS/TLS or FUS) is a multifunctional RNA/DNA-binding protein that is pathologically associated with cancer and neurodegeneration. To gain insight into the vital functions of FUS and how a loss of FUS function impacts cellular homeostasis, FUS expression was reduced in different cellular models through RNA interference. Our results show that a loss of FUS expression severely impairs cellular proliferation and leads to an increase in phosphorylated histone H3, a marker of mitotic arrest. A quantitative proteomics analysis performed on cells undergoing various degrees of FUS knockdown revealed protein expression changes for known RNA targets of FUS, consistent with a loss of FUS function with respect to RNA processing. Proteins that changed in expression as a function of FUS knockdown were associated with multiple processes, some of which influence cell proliferation including cell cycle regulation, cytoskeletal organization, oxidative stress and energy homeostasis. FUS knockdown also correlated with increased expression of the closely related protein EWS (Ewing's sarcoma). We demonstrate that the maladaptive phenotype resulting from FUS knockdown is reversible and can be rescued by re-expression of FUS or partially rescued by the small-molecule rolipram. These results provide insight into the pathways and processes that are regulated by FUS, as well as the cellular consequences for a loss of FUS function.
Collapse
|
75
|
Nuclear import factor transportin and arginine methyltransferase 1 modify FUS neurotoxicity in Drosophila. Neurobiol Dis 2014; 74:76-88. [PMID: 25447237 DOI: 10.1016/j.nbd.2014.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/14/2014] [Accepted: 11/03/2014] [Indexed: 12/13/2022] Open
Abstract
Inclusions containing Fused in Sarcoma (FUS) are found in familial and sporadic cases of the incurable progressive motor neuron disease amyotrophic lateral sclerosis and in a common form of dementia, frontotemporal dementia. Most disease-associated mutations are located in the C-terminal proline-tyrosine nuclear localization sequence (PY-NLS) of FUS and impair its nuclear import. It has been shown in cell culture that the nuclear import of FUS is mediated by transportin, which binds the PY-NLS and the last arginine/glycine/glycine-rich (RGG) domain of FUS. Methylation of this last RGG domain by protein arginine methyltransferases (PRMTs) weakens transportin binding and therefore impairs nuclear translocation of FUS. To investigate the requirements for the nuclear import of FUS in an in vivo model, we generated different transgenic Drosophila lines expressing human FUS wild type (hFUS wt) and two disease-related variants P525L and R495X, in which the NLS is mutated or completely absent, respectively. To rule out effects caused by heterologous hFUS expression, we analysed the corresponding variants for the Drosophila FUS orthologue Cabeza (Caz wt, P398L, Q349X). Expression of these variants in eyes and motor neurons confirmed the PY-NLS-dependent nuclear localization of FUS/Caz and caused neurodegenerative effects. Surprisingly, FUS/Caz toxicity was correlated to the degree of its nuclear localization in this overexpression model. High levels of nuclear FUS/Caz became insoluble and reduced the endogenous Caz levels, confirming FUS autoregulation in Drosophila. RNAi-mediated knockdown of the two transportin orthologues interfered with the nuclear import of FUS/Caz and also enhanced the eye phenotype. Finally, we screened the Drosophila PRMT proteins (DART1-9) and found that knockdown of Dart1 led to a reduction in methylation of hFUS P525L and aggravated its phenotype. These findings show that the molecular mechanisms controlling the nuclear import of FUS/Caz and FUS autoregulation are conserved between humans and Drosophila. In addition to the well-known neurodegenerative effects of FUS loss-of function, our data suggest toxic potential of overexpressed FUS in the nucleus and of insoluble FUS.
Collapse
|
76
|
Abstract
Coherent splicing networks arise from many discrete splicing decisions regulated in unison. Here, we examine the properties of robust, context-specific splicing networks. We propose that a subset of key splicing regulators, or "master splicing factors," respond to environmental cues to establish and maintain tissue transcriptomes during development.
