51
|
Abstract
This protocol is an extension to: Nat. Protoc. 10, 1643-1669 (2015); doi:10.1038/nprot.2015.103; published online 01 October 2015RNAs play key roles in many cellular processes. The underlying structure of RNA is an important determinant of how transcripts function, are processed, and interact with RNA-binding proteins and ligands. RNA structure analysis by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) takes advantage of the reactivity of small electrophilic chemical probes that react with the 2'-hydroxyl group to assess RNA structure at nucleotide resolution. When coupled with mutational profiling (MaP), in which modified nucleotides are detected as internal miscodings during reverse transcription and then read out by massively parallel sequencing, SHAPE yields quantitative per-nucleotide measurements of RNA structure. Here, we provide an extension to our previous in vitro SHAPE-MaP protocol with detailed guidance for undertaking and analyzing SHAPE-MaP probing experiments in live cells. The MaP strategy works for both abundant-transcriptome experiments and for cellular RNAs of low to moderate abundance, which are not well examined by whole-transcriptome methods. In-cell SHAPE-MaP, performed in roughly 3 d, can be applied in cell types ranging from bacteria to cultured mammalian cells and is compatible with a variety of structure-probing reagents. We detail several strategies by which in-cell SHAPE-MaP can inform new biological hypotheses and emphasize downstream analyses that reveal sequence or structure motifs important for RNA interactions in cells.
Collapse
Affiliation(s)
- Matthew J Smola
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
52
|
Hurst T, Xu X, Zhao P, Chen SJ. Quantitative Understanding of SHAPE Mechanism from RNA Structure and Dynamics Analysis. J Phys Chem B 2018; 122:4771-4783. [PMID: 29659274 DOI: 10.1021/acs.jpcb.8b00575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) method probes RNA local structural and dynamic information at single nucleotide resolution. To gain quantitative insights into the relationship between nucleotide flexibility, RNA 3D structure, and SHAPE reactivity, we develop a 3D Structure-SHAPE Relationship model (3DSSR) to rebuild SHAPE profiles from 3D structures. The model starts from RNA structures and combines nucleotide interaction strength and conformational propensity, ligand (SHAPE reagent) accessibility, and base-pairing pattern through a composite function to quantify the correlation between SHAPE reactivity and nucleotide conformational stability. The 3DSSR model shows the relationship between SHAPE reactivity and RNA structure and energetics. Comparisons between the 3DSSR-predicted SHAPE profile and the experimental SHAPE data show correlation, suggesting that the extracted analytical function may have captured the key factors that determine the SHAPE reactivity profile. Furthermore, the theory offers an effective method to sieve RNA 3D models and exclude models that are incompatible with experimental SHAPE data.
Collapse
Affiliation(s)
- Travis Hurst
- Department of Physics, Department of Biochemistry , and University of Missouri Informatics Institute , University of Missouri , Columbia , Missouri 65211 , United States
| | - Xiaojun Xu
- Department of Physics, Department of Biochemistry , and University of Missouri Informatics Institute , University of Missouri , Columbia , Missouri 65211 , United States
| | - Peinan Zhao
- Department of Physics, Department of Biochemistry , and University of Missouri Informatics Institute , University of Missouri , Columbia , Missouri 65211 , United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry , and University of Missouri Informatics Institute , University of Missouri , Columbia , Missouri 65211 , United States
| |
Collapse
|
53
|
Barrows NJ, Campos RK, Liao KC, Prasanth KR, Soto-Acosta R, Yeh SC, Schott-Lerner G, Pompon J, Sessions OM, Bradrick SS, Garcia-Blanco MA. Biochemistry and Molecular Biology of Flaviviruses. Chem Rev 2018; 118:4448-4482. [PMID: 29652486 DOI: 10.1021/acs.chemrev.7b00719] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA-protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.
