51
|
Boivin V, Deschamps-Francoeur G, Couture S, Nottingham RM, Bouchard-Bourelle P, Lambowitz AM, Scott MS, Abou-Elela S. Simultaneous sequencing of coding and noncoding RNA reveals a human transcriptome dominated by a small number of highly expressed noncoding genes. RNA (NEW YORK, N.Y.) 2018; 24:950-965. [PMID: 29703781 PMCID: PMC6004057 DOI: 10.1261/rna.064493.117] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/24/2018] [Indexed: 06/01/2023]
Abstract
Comparing the abundance of one RNA molecule to another is crucial for understanding cellular functions but most sequencing techniques can target only specific subsets of RNA. In this study, we used a new fragmented ribodepleted TGIRT sequencing method that uses a thermostable group II intron reverse transcriptase (TGIRT) to generate a portrait of the human transcriptome depicting the quantitative relationship of all classes of nonribosomal RNA longer than 60 nt. Comparison between different sequencing methods indicated that FRT is more accurate in ranking both mRNA and noncoding RNA than viral reverse transcriptase-based sequencing methods, even those that specifically target these species. Measurements of RNA abundance in different cell lines using this method correlate with biochemical estimates, confirming tRNA as the most abundant nonribosomal RNA biotype. However, the single most abundant transcript is 7SL RNA, a component of the signal recognition particle. Structured noncoding RNAs (sncRNAs) associated with the same biological process are expressed at similar levels, with the exception of RNAs with multiple functions like U1 snRNA. In general, sncRNAs forming RNPs are hundreds to thousands of times more abundant than their mRNA counterparts. Surprisingly, only 50 sncRNA genes produce half of the non-rRNA transcripts detected in two different cell lines. Together the results indicate that the human transcriptome is dominated by a small number of highly expressed sncRNAs specializing in functions related to translation and splicing.
Collapse
Affiliation(s)
- Vincent Boivin
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Gabrielle Deschamps-Francoeur
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Sonia Couture
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Ryan M Nottingham
- Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Philia Bouchard-Bourelle
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Michelle S Scott
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Sherif Abou-Elela
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
52
|
Mohr G, Kang SYS, Park SK, Qin Y, Grohman J, Yao J, Stamos JL, Lambowitz AM. A Highly Proliferative Group IIC Intron from Geobacillus stearothermophilus Reveals New Features of Group II Intron Mobility and Splicing. J Mol Biol 2018; 430:2760-2783. [PMID: 29913158 DOI: 10.1016/j.jmb.2018.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/01/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022]
Abstract
The thermostable Geobacillus stearothermophilus GsI-IIC intron is among the few bacterial group II introns found to proliferate to high copy number in its host genome. Here, we developed a bacterial genetic assay for retrohoming and biochemical assays for protein-dependent and self-splicing of GsI-IIC. We found that GsI-IIC, like other group IIC introns, retrohomes into sites having a 5'-exon DNA hairpin, typically from a bacterial transcription terminator, followed by short intron-binding sequences (IBSs) recognized by base pairing of exon-binding sequences (EBSs) in the intron RNA. Intron RNA insertion occurs preferentially but not exclusively into the parental lagging strand at DNA replication forks, using a nascent lagging strand DNA as a primer for reverse transcription. In vivo mobility assays, selections, and mutagenesis indicated that a variety of GC-rich DNA hairpins of 7-19 bp with continuous base pairs or internal elbow regions support efficient intron mobility and identified a critically recognized nucleotide (T-5) between the hairpin and IBS1, a feature not reported previously for group IIC introns. Neither the hairpin nor T-5 is required for intron excision or lariat formation during RNA splicing, but the 5'-exon sequence can affect the efficiency of exon ligation. Structural modeling suggests that the 5'-exon DNA hairpin and T-5 bind to the thumb and DNA-binding domains of GsI-IIC reverse transcriptase. This mode of DNA target site recognition enables the intron to proliferate to high copy number by recognizing numerous transcription terminators and then finding the best match for the EBS/IBS interactions within a short distance downstream.