Collapse
Affiliation(s)
- Mohini Jangi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Phillip A Sharp
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
77
|
Doxakis E. RNA binding proteins: a common denominator of neuronal function and dysfunction. Neurosci Bull 2014; 30:610-26. [PMID: 24962082 DOI: 10.1007/s12264-014-1443-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/28/2014] [Indexed: 12/13/2022] Open
Abstract
In eukaryotic cells, gene activity is not directly reflected by protein levels because mRNA processing, transport, stability, and translation are co- and post-transcriptionally regulated. These processes, collectively known as the ribonome, are tightly controlled and carried out by a plethora of trans-acting RNA-binding proteins (RBPs) that bind to specific cis elements throughout the RNA sequence. Within the nervous system, the role of RBPs in brain function turns out to be essential due to the architectural complexity of neurons exemplified by a relatively small somal size and an extensive network of projections and connections. Thus far, RBPs have been shown to be indispensable for several aspects of neurogenesis, neurite outgrowth, synapse formation, and plasticity. Consequently, perturbation of their function is central in the etiology of an ever-growing spectrum of neurological diseases, including fragile X syndrome and the neurodegenerative disorders frontotemporal lobar degeneration and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Epaminondas Doxakis
- Laboratory of Molecular and Cellular Neuroscience, Center of Basic Neuroscience, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, Athens, 11527, Greece,
| |
Collapse
|
78
|
Zhou Y, Liu S, Oztürk A, Hicks GG. FUS-regulated RNA metabolism and DNA damage repair: Implications for amyotrophic lateral sclerosis and frontotemporal dementia pathogenesis. Rare Dis 2014; 2:e29515. [PMID: 25083344 PMCID: PMC4116389 DOI: 10.4161/rdis.29515] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/29/2014] [Accepted: 06/06/2014] [Indexed: 12/13/2022] Open
Abstract
Cytoplasmic inclusion of RNA binding protein FUS/TLS in neurons and glial cells is a characteristic pathology of a subgroup of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Dysregulation of RNA metabolism caused by FUS cytoplasmic inclusion emerges to be a key event in FUS-associated ALS/FTD pathogenesis. Our recent discovery of a FUS autoregulatory mechanism and its dysregulation in ALS-FUS mutants demonstrated that dysregulated alternative splicing can directly exacerbate the pathological FUS accumulation. We show here that FUS targets RNA for pre-mRNA alternative splicing and for the processing of long intron-containing transcripts, and that these targets are enriched for genes in neurogenesis and gene expression regulation. We also identify that FUS RNA targets are enriched for genes in the DNA damage response pathway. Together, the data support a model in which dysregulated RNA metabolism and DNA damage repair together may render neurons more vulnerable and accelerate neurodegeneration in ALS and FTD.
Collapse
Affiliation(s)
- Yueqin Zhou
- Manitoba Institute of Cell Biology; Department of Biochemistry & Medical Genetics; Regenerative Medicine Program; University of Manitoba; Winnipeg, MB Canada
| | - Songyan Liu
- Manitoba Institute of Cell Biology; Department of Biochemistry & Medical Genetics; Regenerative Medicine Program; University of Manitoba; Winnipeg, MB Canada ; Faculty of Pharmacy; University of Manitoba; Winnipeg, MB Canada
| | - Arzu Oztürk
- Manitoba Institute of Cell Biology; Department of Biochemistry & Medical Genetics; Regenerative Medicine Program; University of Manitoba; Winnipeg, MB Canada
| | - Geoffrey G Hicks
- Manitoba Institute of Cell Biology; Department of Biochemistry & Medical Genetics; Regenerative Medicine Program; University of Manitoba; Winnipeg, MB Canada
| |
Collapse
|
79
|
Sama RRK, Ward CL, Bosco DA. Functions of FUS/TLS from DNA repair to stress response: implications for ALS. ASN Neuro 2014; 6:6/4/1759091414544472. [PMID: 25289647 PMCID: PMC4189536 DOI: 10.1177/1759091414544472] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fused in sarcoma/translocated in liposarcoma (FUS/TLS or FUS) is a multifunctional DNA-/RNA-binding protein that is involved in a variety of cellular functions including transcription, protein translation, RNA splicing, and transport. FUS was initially identified as a fusion oncoprotein, and thus, the early literature focused on the role of FUS in cancer. With the recent discoveries revealing the role of FUS in neurodegenerative diseases, namely amyotrophic lateral sclerosis and frontotemporal lobar degeneration, there has been a renewed interest in elucidating the normal functions of FUS. It is not clear which, if any, endogenous functions of FUS are involved in disease pathogenesis. Here, we review what is currently known regarding the normal functions of FUS with an emphasis on DNA damage repair, RNA processing, and cellular stress response. Further, we discuss how ALS-causing mutations can potentially alter the role of FUS in these pathways, thereby contributing to disease pathogenesis.