Collapse
Affiliation(s)
- Nicholas J Barrows
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Department of Molecular Genetics and Microbiology , Duke University , Durham , North Carolina 27710 , United States
| | - Rafael K Campos
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Department of Molecular Genetics and Microbiology , Duke University , Durham , North Carolina 27710 , United States
| | - Kuo-Chieh Liao
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - K Reddisiva Prasanth
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Ruben Soto-Acosta
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Shih-Chia Yeh
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - Geraldine Schott-Lerner
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Julien Pompon
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore.,MIVEGEC, IRD, CNRS, Université de Montpellier , Montpellier 34090 , France
| | - October M Sessions
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| |
Collapse
|
54
|
Lackey L, Coria A, Woods C, McArthur E, Laederach A. Allele-specific SHAPE-MaP assessment of the effects of somatic variation and protein binding on mRNA structure. RNA (NEW YORK, N.Y.) 2018; 24:513-528. [PMID: 29317542 PMCID: PMC5855952 DOI: 10.1261/rna.064469.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/04/2018] [Indexed: 05/22/2023]
Abstract
The impact of inherited and somatic mutations on messenger RNA (mRNA) structure remains poorly understood. Recent technological advances that leverage next-generation sequencing to obtain experimental structure data, such as SHAPE-MaP, can reveal structural effects of mutations, especially when these data are incorporated into structure modeling. Here, we analyze the ability of SHAPE-MaP to detect the relatively subtle structural changes caused by single-nucleotide mutations. We find that allele-specific sorting greatly improved our detection ability. Thus, we used SHAPE-MaP with a novel combination of clone-free robotic mutagenesis and allele-specific sorting to perform a rapid, comprehensive survey of noncoding somatic and inherited riboSNitches in two cancer-associated mRNAs, TPT1 and LCP1 Using rigorous thermodynamic modeling of the Boltzmann suboptimal ensemble, we identified a subset of mutations that change TPT1 and LCP1 RNA structure, with approximately 14% of all variants identified as riboSNitches. To confirm that these in vitro structures were biologically relevant, we tested how dependent TPT1 and LCP1 mRNA structures were on their environments. We performed SHAPE-MaP on TPT1 and LCP1 mRNAs in the presence or absence of cellular proteins and found that both mRNAs have similar overall folds in all conditions. RiboSNitches identified within these mRNAs in vitro likely exist under biological conditions. Overall, these data reveal a robust mRNA structural landscape where differences in environmental conditions and most sequence variants do not significantly alter RNA structural ensembles. Finally, predicting riboSNitches in mRNAs from sequence alone remains particularly challenging; these data will provide the community with benchmarks for further algorithmic development.
Collapse
Affiliation(s)
- Lela Lackey
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Aaztli Coria
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Chanin Woods
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Evonne McArthur
- School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
55
|
Feng C, Chan D, Joseph J, Muuronen M, Coldren WH, Dai N, Corrêa IR, Furche F, Hadad CM, Spitale RC. Light-activated chemical probing of nucleobase solvent accessibility inside cells. Nat Chem Biol 2018; 14:276-283. [PMID: 29334380 PMCID: PMC6203945 DOI: 10.1038/nchembio.2548] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/15/2017] [Indexed: 12/30/2022]
Abstract
The discovery of functional RNAs that are critical for normal and disease physiology continues to expand at a breakneck pace. Many RNA functions are controlled by the formation of specific structures, and an understanding of each structural component is necessary to elucidate its function. Measuring solvent accessibility intracellularly with experimental ease is an unmet need in the field. Here, we present a novel method for probing nucleobase solvent accessibility, Light Activated Structural Examination of RNA (LASER). LASER depends on light activation of a small molecule, nicotinoyl azide (NAz), to measure solvent accessibility of purine nucleobases. In vitro, this technique accurately monitors solvent accessibility and identifies rapid structural changes resulting from ligand binding in a metabolite-responsive RNA. LASER probing can further identify cellular RNA-protein interactions and unique intracellular RNA structures. Our photoactivation technique provides an adaptable framework to structurally characterize solvent accessibility of RNA in many environments.
