51
|
Denning EJ, Priyakumar UD, Nilsson L, MacKerell AD. Impact of 2'-hydroxyl sampling on the conformational properties of RNA: update of the CHARMM all-atom additive force field for RNA. J Comput Chem 2011; 32:1929-43. [PMID: 21469161 PMCID: PMC3082605 DOI: 10.1002/jcc.21777] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/24/2011] [Accepted: 01/30/2011] [Indexed: 01/02/2023]
Abstract
Here, we present an update of the CHARMM27 all-atom additive force field for nucleic acids that improves the treatment of RNA molecules. The original CHARMM27 force field parameters exhibit enhanced Watson-Crick base pair opening which is not consistent with experiment, whereas analysis of molecular dynamics (MD) simulations show the 2'-hydroxyl moiety to almost exclusively sample the O3' orientation. Quantum mechanical (QM) studies of RNA related model compounds indicate the energy minimum associated with the O3' orientation to be too favorable, consistent with the MD results. Optimization of the dihedral parameters dictating the energy of the 2'-hydroxyl proton targeting the QM data yielded several parameter sets, which sample both the base and O3' orientations of the 2'-hydroxyl to varying degrees. Selection of the final dihedral parameters was based on reproduction of hydration behavior as related to a survey of crystallographic data and better agreement with experimental NMR J-coupling values. Application of the model, designated CHARMM36, to a collection of canonical and noncanonical RNA molecules reveals overall improved agreement with a range of experimental observables as compared to CHARMM27. The results also indicate the sensitivity of the conformational heterogeneity of RNA to the orientation of the 2'-hydroxyl moiety and support a model whereby the 2'-hydroxyl can enhance the probability of conformational transitions in RNA.
Collapse
Affiliation(s)
- Elizabeth J. Denning
- Department of Pharmaceutical Sciences, School of Pharmacy, University
of Maryland, Baltimore, MD 21201
| | - U. Deva Priyakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University
of Maryland, Baltimore, MD 21201
| | - Lennart Nilsson
- Department of Pharmaceutical Sciences, School of Pharmacy, University
of Maryland, Baltimore, MD 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University
of Maryland, Baltimore, MD 21201
| |
Collapse
|
52
|
Chawla M, Sharma P, Halder S, Bhattacharyya D, Mitra A. Protonation of base pairs in RNA: context analysis and quantum chemical investigations of their geometries and stabilities. J Phys Chem B 2011; 115:1469-84. [PMID: 21254753 DOI: 10.1021/jp106848h] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Base pairs involving protonated nucleobases play important roles in mediating global macromolecular conformational changes and in facilitation of catalysis in a variety of functional RNA molecules. Here we present our attempts at understanding the role of such base pairs by detecting possible protonated base pairs in the available RNA crystal structures using BPFind software, in their specific structural contexts, and by the characterization of their geometries, interaction energies, and stabilities using advanced quantum chemical computations. We report occurrences of 18 distinct protonated base pair combinations from a representative data set of RNA crystal structures and propose a theoretical model for one putative base pair combination. Optimization of base pair geometries was carried out at the B3LYP/cc-pVTZ level, and the BSSE corrected interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory. The geometries for each of the base pairs were characterized in terms of H-bonding patterns observed, rmsd values observed on optimization, and base pair geometrical parameters. In addition, the intermolecular interaction in these complexes was also analyzed using Morokuma energy decomposition. The gas phase interaction energies of the base pairs range from -24 to -49 kcal/mol and reveal the dominance of Hartree-Fock component of interaction energy constituting 73% to 98% of the total interaction energy values. On the basis of our combined bioinformatics and quantum chemical analysis of different protonated base pairs, we suggest resolution of structural ambiguities and correlate their geometric and energetic features with their structural and functional roles. In addition, we also examine the suitability of specific base pairs as key elements in molecular switches and as nucleators for higher order structures such as base triplets and quartets.
