51
|
A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis. PLoS Genet 2013; 9:e1003244. [PMID: 23382695 PMCID: PMC3561105 DOI: 10.1371/journal.pgen.1003244] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022] Open
Abstract
Dark-grown seedlings exhibit skotomorphogenic development. Genetic and molecular evidence indicates that a quartet of Arabidopsis Phytochrome (phy)-Interacting bHLH Factors (PIF1, 3, 4, and 5) are critically necessary to maintaining this developmental state and that light activation of phy induces a switch to photomorphogenic development by inducing rapid degradation of the PIFs. Here, using integrated ChIP–seq and RNA–seq analyses, we have identified genes that are direct targets of PIF3 transcriptional regulation, exerted by sequence-specific binding to G-box (CACGTG) or PBE-box (CACATG) motifs in the target promoters genome-wide. In addition, expression analysis of selected genes in this set, in all triple pif-mutant combinations, provides evidence that the PIF quartet members collaborate to generate an expression pattern that is the product of a mosaic of differential transcriptional responsiveness of individual genes to the different PIFs and of differential regulatory activity of individual PIFs toward the different genes. Together with prior evidence that all four PIFs can bind to G-boxes, the data suggest that this collective activity may be exerted via shared occupancy of binding sites in target promoters. An important issue in understanding mechanisms of eukaryotic transcriptional regulation is how members of large transcription-factor families, with conserved DNA–binding domains (such as the 162-member Arabidopsis bHLH family), discriminate between target genes. However, the specific question of whether, and to what extent, closely related sub-family members, with potential overlapping functional redundancy (like the quartet of Phytochrome (phy)-Interacting bHLH transcription Factors (PIF1, 3, 4, and 5) studied here), share regulation of target genes through shared binding to promoter-localized consensus motifs does not appear to have been widely investigated. Here, using ChIP–seq analysis, we have identified genes that bind PIF3 to conserved, sequence-specific sites in their promoters; and, using RNA–seq, we have identified those genes displaying altered expression in various pif mutants. Integration of these data identifies those genes that are likely direct targets of transcriptional regulation by PIF3. Our data suggest that the PIF quartet members share directly in transcriptional activation of numerous target genes, potentially via redundant promoter occupancy, in a manner that varies quantitatively from gene to gene. This finding suggests that these PIFs function collectively as a signaling hub, selectively partitioning common upstream signals from light-activated phys at the transcriptional-network interface.
Collapse
|
52
|
Wilkening S, Pelechano V, Järvelin AI, Tekkedil MM, Anders S, Benes V, Steinmetz LM. An efficient method for genome-wide polyadenylation site mapping and RNA quantification. Nucleic Acids Res 2013; 41:e65. [PMID: 23295673 PMCID: PMC3597643 DOI: 10.1093/nar/gks1249] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of alternative poly(A) sites is common and affects the post-transcriptional fate of mRNA, including its stability, subcellular localization and translation. Here, we present a method to identify poly(A) sites in a genome-wide and strand-specific manner. This method, termed 3′T-fill, initially fills in the poly(A) stretch with unlabeled dTTPs, allowing sequencing to start directly after the poly(A) tail into the 3′-untranslated regions (UTR). Our comparative analysis demonstrates that it outperforms existing protocols in quality and throughput and accurately quantifies RNA levels as only one read is produced from each transcript. We use this method to characterize the diversity of polyadenylation in Saccharomyces cerevisiae, showing that alternative RNA molecules are present even in a genetically identical cell population. Finally, we observe that overlap of convergent 3′-UTRs is frequent but sharply limited by coding regions, suggesting factors that restrict compression of the yeast genome.