Collapse
Affiliation(s)
- Chao Feng
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, California 92697
| | - Dalen Chan
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, California 92697
| | - Jojo Joseph
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18 Avenue, Columbus Ohio 43210
| | - Mikko Muuronen
- Department of Chemistry, University of California, Irvine. Irvine, California 92697
| | - William H. Coldren
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18 Avenue, Columbus Ohio 43210
| | - Nan Dai
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, USA
| | - Ivan R. Corrêa
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, USA
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine. Irvine, California 92697
| | - Christopher M. Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18 Avenue, Columbus Ohio 43210
| | - Robert C. Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, California 92697
- Department of Chemistry, University of California, Irvine. Irvine, California 92697
| |
Collapse
|
56
|
Chan D, Beasley S, Zhen Y, Spitale RC. Facile synthesis and evaluation of a dual-functioning furoyl probe for in-cell SHAPE. Bioorg Med Chem Lett 2018; 28:601-605. [PMID: 29398542 DOI: 10.1016/j.bmcl.2018.01.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 11/16/2022]
Abstract
Recent analysis of transcriptomes has revealed that RNA molecules perform a myriad of functions beyond coding for proteins. RNA molecules can fold into complex secondary and tertiary structures, which are critical for regulating their function. Selective Hydroxyl Acylation analyzed by Primer Extension, or SHAPE is a common method for probing RNA structure in and outside of cells. Recent developments in SHAPE include the design of acyl imidazole acylating electrophiles with alkyl azides to enrich the sites of SHAPE adduct formation. Enrichment is key for next-generation sequencing experiments as it dramatically improves the signal. In a recent comparison of different structures of such reagents, we realized that furoyl acylating reagents form hyper-stable ester adducts with hydroxyls. This prompted us to design, synthesize and test a novel dual-functioning SHAPE probe (FAI-N3), which has the stable furoyl scaffold and the alkyl azide for enrichment. Herein we present the results that show FAI-N3 is a suitable probe for RNA structure analysis by SHAPE and that it can be used for enrichment of SHAPE adducts. These results strongly demonstrate that FAI-N3 is an ideal probe for structure probing in cells and will be very useful for sequencing-based analysis of SHAPE.
Collapse
Affiliation(s)
- Dalen Chan
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697 United States
| | - Samantha Beasley
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697 United States
| | - Yuran Zhen
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697 United States
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697 United States; Department of Chemistry, University of California, Irvine, Irvine, CA 92697 United States.
| |
Collapse
|
57
|
Jayaraman D, Kenyon JC. New windows into retroviral RNA structures. Retrovirology 2018; 15:11. [PMID: 29368653 PMCID: PMC5784592 DOI: 10.1186/s12977-018-0393-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background The multiple roles of both viral and cellular RNAs have become increasingly apparent in recent years, and techniques to model them have become significantly more powerful, enabling faster and more accurate visualization of RNA structures. Main body Techniques such as SHAPE (selective 2’OH acylation analysed by primer extension) have revolutionized the field, and have been used to examine RNAs belonging to many and diverse retroviruses. Secondary structure probing reagents such as these have been aided by the development of faster methods of analysis either via capillary or next-generation sequencing, allowing the analysis of entire genomes, and of retroviral RNA structures within virions. Techniques to model the three-dimensional structures of these large RNAs have also recently developed. Conclusions The flexibility of retroviral RNAs, both structural and functional, is clear from the results of these new experimental techniques. Retroviral RNA structures and structural changes control many stages of the lifecycle, and both the RNA structures themselves and their interactions with ligands are potential new drug targets. In addition, our growing understanding of retroviral RNA structures is aiding our knowledge of cellular RNA form and function.
Collapse
Affiliation(s)
- Dhivya Jayaraman
- Department of Medicine, National University of Singapore, 14 Medical Drive, MD 6, Level 15, Singapore, 117599, Singapore
| | - Julia Claire Kenyon
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital Hills Rd, Cambridge, CB2 0QQ, UK. .,Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2 Blk MD4, Level 3, Singapore, 117545, Singapore. .,Homerton College, University of Cambridge, Hills Rd, Cambridge, CB2 8PH, UK.
| |
Collapse
|
58
|
Mitchell D, Ritchey LE, Park H, Babitzke P, Assmann SM, Bevilacqua PC. Glyoxals as in vivo RNA structural probes of guanine base-pairing. RNA (NEW YORK, N.Y.) 2018; 24:114-124. [PMID: 29030489 PMCID: PMC5733565 DOI: 10.1261/rna.064014.117] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/10/2017] [Indexed: 05/09/2023]
Abstract
Elucidation of the folded structures that RNA forms in vivo is vital to understanding its functions. Chemical reagents that modify the Watson-Crick (WC) face of unprotected nucleobases are particularly useful in structure elucidation. Dimethyl sulfate penetrates cell membranes and informs on RNA base-pairing and secondary structure but only modifies the WC face of adenines and cytosines. We present glyoxal, methylglyoxal, and phenylglyoxal as potent in vivo reagents that target the WC face of guanines as well as cytosines and adenines. Tests on rice (Oryza sativa) 5.8S rRNA in vitro read out by reverse transcription and gel electrophoresis demonstrate specific modification of almost all guanines in a time- and pH-dependent manner. Subsequent in vivo tests on rice, a eukaryote, and Bacillus subtilis and Escherichia coli, Gram-positive and Gram-negative bacteria, respectively, showed that all three reagents enter living cells without prior membrane permeabilization or pH adjustment of the surrounding media and specifically modify solvent-exposed guanine, cytosine, and adenine residues.