Collapse
Affiliation(s)
- Georg Mohr
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Sean Yoon-Seo Kang
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Seung Kuk Park
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yidan Qin
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jacob Grohman
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Yao
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer L Stamos
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
53
|
Stojković V, Chu T, Therizols G, Weinberg DE, Fujimori DG. miCLIP-MaPseq, a Substrate Identification Approach for Radical SAM RNA Methylating Enzymes. J Am Chem Soc 2018; 140:7135-7143. [PMID: 29782154 DOI: 10.1021/jacs.8b02618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although present across bacteria, the large family of radical SAM RNA methylating enzymes is largely uncharacterized. Escherichia coli RlmN, the founding member of the family, methylates an adenosine in 23S rRNA and several tRNAs to yield 2-methyladenosine (m2A). However, varied RNA substrate specificity among RlmN enzymes, combined with the ability of certain family members to generate 8-methyladenosine (m8A), makes functional predictions across this family challenging. Here, we present a method for unbiased substrate identification that exploits highly efficient, mechanism-based cross-linking between the enzyme and its RNA substrates. Additionally, by determining that the thermostable group II intron reverse transcriptase introduces mismatches at the site of the cross-link, we have identified the precise positions of RNA modification using mismatch profiling. These results illustrate the capability of our method to define enzyme-substrate pairs and determine modification sites of the largely uncharacterized radical SAM RNA methylating enzyme family.
Collapse
Affiliation(s)
- Vanja Stojković
- Department of Cellular and Molecular Pharmacology , University of California , San Francisco , California 94158 , United States
| | - Tongyue Chu
- Department of Cellular and Molecular Pharmacology , University of California , San Francisco , California 94158 , United States
| | - Gabriel Therizols
- Department of Cellular and Molecular Pharmacology , University of California , San Francisco , California 94158 , United States
| | - David E Weinberg
- Department of Cellular and Molecular Pharmacology , University of California , San Francisco , California 94158 , United States
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology , University of California , San Francisco , California 94158 , United States.,Department of Pharmaceutical Chemistry , University of California , 600 16th Street, MC2280 San Francisco , California 94158 , United States
| |
Collapse
|
54
|
Boone M, De Koker A, Callewaert N. Capturing the 'ome': the expanding molecular toolbox for RNA and DNA library construction. Nucleic Acids Res 2018; 46:2701-2721. [PMID: 29514322 PMCID: PMC5888575 DOI: 10.1093/nar/gky167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/05/2018] [Accepted: 02/23/2018] [Indexed: 12/14/2022] Open
Abstract
All sequencing experiments and most functional genomics screens rely on the generation of libraries to comprehensively capture pools of targeted sequences. In the past decade especially, driven by the progress in the field of massively parallel sequencing, numerous studies have comprehensively assessed the impact of particular manipulations on library complexity and quality, and characterized the activities and specificities of several key enzymes used in library construction. Fortunately, careful protocol design and reagent choice can substantially mitigate many of these biases, and enable reliable representation of sequences in libraries. This review aims to guide the reader through the vast expanse of literature on the subject to promote informed library generation, independent of the application.