Collapse
Affiliation(s)
| | - Catherine L Ward
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
80
|
Dhar SK, Zhang J, Gal J, Xu Y, Miao L, Lynn BC, Zhu H, Kasarskis EJ, St Clair DK. FUsed in sarcoma is a novel regulator of manganese superoxide dismutase gene transcription. Antioxid Redox Signal 2014; 20:1550-66. [PMID: 23834335 PMCID: PMC3942683 DOI: 10.1089/ars.2012.4984] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS FUsed in sarcoma (FUS) is a multifunctional DNA/RNA-binding protein that possesses diverse roles, such as RNA splicing, RNA transport, DNA repair, translation, and transcription. The network of enzymes and processes regulated by FUS is far from being fully described. In this study, we have focused on the mechanisms of FUS-regulated manganese superoxide dismutase (MnSOD) gene transcription. RESULTS Here we demonstrate that FUS is a component of the transcription complex that regulates the expression of MnSOD. Overexpression of FUS increased MnSOD expression in a dose-dependent manner and knockdown of FUS by siRNA led to the inhibition of MnSOD gene transcription. Reporter analyses, chromatin immunoprecipitation assay, electrophoretic mobility shift assay, affinity chromatography, and surface plasmon resonance analyses revealed the far upstream region of MnSOD promoter as an important target of FUS-mediated MnSOD transcription and confirmed that FUS binds to the MnSOD promoter and interacts with specificity protein 1 (Sp1). Importantly, overexpression of familial amyotropic lateral sclerosis (fALS)-linked R521G mutant FUS resulted in a significantly reduced level of MnSOD expression and activity, which is consistent with the decline in MnSOD activity observed in fibroblasts from fALS patients with the R521G mutation. R521G-mutant FUS abrogates MnSOD promoter-binding activity and interaction with Sp1. INNOVATION AND CONCLUSION This study identifies FUS as playing a critical role in MnSOD gene transcription and reveals a previously unrecognized relationship between MnSOD and mutant FUS in fALS.