Collapse
Affiliation(s)
- David Mitchell
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Laura E Ritchey
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Hongmarn Park
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul Babitzke
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
59
|
Ray AK, Naiyer S, Singh SS, Bhattacharya A, Bhattacharya S. Application of SHAPE reveals in vivo RNA folding under normal and growth-stressed conditions in the human parasite Entamoeba histolytica. Mol Biochem Parasitol 2017; 219:42-51. [PMID: 29175581 DOI: 10.1016/j.molbiopara.2017.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/30/2022]
Abstract
Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) is a versatile sequence independent method to probe RNA structure in vivo and in vitro. It has so far been tried mainly with model organisms. We show that cells of Entamoeba histolytica, a protozoan parasite of humans are hyper-sensitive to the in vivo SHAPE reagent, NAI, and show rapid loss of viability and RNA integrity. We optimized treatment conditions with 5.8S rRNA and Eh_U3 snoRNA to obtain NAI-modification while retaining RNA integrity. The modification patterns were highly reproducible. The in vivo folding was different from in vitro and correlated well with known interactions of 5.8S rRNA with proteins in vivo. The Eh_U3 snoRNA also showed many differences in its in vivo versus in vitro folding, which correlated with conserved interactions of this RNA with 18S rRNA and 5'-ETS. Further, Eh_U3 snoRNA obtained from serum-starved cells showed an open 3'-hinge structure, indicating disruption of 5'-ETS interaction. This could contribute to the observed slow processing of pre-rRNA in starved cells. Our work shows the applicability of SHAPE to study in vivo RNA folding in a parasite and will encourage the use of this reagent for RNA structure analysis in other such organisms.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sarah Naiyer
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
60
|
Incarnato D, Morandi E, Anselmi F, Simon LM, Basile G, Oliviero S. In vivo probing of nascent RNA structures reveals principles of cotranscriptional folding. Nucleic Acids Res 2017; 45:9716-9725. [PMID: 28934475 PMCID: PMC5766169 DOI: 10.1093/nar/gkx617] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 01/07/2023] Open
Abstract
Defining the in vivo folding pathway of cellular RNAs is essential to understand how they reach their final native conformation. We here introduce a novel method, named Structural Probing of Elongating Transcripts (SPET-seq), that permits single-base resolution analysis of transcription intermediates' secondary structures on a transcriptome-wide scale, enabling base-resolution analysis of the RNA folding events. Our results suggest that cotranscriptional RNA folding in vivo is a mixture of cooperative folding events, in which local RNA secondary structure elements are formed as they get transcribed, and non-cooperative events, in which 5'-halves of long-range helices get sequestered into transient non-native interactions until their 3' counterparts have been transcribed. Together our work provides the first transcriptome-scale overview of RNA cotranscriptional folding in a living organism.
Collapse
Affiliation(s)
- Danny Incarnato
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| | - Edoardo Morandi
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| | - Francesca Anselmi
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| | - Lisa M. Simon
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| | - Giulia Basile
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| | - Salvatore Oliviero
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
61
|
Martens L, Rühle F, Stoll M. LncRNA secondary structure in the cardiovascular system. Noncoding RNA Res 2017; 2:137-142. [PMID: 30159432 PMCID: PMC6084829 DOI: 10.1016/j.ncrna.2017.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/28/2017] [Accepted: 12/08/2017] [Indexed: 01/27/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been increasingly studied during the past decade. This led to an immense number of annotated transcripts, out of which many were linked to a diverse range of biological mechanisms and diseases. Due to the variety of their regulatory potential, they are seen as an important link in understanding complex epigenetic mechanisms. Prominent examples of lncRNAs in the cardiovascular system are ANRIL, Braveheart, MALAT1 and HOTAIR which have been excessively studied. But despite the impressive number of described transcripts, only a few examples are characterized functionally. One way to do this is to identify accessible structural domains in the RNA secondary structure which have the ability to bind to DNA, RNA or proteins. Through recent improvements in computational as well as experimental methods, this exploration of secondary structure became not only more efficient than traditional methods like crystallization, but also feasible to investigate whole genome RNA structures. The purpose of this review is to highlight the recent advances in secondary structure probing methods and how these can be applied in order to investigate the functional roles of lncRNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Leonie Martens
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Frank Rühle
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
- Department of Biochemistry, Genetic Epidemiology and Statistical Genetics, CARIM School for Cardiovascular Diseases, Maastricht Center for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