Collapse
Affiliation(s)
- Mohit Chawla
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H) Gachibowli, Hyderabad 500032, India
| | | | | | | | | |
Collapse
|
53
|
Spacková N, Réblová K, Sponer J. Structural dynamics of the box C/D RNA kink-turn and its complex with proteins: the role of the A-minor 0 interaction, long-residency water bridges, and structural ion-binding sites revealed by molecular simulations. J Phys Chem B 2010; 114:10581-93. [PMID: 20701388 DOI: 10.1021/jp102572k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Kink-turns (K-turns) are recurrent elbow-like RNA motifs that participate in protein-assisted RNA folding and contribute to RNA dynamics. We carried out a set of molecular dynamics (MD) simulations using parm99 and parmbsc0 force fields to investigate structural dynamics of the box C/D RNA and its complexes with two proteins: native archaeal L7ae protein and human 15.5 kDa protein, originally bound to very similar structure of U4 snRNA. The box C/D RNA forms K-turn with A-minor 0 tertiary interaction between its canonical (C) and noncanonical (NC) stems. The local K-turn architecture is thus different from the previously studied ribosomal K-turns 38 and 42 having A-minor I interaction. The simulations reveal visible structural dynamics of this tertiary interaction involving altogether six substates which substantially contribute to the elbow-like flexibility of the K-turn. The interaction can even temporarily shift to the A-minor I type pattern; however, this is associated with distortion of the G/A base pair in the NC-stem of the K-turn. The simulations show reduction of the K-turn flexibility upon protein binding. The protein interacts with the apex of the K-turn and with the NC-stem. The protein-RNA interface includes long-residency hydration sites. We have also found long-residency hydration sites and major ion-binding sites associated with the K-turn itself. The overall topology of the K-turn remains stable in all simulations. However, in simulations of free K-turn, we observed instability of the key C16(O2')-A7(N1) H-bond, which is a signature interaction of K-turns and which was visibly more stable in simulations of K-turns possessing A-minor I interaction. It may reflect either some imbalance of the force field or it may be a correct indication of early stages of unfolding since this K-turn requires protein binding for its stabilization. Interestingly, the 16(O2')-7(N1) H- bond is usually not fully lost since it is replaced by a water bridge with a tightly bound water, which is adenine-specific similarly as the original interaction. The 16(O2')-7(N1) H-bond is stabilized by protein binding. The stabilizing effect is more visible with the human 15.5 kDa protein, which is attributed to valine to arginine substitution in the binding site. The behavior of the A-minor interaction is force-field-dependent because the parmbsc0 force field attenuates the A-minor fluctuations compared to parm99 simulations. Behavior of other regions of the box C/D RNA is not sensitive to the force field choice. Simulation with net-neutralizing Na(+) and 0.2 M excess salt conditions appear in all aspects equivalent. The simulations show loss of a hairpin tetraloop, which is not part of the K-turn. This was attributed to force field limitations.
Collapse
Affiliation(s)
- Nad'a Spacková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | |
Collapse
|
54
|
Ling B, Zhang R, Wang Z, Dong L, Liu Y, Zhang C, Liu C. Theoretical studies on the interaction of guanine riboswitch with guanine and its closest analogues. MOLECULAR SIMULATION 2010. [DOI: 10.1080/08927022.2010.492833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
55
|
Stoddard CD, Montange RK, Hennelly SP, Rambo RP, Sanbonmatsu KY, Batey RT. Free state conformational sampling of the SAM-I riboswitch aptamer domain. Structure 2010; 18:787-97. [PMID: 20637415 PMCID: PMC2917978 DOI: 10.1016/j.str.2010.04.006] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/31/2010] [Accepted: 04/03/2010] [Indexed: 12/30/2022]
Abstract
Riboswitches are highly structured elements residing in the 5' untranslated region of messenger RNAs that specifically bind cellular metabolites to alter gene expression. While there are many structures of ligand-bound riboswitches that reveal details of bimolecular recognition, their unliganded structures remain poorly characterized. Characterizing the molecular details of the unliganded state is crucial for understanding the riboswitch's mechanism of action because it is this state that actively interrogates the cellular environment and helps direct the regulatory outcome. To develop a detailed description of the ligand-free form of an S-adenosylmethionine binding riboswitch at the local and global levels, we have employed a series of biochemical, biophysical, and computational methods. Our data reveal that the ligand binding domain adopts an ensemble of states that minimizes the energy barrier between the free and bound states to establish an efficient decision making branchpoint in the regulatory process.