Collapse
Affiliation(s)
- Morgane Boone
- Center for Medical Biotechnology, VIB, Zwijnaarde 9052, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Andries De Koker
- Center for Medical Biotechnology, VIB, Zwijnaarde 9052, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Nico Callewaert
- Center for Medical Biotechnology, VIB, Zwijnaarde 9052, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
55
|
Zhao C, Liu F, Pyle AM. An ultraprocessive, accurate reverse transcriptase encoded by a metazoan group II intron. RNA (NEW YORK, N.Y.) 2018; 24:183-195. [PMID: 29109157 PMCID: PMC5769746 DOI: 10.1261/rna.063479.117] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/31/2017] [Indexed: 05/24/2023]
Abstract
Group II introns and non-LTR retrotransposons encode a phylogenetically related family of highly processive reverse transcriptases (RTs) that are essential for mobility and persistence of these retroelements. Recent crystallographic studies on members of this RT family have revealed that they are structurally distinct from the retroviral RTs that are typically used in biotechnology. However, quantitative, structure-guided analysis of processivity, efficiency, and accuracy of this alternate RT family has been lacking. Here, we characterize the processivity of a group II intron maturase RT from Eubacterium rectale (E.r), for which high-resolution structural information is available. We find that the E.r. maturase RT (MarathonRT) efficiently copies transcripts at least 10 kb in length and displays superior intrinsic RT processivity compared to commercial enzymes such as Superscript IV (SSIV). The elevated processivity of MarathonRT is at least partly mediated by a loop structure in the finger subdomain that acts as a steric guard (the α-loop). Additionally, we find that a positively charged secondary RNA binding site on the surface of the RT diminishes the primer utilization efficiency of the enzyme, and that reengineering of this surface enhances capabilities of the MarathonRT. Finally, using single-molecule sequencing, we show that the error frequency of MarathonRT is comparable to that of other high-performance RTs, such as SSIV, which were tested in parallel. Our results provide a structural framework for understanding the enhanced processivity of retroelement RTs, and they demonstrate the potential for engineering a powerful new generation of RT tools for application in biotechnology and research.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Fei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
56
|
Stamos JL, Lentzsch AM, Lambowitz AM. Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications. Mol Cell 2017; 68:926-939.e4. [PMID: 29153391 DOI: 10.1016/j.molcel.2017.10.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/29/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022]
Abstract
Bacterial group II intron reverse transcriptases (RTs) function in both intron mobility and RNA splicing and are evolutionary predecessors of retrotransposon, telomerase, and retroviral RTs as well as the spliceosomal protein Prp8 in eukaryotes. Here we determined a crystal structure of a full-length thermostable group II intron RT in complex with an RNA template-DNA primer duplex and incoming deoxynucleotide triphosphate (dNTP) at 3.0-Å resolution. We find that the binding of template-primer and key aspects of the RT active site are surprisingly different from retroviral RTs but remarkably similar to viral RNA-dependent RNA polymerases. The structure reveals a host of features not seen previously in RTs that may contribute to distinctive biochemical properties of group II intron RTs, and it provides a prototype for many related bacterial and eukaryotic non-LTR retroelement RTs. It also reveals how protein structural features used for reverse transcription evolved to promote the splicing of both group II and spliceosomal introns.
Collapse
Affiliation(s)
- Jennifer L Stamos
- Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Alfred M Lentzsch
- Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
57
|
Abstract
Cells release vesicles containing selectively packaged cargo, including RNA, into the extracellular environment. Prior studies have identified RNA inside extracellular vesicles (EVs), but due to limitations of conventional sequencing methods, highly structured and posttranscriptionally modified RNA species were not effectively captured. Using an alternative sequencing approach (thermostable group II intron reverse transcriptase sequencing, TGIRT-seq), we found that EVs contain abundant small noncoding RNA species, including full-length transfer RNAs and Y RNAs. Using a knockout cell line, we obtained evidence that the RNA-binding protein YBX1 plays a role in sorting small noncoding RNAs into a subpopulation of EVs termed exosomes. These experiments expand our understanding of EV–RNA composition and provide insights into how RNA is sorted into EVs for cellular export. RNA is secreted from cells enclosed within extracellular vesicles (EVs). Defining the RNA composition of EVs is challenging due to their coisolation with contaminants, lack of knowledge of the mechanisms of RNA sorting into EVs, and limitations of conventional RNA-sequencing methods. Here we present our observations using thermostable group II intron reverse transcriptase sequencing (TGIRT-seq) to characterize the RNA extracted from HEK293T cell EVs isolated by flotation gradient ultracentrifugation and from exosomes containing the tetraspanin CD63 further purified from the gradient fractions by immunoisolation. We found that EV-associated transcripts are dominated by full-length, mature transfer RNAs (tRNAs) and other small noncoding RNAs (ncRNAs) encapsulated within vesicles. A substantial proportion of the reads mapping to protein-coding genes, long ncRNAs, and antisense RNAs were due to DNA contamination on the surface of vesicles. Nevertheless, sequences mapping to spliced mRNAs were identified within HEK293T cell EVs and exosomes, among the most abundant being transcripts containing a 5′ terminal oligopyrimidine (5′ TOP) motif. Our results indicate that the RNA-binding protein YBX1, which is required for the sorting of selected miRNAs into exosomes, plays a role in the sorting of highly abundant small ncRNA species, including tRNAs, Y RNAs, and Vault RNAs. Finally, we obtained evidence for an EV-specific tRNA modification, perhaps indicating a role for posttranscriptional modification in the sorting of some RNA species into EVs. Our results suggest that EVs and exosomes could play a role in the purging and intercellular transfer of excess free RNAs, including full-length tRNAs and other small ncRNAs.