62
|
Chan D, Feng C, Zhen Y, Flynn RA, Spitale RC. Comparative Analysis Reveals Furoyl in Vivo Selective Hydroxyl Acylation Analyzed by Primer Extension Reagents Form Stable Ribosyl Ester Adducts. Biochemistry 2017; 56:1811-1814. [PMID: 28319368 PMCID: PMC10884885 DOI: 10.1021/acs.biochem.7b00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
RNA molecules depend on structural elements that are critical for cellular function. Chemical methods for probing RNA structure have emerged as a necessary component of characterizing RNA function. As such, understanding the limitations and idiosyncrasies of these methods is essential for their utility. Selective hydroxyl acylation has emerged as a common method for analyzing RNA structure. Ester products as a result of 2'-hydroxyl acylation can then be identified through reverse transcription or mutational enzyme profiling. The central aspect of selective hydroxyl acylation analyzed by primer extension (SHAPE) experiments is the fact that stable ester adducts are formed on the 2'-hydroxyl. Despite its importance, there has not been a direct comparison of SHAPE electrophiles for their ability to make stable RNA adducts. Herein, we conduct a systematic analysis of hydrolysis stability experiments to demonstrate that furoyl imidazole SHAPE reagents form stable ester adducts even at elevated temperatures. We also demonstrate that the acylation reaction with the furoyl acylimidaole SHAPE reagent can be controlled with dithiothreitol quenching, even in live cells. These results are important for our understanding of the biochemical details of the SHAPE experiment.
Collapse
Affiliation(s)
- Dalen Chan
- Department of Pharmaceutical Sciences, University of California, Irvine , Irvine, California 92697, United States
| | - Chao Feng
- Department of Pharmaceutical Sciences, University of California, Irvine , Irvine, California 92697, United States
| | - Yuran Zhen
- Department of Pharmaceutical Sciences, University of California, Irvine , Irvine, California 92697, United States
| | - Ryan A Flynn
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine , Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| |
Collapse
|
63
|
Chan D, Feng C, Spitale RC. Measuring RNA structure transcriptome-wide with icSHAPE. Methods 2017; 120:85-90. [PMID: 28336307 DOI: 10.1016/j.ymeth.2017.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 11/17/2022] Open
Abstract
RNA molecules can be found at the heart of nearly every aspect of gene regulation: from gene expression to protein translation. The ability of RNA molecules to fold into intricate structures guides their function. Chemical methods to measure RNA structure have been part of the RNA biologists toolkit for several decades. These methods, although often cumbersome and difficult to perform on large RNAs, are notable for their accuracy and precision of structural measurements. Recent extension of these methods to transcriptome-wide analyses has opened the door to interrogating the structure of complete RNA molecules inside cells. Within this manuscript we describe the biochemical basis for the methodology behind a novel technology, icSHAPE, which measures RNA flexibility and single-strandedness in RNA. Novel methods such as icSHAPE have greatly expanded our understanding of RNA function and have paved the way to expansive analyses of large groups of RNA structures as they function inside the native environment of the cell.
Collapse
Affiliation(s)
- Dalen Chan
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, United States
| | - Chao Feng
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, United States
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, United States; Department of Chemistry, University of California, Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
64
|
Choudhary K, Deng F, Aviran S. Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions. QUANTITATIVE BIOLOGY 2017; 5:3-24. [PMID: 28717530 PMCID: PMC5510538 DOI: 10.1007/s40484-017-0093-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/08/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Structure profiling experiments provide single-nucleotide information on RNA structure. Recent advances in chemistry combined with application of high-throughput sequencing have enabled structure profiling at transcriptome scale and in living cells, creating unprecedented opportunities for RNA biology. Propelled by these experimental advances, massive data with ever-increasing diversity and complexity have been generated, which give rise to new challenges in interpreting and analyzing these data. RESULTS We review current practices in analysis of structure profiling data with emphasis on comparative and integrative analysis as well as highlight emerging questions. Comparative analysis has revealed structural patterns across transcriptomes and has become an integral component of recent profiling studies. Additionally, profiling data can be integrated into traditional structure prediction algorithms to improve prediction accuracy. CONCLUSIONS To keep pace with experimental developments, methods to facilitate, enhance and refine such analyses are needed. Parallel advances in analysis methodology will complement profiling technologies and help them reach their full potential.
Collapse
Affiliation(s)
| | | | - Sharon Aviran
- Department of Biomedical Engineering and Genome Center, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|