Collapse
Affiliation(s)
- Sanjit Kumar Dhar
- 1 Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Caillet-Boudin ML, Fernandez-Gomez FJ, Tran H, Dhaenens CM, Buee L, Sergeant N. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy. Front Mol Neurosci 2014; 6:57. [PMID: 24409116 PMCID: PMC3885824 DOI: 10.3389/fnmol.2013.00057] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/20/2013] [Indexed: 01/18/2023] Open
Abstract
Myotonic dystrophy (DM) of type 1 and 2 (DM1 and DM2) are inherited autosomal dominant diseases caused by dynamic and unstable expanded microsatellite sequences (CTG and CCTG, respectively) in the non-coding regions of the genes DMPK and ZNF9, respectively. These mutations result in the intranuclear accumulation of mutated transcripts and the mis-splicing of numerous transcripts. This so-called RNA gain of toxic function is the main feature of an emerging group of pathologies known as RNAopathies. Interestingly, in addition to these RNA inclusions, called foci, the presence of neurofibrillary tangles (NFT) in patient brains also distinguishes DM as a tauopathy. Tauopathies are a group of nearly 30 neurodegenerative diseases that are characterized by intraneuronal protein aggregates of the microtubule-associated protein Tau (MAPT) in patient brains. Furthermore, a number of neurodegenerative diseases involve the dysregulation of splicing regulating factors and have been characterized as spliceopathies. Thus, myotonic dystrophies are pathologies resulting from the interplay among RNAopathy, spliceopathy, and tauopathy. This review will describe how these processes contribute to neurodegeneration. We will first focus on the tauopathy associated with DM1, including clinical symptoms, brain histology, and molecular mechanisms. We will also discuss the features of DM1 that are shared by other tauopathies and, consequently, might participate in the development of a tauopathy. Moreover, we will discuss the determinants common to both RNAopathies and spliceopathies that could interfere with tau-related neurodegeneration.
Collapse
Affiliation(s)
- Marie-Laure Caillet-Boudin
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Francisco-Jose Fernandez-Gomez
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Hélène Tran
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Claire-Marie Dhaenens
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Luc Buee
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Nicolas Sergeant
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| |
Collapse
|
82
|
Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 2013; 79:416-38. [PMID: 23931993 DOI: 10.1016/j.neuron.2013.07.033] [Citation(s) in RCA: 1339] [Impact Index Per Article: 111.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2013] [Indexed: 12/12/2022]
Abstract
Breakthrough discoveries identifying common genetic causes for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have transformed our view of these disorders. They share unexpectedly similar signatures, including dysregulation in common molecular players including TDP-43, FUS/TLS, ubiquilin-2, VCP, and expanded hexanucleotide repeats within the C9ORF72 gene. Dysfunction in RNA processing and protein homeostasis is an emerging theme. We present the case here that these two processes are intimately linked, with disease-initiated perturbation of either leading to further deviation of both protein and RNA homeostasis through a feedforward loop including cell-to-cell prion-like spread that may represent the mechanism for relentless disease progression.
Collapse
Affiliation(s)
- Shuo-Chien Ling
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093-0670, USA
| | | | | |
Collapse
|
83
|
Iguchi Y, Katsuno M, Ikenaka K, Ishigaki S, Sobue G. Amyotrophic lateral sclerosis: an update on recent genetic insights. J Neurol 2013; 260:2917-27. [PMID: 24085347 DOI: 10.1007/s00415-013-7112-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting both upper and lower motor neurons. The prognosis for ALS is extremely poor, but there is a limited course of treatment with only one approved medication. A most striking recent discovery is that TDP-43 is identified as a key molecule that is associated with both sporadic and familial forms of ALS. TDP-43 is not only a pathological hallmark, but also a genetic cause for ALS. Subsequently, a number of ALS-causative genes have been found. Above all, the RNA-binding protein, such as FUS, TAF15, EWSR1 and hnRNPA1, have structural and functional similarities to TDP-43, and physiological functions of some molecules, including VCP, UBQLN2, OPTN, FIG4 and SQSTM1, are involved in a protein degradation system. These discoveries provide valuable insight into the pathogenesis of ALS, and open doors for developing an effective disease-modifying therapy.