Collapse
Affiliation(s)
- Stefan Wilkening
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
53
|
Chen M, Licon K, Otsuka R, Pillus L, Ideker T. Decoupling epigenetic and genetic effects through systematic analysis of gene position. Cell Rep 2013; 3:128-37. [PMID: 23291096 DOI: 10.1016/j.celrep.2012.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 10/01/2012] [Accepted: 12/07/2012] [Indexed: 01/02/2023] Open
Abstract
Classic "position-effect" experiments repositioned genes near telomeres to demonstrate that the epigenetic landscape can dramatically alter gene expression. Here, we show that systematic gene knockout collections provide an exceptional resource for interrogating position effects, not only near telomeres but at every genetic locus. Because a single reporter gene replaces each deleted gene, interrogating this reporter provides a sensitive probe into different chromatin environments while controlling for genetic context. Using this approach, we find that, whereas systematic replacement of yeast genes with the kanMX marker does not perturb the chromatin landscape, chromatin differences associated with gene position account for 35% of kanMX activity. We observe distinct chromatin influences, including a Set2/Rpd3-mediated antagonistic interaction between histone H3 lysine 36 trimethylation and the Rap1 transcriptional activation site in kanMX. This interaction explains why some yeast genes have been resistant to deletion and allows successful generation of these deletion strains through the use of a modified transformation procedure. These findings demonstrate that chromatin regulation is not governed by a uniform "histone code" but by specific interactions between chromatin and genetic factors.
Collapse
Affiliation(s)
- Menzies Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
54
|
Hoque M, Ji Z, Zheng D, Luo W, Li W, You B, Park JY, Yehia G, Tian B. Analysis of alternative cleavage and polyadenylation by 3' region extraction and deep sequencing. Nat Methods 2012; 10:133-9. [PMID: 23241633 PMCID: PMC3560312 DOI: 10.1038/nmeth.2288] [Citation(s) in RCA: 348] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/15/2012] [Indexed: 11/23/2022]
Abstract
Alternative cleavage and polyadenylation (APA) leads to mRNA isoforms with different coding sequences (CDS) and/or 3′ untranslated regions (3′UTRs). Using 3′ Region Extraction And Deep Sequencing (3′READS), a method which addresses the internal priming and oligo(A) tail issues that commonly plague polyA site (pA) identification, we comprehensively mapped pAs in the mouse genome, thoroughly annotating 3′ ends of genes and revealing over five thousand pAs (~8% of total) flanked by A-rich sequences, which have hitherto been overlooked. About 79% of mRNA genes and 66% of long non-coding RNA (lncRNA) genes have APA; but these two gene types have distinct usage patterns for pAs in introns and upstream exons. Promoter-distal pAs become relatively more abundant during embryonic development and cell differentiation, a trend affecting pAs in both 3′-most exons and upstream regions. Upregulated isoforms generally have stronger pAs, suggesting global modulation of the 3′ end processing activity in development and differentiation.
Collapse
Affiliation(s)
- Mainul Hoque
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Goodman AJ, Daugharthy ER, Kim J. Pervasive Antisense Transcription Is Evolutionarily Conserved in Budding Yeast. Mol Biol Evol 2012; 30:409-21. [DOI: 10.1093/molbev/mss240] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
56
|
Yoon OK, Hsu TY, Im JH, Brem RB. Genetics and regulatory impact of alternative polyadenylation in human B-lymphoblastoid cells. PLoS Genet 2012; 8:e1002882. [PMID: 22916029 PMCID: PMC3420953 DOI: 10.1371/journal.pgen.1002882] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 06/20/2012] [Indexed: 11/18/2022] Open
Abstract
Gene expression varies widely between individuals of a population, and regulatory change can underlie phenotypes of evolutionary and biomedical relevance. A key question in the field is how DNA sequence variants impact gene expression, with most mechanistic studies to date focused on the effects of genetic change on regulatory regions upstream of protein-coding sequence. By contrast, the role of RNA 3'-end processing in regulatory variation remains largely unknown, owing in part to the challenge of identifying functional elements in 3' untranslated regions. In this work, we conducted a genomic survey of transcript ends in lymphoblastoid cells from genetically distinct human individuals. Our analysis mapped the cis-regulatory architecture of 3' gene ends, finding that transcript end positions did not fall randomly in untranslated regions, but rather preferentially flanked the locations of 3' regulatory elements, including miRNA sites. The usage of these transcript length forms and motifs varied across human individuals, and polymorphisms in polyadenylation signals and other 3' motifs were significant predictors of expression levels of the genes in which they lay. Independent single-gene experiments confirmed the effects of polyadenylation variants on steady-state expression of their respective genes, and validated the regulatory function of 3' cis-regulatory sequence elements that mediated expression of these distinct RNA length forms. Focusing on the immune regulator IRF5, we established the effect of natural variation in RNA 3'-end processing on regulatory response to antigen stimulation. Our results underscore the importance of two mechanisms at play in the genetics of 3'-end variation: the usage of distinct 3'-end processing signals and the effects of 3' sequence elements that determine transcript fate. Our findings suggest that the strategy of integrating observed 3'-end positions with inferred 3' regulatory motifs will prove to be a critical tool in continued efforts to interpret human genome variation.