Collapse
|
58
|
Sexton AN, Wang PY, Rutenberg-Schoenberg M, Simon MD. Interpreting Reverse Transcriptase Termination and Mutation Events for Greater Insight into the Chemical Probing of RNA. Biochemistry 2017; 56:4713-4721. [PMID: 28820243 PMCID: PMC5648349 DOI: 10.1021/acs.biochem.7b00323] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chemical probing has the power to provide insight into RNA conformation in vivo and in vitro, but interpreting the results depends on methods to detect the chemically modified nucleotides. Traditionally, the presence of modified bases was inferred from their ability to halt reverse transcriptase during primer extension and the locations of termination sites observed by electrophoresis or sequencing. More recently, modification-induced mutations have been used as a readout for chemical probing data. Given the variable propensity for mismatch incorporation and read-through with different reverse transcriptases, we examined how termination and mutation events compare to each other in the same chemical probing experiments. We found that mutations and terminations induced by dimethyl sulfate probing are both specific for methylated bases, but these two measures have surprisingly little correlation and represent largely nonoverlapping indicators of chemical modification data. We also show that specific biases for modified bases depend partly on local sequence context and that different reverse transcriptases show different biases toward reading a modification as a stop or a mutation. These results support approaches that incorporate analysis of both termination and mutation events into RNA probing experiments.
Collapse
Affiliation(s)
- Alec N. Sexton
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Peter Y. Wang
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Michael Rutenberg-Schoenberg
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Matthew D. Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
59
|
Wu DC, Lambowitz AM. Facile single-stranded DNA sequencing of human plasma DNA via thermostable group II intron reverse transcriptase template switching. Sci Rep 2017; 7:8421. [PMID: 28827600 PMCID: PMC5566474 DOI: 10.1038/s41598-017-09064-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/20/2017] [Indexed: 01/30/2023] Open
Abstract
High-throughput single-stranded DNA sequencing (ssDNA-seq) of cell-free DNA from plasma and other bodily fluids is a powerful method for non-invasive prenatal testing, and diagnosis of cancers and other diseases. Here, we developed a facile ssDNA-seq method, which exploits a novel template-switching activity of thermostable group II intron reverse transcriptases (TGIRTs) for DNA-seq library construction. This activity enables TGIRT enzymes to initiate DNA synthesis directly at the 3′ end of a DNA strand while simultaneously attaching a DNA-seq adapter without end repair, tailing, or ligation. Initial experiments using this method to sequence E. coli genomic DNA showed that the TGIRT enzyme has surprisingly robust DNA polymerase activity. Further experiments showed that TGIRT-seq of plasma DNA from a healthy individual enables analysis of nucleosome positioning, transcription factor-binding sites, DNA methylation sites, and tissues-of-origin comparably to established methods, but with a simpler workflow that captures precise DNA ends.
Collapse
Affiliation(s)
- Douglas C Wu
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA. .,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA.