Collapse
Affiliation(s)
- Colby D Stoddard
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, UCB 215, Boulder, CO 80309-0215, USA
| | - Rebecca K. Montange
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, UCB 215, Boulder, CO 80309-0215, USA
| | - Scott P. Hennelly
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Robert P. Rambo
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Karissa Y. Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Robert T. Batey
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, UCB 215, Boulder, CO 80309-0215, USA
| |
Collapse
|
56
|
Priyakumar UD. Atomistic Details of the Ligand Discrimination Mechanism of SMK/SAM-III Riboswitch. J Phys Chem B 2010; 114:9920-5. [DOI: 10.1021/jp1042427] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- U. Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| |
Collapse
|
57
|
Jain N, Zhao L, Liu JD, Xia T. Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches. Biochemistry 2010; 49:3703-14. [PMID: 20345178 DOI: 10.1021/bi1000036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High-resolution crystal structures and biophysical analyses of purine-sensing riboswitches have revealed that a network of hydrogen bonding interactions appear to be largey responsible for discrimination of cognate ligands against structurally related compounds. Here we report that by using femtosecond time-resolved fluorescence spectroscopy to capture the ultrafast decay dynamics of the 2-aminopurine base as the ligand, we have detected the presence of multiple conformations of the ligand within the binding pockets of one guanine-sensing and two adenine-sensing riboswitches. All three riboswitches have similar conformational distributions of the ligand-bound state. The known crystal structures represent the global minimum that accounts for 50-60% of the population, where there is no significant stacking interaction between the ligand and bases of the binding pocket, but the hydrogen-bonding cage collectively provides an electronic environment that promotes an ultrafast ( approximately 1 ps) charge transfer pathway. The ligand also samples multiple conformations in which it significantly stacks with either the adenine or the uracil bases of the A21-U75 and A52-U22 base pairs that form the ceiling and floor of the binding pocket, respectively, but favors the larger adenine bases. These alternative conformations with well-defined base stacking interactions are approximately 1-1.5 kcal/mol higher in DeltaG degrees than the global minimum and have distinct charge transfer dynamics within the picosecond to nanosecond time regime. Inside the pocket, the purine ligand undergoes dynamic motion on the low nanosecond time scale, sampling the multiple conformations based on time-resolved anisotropy decay dynamics. These results allowed a description of the energy landscape of the bound ligand with intricate details and demonstrated the elastic nature of the ligand recognition mode by the purine-sensing riboswitches, where there is a dynamic balance between hydrogen bonding and base stacking interactions, yielding the high affinity and specificity by the aptamer domain.
Collapse
Affiliation(s)
- Niyati Jain
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
| | | | | | | |
Collapse
|
58
|
Sharma P, Chawla M, Sharma S, Mitra A. On the role of Hoogsteen:Hoogsteen interactions in RNA: ab initio investigations of structures and energies. RNA (NEW YORK, N.Y.) 2010; 16:942-957. [PMID: 20354152 PMCID: PMC2856888 DOI: 10.1261/rna.1919010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/27/2010] [Indexed: 05/28/2023]
Abstract
We use a combination of database analysis and quantum chemical studies to investigate the role of cis and trans Hoogsteen:Hoogsteen (H:H) base pairs and associated higher-order structures in RNA. We add three new examples to the list of previously identified base-pair combinations belonging to these families and, in addition to contextual classification and characterization of their structural and energetic features, we compare their interbase interaction energies and propensities toward participation in triplets and quartets. We find that some base pairs, which are nonplanar in their isolated minimum energy geometries, attain planarity and stability upon triplet formation. A:A H:H trans is the most frequent H:H combination in RNA structures. This base pair occurs at many distinct positions in known rRNA structures, where it helps in the interaction of ribosomal domains in the 50S subunit. It is also present as a part of tertiary interaction in tRNA structures. Although quantum chemical studies suggest an intrinsically nonplanar geometry for this base pair in isolated form, it has the tendency to attain planar geometry in RNA crystal structures by forming higher-order tertiary interactions or in the presence of additional base-phosphate interactions. The tendency of this base pair to form such additional interactions may be helpful in bringing together different segments of RNA, thus making it suitable for the role of facilitator for RNA folding. This also explains the high occurrence frequency of this base pair among all H:H interactions.