Collapse
Affiliation(s)
- Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | | | | | | | | |
Collapse
|
84
|
Zhou Y, Liu S, Liu G, Öztürk A, Hicks GG. ALS-associated FUS mutations result in compromised FUS alternative splicing and autoregulation. PLoS Genet 2013; 9:e1003895. [PMID: 24204307 PMCID: PMC3814325 DOI: 10.1371/journal.pgen.1003895] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 09/05/2013] [Indexed: 12/13/2022] Open
Abstract
The gene encoding a DNA/RNA binding protein FUS/TLS is frequently mutated in amyotrophic lateral sclerosis (ALS). Mutations commonly affect its carboxy-terminal nuclear localization signal, resulting in varying deficiencies of FUS nuclear localization and abnormal cytoplasmic accumulation. Increasing evidence suggests deficiencies in FUS nuclear function may contribute to neuron degeneration. Here we report a novel FUS autoregulatory mechanism and its deficiency in ALS-associated mutants. Using FUS CLIP-seq, we identified significant FUS binding to a highly conserved region of exon 7 and the flanking introns of its own pre-mRNAs. We demonstrated that FUS is a repressor of exon 7 splicing and that the exon 7-skipped splice variant is subject to nonsense-mediated decay (NMD). Overexpression of FUS led to the repression of exon 7 splicing and a reduction of endogenous FUS protein. Conversely, the repression of exon 7 was reduced by knockdown of FUS protein, and moreover, it was rescued by expression of EGFP-FUS. This dynamic regulation of alternative splicing describes a novel mechanism of FUS autoregulation. Given that ALS-associated FUS mutants are deficient in nuclear localization, we examined whether cells expressing these mutants would be deficient in repressing exon 7 splicing. We showed that FUS harbouring R521G, R522G or ΔExon15 mutation (minor, moderate or severe cytoplasmic localization, respectively) directly correlated with respectively increasing deficiencies in both exon 7 repression and autoregulation of its own protein levels. These data suggest that compromised FUS autoregulation can directly exacerbate the pathogenic accumulation of cytoplasmic FUS protein in ALS. We showed that exon 7 skipping can be induced by antisense oligonucleotides targeting its flanking splice sites, indicating the potential to alleviate abnormal cytoplasmic FUS accumulation in ALS. Taken together, FUS autoregulation by alternative splicing provides insight into a molecular mechanism by which FUS-regulated pre-mRNA processing can impact a significant number of targets important to neurodegeneration.
Collapse
Affiliation(s)
- Yueqin Zhou
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Regenerative Medicine Program, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Songyan Liu
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Regenerative Medicine Program, University of Manitoba, Winnipeg, Manitoba, Canada
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Guodong Liu
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Regenerative Medicine Program, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arzu Öztürk
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Regenerative Medicine Program, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Geoffrey G. Hicks
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Regenerative Medicine Program, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
85
|
Orozco D, Edbauer D. FUS-mediated alternative splicing in the nervous system: consequences for ALS and FTLD. J Mol Med (Berl) 2013; 91:1343-54. [PMID: 23974990 DOI: 10.1007/s00109-013-1077-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022]
Abstract
Mutations in fused in sarcoma (FUS) in a subset of patients with amyotrophic lateral sclerosis (ALS) linked this DNA/RNA-binding protein to neurodegeneration. Most of the mutations disrupt the nuclear localization signal which strongly suggests a loss-of-function pathomechanism, supported by cytoplasmic inclusions. FUS-positive neuronal cytoplasmic inclusions are also found in a subset of patients with frontotemporal lobar degeneration (FTLD). Here, we discuss recent data on the role of alternative splicing in FUS-mediated pathology in the central nervous system. Several groups have shown that FUS binds broadly to many transcripts in the brain and have also identified a plethora of putative splice targets; however, only ABLIM1, BRAF, Ewing sarcoma protein R1 (EWSR1), microtubule-associated protein tau (MAPT), NgCAM cell adhesion molecule (NRCAM), and netrin G1 (NTNG1) have been identified in at least three of four studies. Gene ontology analysis of all putative targets unanimously suggests a role in axon growth and cytoskeletal organization, consistent with the altered morphology of dendritic spines and axonal growth cones reported upon loss of FUS. Among the axonal targets, MAPT/tau and NTNG1 have been further validated in biochemical studies. The next challenge will be to confirm changes of FUS-mediated alternative splicing in patients and define their precise role in the pathophysiology of ALS and FTLD.
Collapse
Affiliation(s)
- Denise Orozco
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | |
Collapse
|