| |
Collapse
|
60
|
Boivin V, Deschamps-Francoeur G, Scott MS. Protein coding genes as hosts for noncoding RNA expression. Semin Cell Dev Biol 2017; 75:3-12. [PMID: 28811264 DOI: 10.1016/j.semcdb.2017.08.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/17/2022]
Abstract
With the emergence of high-throughput sequence characterization methods and the subsequent improvements in gene annotations, it is becoming increasingly clear that a large proportion of eukaryotic protein-coding genes (as many as 50% in human) serve as host genes for non-coding RNA genes. Amongst the most extensively characterized embedded non-coding RNA genes, small nucleolar RNAs and microRNAs represent abundant families. Encoded individually or clustered, in sense or antisense orientation with respect to their host and independently expressed or dependent on host expression, the genomic characteristics of embedded genes determine their biogenesis and the extent of their relationship with their host gene. Not only can host genes and the embedded genes they harbour be co-regulated and mutually modulate each other, many are functionally coupled playing a role in the same cellular pathways. And while host-non-coding RNA relationships can be highly conserved, mechanisms have been identified, and in particular an association with transposable elements, allowing the appearance of copies of non-coding genes nested in host genes, or the migration of embedded genes from one host gene to another. The study of embedded non-coding genes and their relationship with their host genes increases the complexity of cellular networks and provides important new regulatory links that are essential to properly understand cell function.
Collapse
Affiliation(s)
- Vincent Boivin
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Gabrielle Deschamps-Francoeur
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Michelle S Scott
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada.
| |
Collapse
|
61
|
Pozzi A, Plazzi F, Milani L, Ghiselli F, Passamonti M. SmithRNAs: Could Mitochondria "Bend" Nuclear Regulation? Mol Biol Evol 2017; 34:1960-1973. [PMID: 28444389 PMCID: PMC5850712 DOI: 10.1093/molbev/msx140] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Typically, animal mitochondria have very compact genomes, with few short intergenic regions, and no introns. Hence, it may seem that there is little space for unknown functions in mitochondrial DNA (mtDNA). However, mtDNA can also operate through RNA interference, as small non coding RNAs (sncRNAs) produced by mtDNA have already been proposed for humans. We sequenced sncRNA libraries from isolated mitochondria of Ruditapes philippinarum (Mollusca Bivalvia) gonads, a species with doubly uniparental inheritance of mitochondria, and identified several putative sncRNAs of mitochondrial origin. Some sncRNAs are transcribed by intergenic regions that form stable stem-hairpin structures, which makes them good miRNA-like candidates. We decided to name them small mitochondrial highly-transcribed RNAs (smithRNAs). Many concurrent data support that we have recovered sncRNAs of mitochondrial origin that might be involved in gonad formation and able to affect nuclear gene expression. This possibility has been never suggested before. If mtDNA can affect nuclear gene expression through RNA interference, this opens a plethora of new possibilities for it to interact with the nucleus, and makes metazoan mtDNA a much more complex genome than previously thought.
Collapse
Affiliation(s)
- Andrea Pozzi
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federico Plazzi
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Liliana Milani
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Passamonti
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
62
|
Burke JM, Kincaid RP, Nottingham RM, Lambowitz AM, Sullivan CS. DUSP11 activity on triphosphorylated transcripts promotes Argonaute association with noncanonical viral microRNAs and regulates steady-state levels of cellular noncoding RNAs. Genes Dev 2017; 30:2076-2092. [PMID: 27798849 PMCID: PMC5066614 DOI: 10.1101/gad.282616.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/02/2016] [Indexed: 12/22/2022]
Abstract
Here, Burke et al. delineate a new pathway for mammalian small RNAs to enter the RNAi gene silencing machinery. They show that DUSP11 directly dephosphorylates viral triphosphate ncRNA transcripts and that this is required for efficient silencing by RISC, suggesting that mammalian viral pathogens can use DUSP11 to generate atypical microRNAs. RNA silencing is a conserved eukaryotic gene expression regulatory mechanism mediated by small RNAs. In Caenorhabditis elegans, the accumulation of a distinct class of siRNAs synthesized by an RNA-dependent RNA polymerase (RdRP) requires the PIR-1 phosphatase. However, the function of PIR-1 in RNAi has remained unclear. Since mammals lack an analogous siRNA biogenesis pathway, an RNA silencing role for the mammalian PIR-1 homolog (dual specificity phosphatase 11 [DUSP11]) was unexpected. Here, we show that the RNA triphosphatase activity of DUSP11 promotes the RNA silencing activity of viral microRNAs (miRNAs) derived from RNA polymerase III (RNAP III) transcribed precursors. Our results demonstrate that DUSP11 converts the 5′ triphosphate of miRNA precursors to a 5′ monophosphate, promoting loading of derivative 5p miRNAs into Argonaute proteins via a Dicer-coupled 5′ monophosphate-dependent strand selection mechanism. This mechanistic insight supports a likely shared function for PIR-1 in C. elegans. Furthermore, we show that DUSP11 modulates the 5′ end phosphate group and/or steady-state level of several host RNAP III transcripts, including vault RNAs and Alu transcripts. This study shows that steady-state levels of select noncoding RNAs are regulated by DUSP11 and defines a previously unknown portal for small RNA-mediated silencing in mammals, revealing that DUSP11-dependent RNA silencing activities are shared among diverse metazoans.