Collapse
Affiliation(s)
- Purshotam Sharma
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, India
| | | | | | | |
Collapse
|
59
|
Priyakumar UD, MacKerell AD. Role of the adenine ligand on the stabilization of the secondary and tertiary interactions in the adenine riboswitch. J Mol Biol 2009; 396:1422-38. [PMID: 20026131 DOI: 10.1016/j.jmb.2009.12.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/10/2009] [Accepted: 12/13/2009] [Indexed: 01/07/2023]
Abstract
Riboswitches are RNA-based genetic control elements that function via a conformational transition mechanism when a specific target molecule binds to its binding pocket. To facilitate an atomic detail interpretation of experimental investigations on the role of the adenine ligand on the conformational properties and kinetics of folding of the add adenine riboswitch, we performed molecular dynamics simulations in both the presence and the absence of the ligand. In the absence of ligand, structural deviations were observed in the J23 junction and the P1 stem. Destabilization of the P1 stem in the absence of ligand involves the loss of direct stabilizing interactions with the ligand, with additional contributions from the J23 junction region. The J23 junction of the riboswitch is found to be more flexible, and the tertiary contacts among the junction regions are altered in the absence of the adenine ligand; results suggest that the adenine ligand associates and dissociates from the riboswitch in the vicinity of J23. Good agreement was obtained with the experimental data with the results indicating dynamic behavior of the adenine ligand on the nanosecond time scale to be associated with the dynamic behavior of hydrogen bonding with the riboswitch. Results also predict that direct interactions of the adenine ligand with U74 of the riboswitch are not essential for stable binding although it is crucial for its recognition. The possibility of methodological artifacts and force-field inaccuracies impacting the present observations was checked by additional molecular dynamics simulations in the presence of 2,6-diaminopurine and in the crystal environment.
Collapse
Affiliation(s)
- U Deva Priyakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | |
Collapse
|
60
|
Kelley JM, Hamelberg D. Atomistic basis for the on-off signaling mechanism in SAM-II riboswitch. Nucleic Acids Res 2009; 38:1392-400. [PMID: 19969538 PMCID: PMC3303485 DOI: 10.1093/nar/gkp1106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many bacterial genes are controlled by metabolite sensing motifs known as riboswitches, normally located in the 5' un-translated region of their mRNAs. Small molecular metabolites bind to the aptamer domain of riboswitches with amazing specificity, modulating gene regulation in a feedback loop as a result of induced conformational changes in the expression platform. Here, we report the results of molecular dynamics simulation studies of the S-adenosylmethionine (SAM)-II riboswitch that is involved in regulating translation in sulfur metabolic pathways in bacteria. We show that the ensemble of conformations of the unbound form of the SAM-II riboswitch is a loose pseudoknot structure that periodically visits conformations similar to the bound form, and the pseudoknot structure is only fully formed upon binding the metabolite, SAM. The rate of forming contacts in the unbound form that are similar to that in the bound form is fast. Ligand binding to SAM-II alters the curvature and base-pairing of the expression platform that could affect the interaction of the latter with the ribosome.
Collapse
Affiliation(s)
- Jennifer Munro Kelley
- Department of Chemistry and the Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098, USA
| | | |
Collapse
|