Collapse
Affiliation(s)
- James M Burke
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,John Ring LaMontagne Center for Infectious Disease, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Rodney P Kincaid
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,John Ring LaMontagne Center for Infectious Disease, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Ryan M Nottingham
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Christopher S Sullivan
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA.,Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA.,John Ring LaMontagne Center for Infectious Disease, College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
63
|
Burke JM, Sullivan CS. DUSP11 - An RNA phosphatase that regulates host and viral non-coding RNAs in mammalian cells. RNA Biol 2017; 14:1457-1465. [PMID: 28296624 PMCID: PMC5785229 DOI: 10.1080/15476286.2017.1306169] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dual-specificity phosphatase 11 (DUSP11) is a conserved protein tyrosine phosphatase (PTP) in metazoans. The cellular substrates and physiologic activities of DUSP11 remain largely unknown. In nematodes, DUSP11 is required for normal development and RNA interference against endogenous RNAs (endo-RNAi) via molecular mechanisms that are not well understood. However, mammals lack analogous endo-RNAi pathways and consequently, a role for DUSP11 in mammalian RNA silencing was unanticipated. Recent work from our laboratory demonstrated that DUSP11 activity alters the silencing potential of noncanonical viral miRNAs in mammalian cells. Our studies further uncovered direct cellular substrates of DUSP11 and suggest that DUSP11 is part of regulatory pathway that controls the abundance of select triphosphorylated noncoding RNAs. Here, we highlight recent findings and present new data that advance understanding of mammalian DUSP11 during gene silencing and discuss the emerging biological activities of DUSP11 in mammalian cells.
Collapse
Affiliation(s)
- James M Burke
- a The University of Texas at Austin , Center for Systems and Synthetic Biology, Center for Infectious Disease and Department of Molecular Biosciences , Austin , TX , USA
| | - Christopher S Sullivan
- a The University of Texas at Austin , Center for Systems and Synthetic Biology, Center for Infectious Disease and Department of Molecular Biosciences , Austin , TX , USA
| |
Collapse
|
64
|
Translation complex profile sequencing to study the in vivo dynamics of mRNA–ribosome interactions during translation initiation, elongation and termination. Nat Protoc 2017; 12:697-731. [DOI: 10.1038/nprot.2016.189] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
65
|
|
66
|
Abstract
The transcriptome is a powerful proxy for the physiological state of a cell, healthy or diseased. As a result, transcriptome analysis has become a key tool in understanding the molecular changes that accompany bacterial infections of eukaryotic cells. Until recently, such transcriptomic studies have been technically limited to analyzing mRNA expression changes in either the bacterial pathogen or the infected eukaryotic host cell. However, the increasing sensitivity of high-throughput RNA sequencing now enables "dual RNA-seq" studies, simultaneously capturing all classes of coding and noncoding transcripts in both the pathogen and the host. In the five years since the concept of dual RNA-seq was introduced, the technique has been applied to a range of infection models. This has not only led to a better understanding of the physiological changes in pathogen and host during the course of an infection but has also revealed hidden molecular phenotypes of virulence-associated small noncoding RNAs that were not visible in standard infection assays. Here, we use the knowledge gained from these recent studies to suggest experimental and computational guidelines for the design of future dual RNA-seq studies. We conclude this review by discussing prospective applications of the technique.
Collapse
Affiliation(s)
- Alexander J. Westermann
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
- * E-mail:
| |
Collapse
|