Collapse
Affiliation(s)
- Oh Kyu Yoon
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Tiffany Y. Hsu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Joo Hyun Im
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Rachel B. Brem
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
57
|
Collins JE, White S, Searle SMJ, Stemple DL. Incorporating RNA-seq data into the zebrafish Ensembl genebuild. Genome Res 2012; 22:2067-78. [PMID: 22798491 PMCID: PMC3460200 DOI: 10.1101/gr.137901.112] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ensembl gene annotation provides a comprehensive catalog of transcripts aligned to the reference sequence. It relies on publicly available species-specific and orthologous transcripts plus their inferred protein sequence. The accuracy of gene models is improved by increasing the species-specific component that can be cost-effectively achieved using RNA-seq. Two zebrafish gene annotations are presented in Ensembl version 62 built on the Zv9 reference sequence. Firstly, RNA-seq data from five tissues and seven developmental stages were assembled into 25,748 gene models. A 3′-end capture and sequencing protocol was developed to predict the 3′ ends of transcripts, and 46.1% of the original models were subsequently refined. Secondly, a standard Ensembl genebuild, incorporating carefully filtered elements from the RNA-seq-only build, followed by a merge with the manually curated VEGA database, produced a comprehensive annotation of 26,152 genes represented by 51,569 transcripts. The RNA-seq-only and the Ensembl/VEGA genebuilds contribute contrasting elements to the final genebuild. The RNA-seq genebuild was used to adjust intron/exon boundaries of orthologous defined models, confirm their expression, and improve 3′ untranslated regions. Importantly, the inferred protein alignments within the Ensembl genebuild conferred proof of model contiguity for the RNA-seq models. The zebrafish gene annotation has been enhanced by the incorporation of RNA-seq data and the pipeline will be used for other organisms. Organisms with little species-specific cDNA data will generally benefit the most.
Collapse
Affiliation(s)
- John E Collins
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom.
| | | | | | | |
Collapse
|
58
|
Kim Guisbert KS, Zhang Y, Flatow J, Hurtado S, Staley JP, Lin S, Sontheimer EJ. Meiosis-induced alterations in transcript architecture and noncoding RNA expression in S. cerevisiae. RNA (NEW YORK, N.Y.) 2012; 18:1142-53. [PMID: 22539527 PMCID: PMC3358637 DOI: 10.1261/rna.030510.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Changes in transcript architecture can have powerful effects on protein expression. Regulation of the transcriptome is often dramatically revealed during dynamic conditions such as development. To examine changes in transcript architecture we analyzed the expression and transcript boundaries of protein-coding and noncoding RNAs over the developmental process of meiosis in Saccharomyces cerevisiae. Custom-designed, high-resolution tiling arrays were used to define the time-resolved transcriptome of cells undergoing meiosis and sporulation. These arrays were specifically designed for the S. cerevisiae strain SK1 that sporulates with high efficiency and synchrony. In addition, new methods were created to define transcript boundaries and to identify dynamic changes in transcript expression and architecture over time. Of 8407 total segments, 699 (8.3%) were identified by our algorithm as regions containing potential transcript architecture changes. Our analyses reveal extensive changes to both the coding and noncoding transcriptome, including altered 5' ends, 3' ends, and splice sites. Additionally, 3910 (46.5%) unannotated expressed segments were identified. Interestingly, subsets of unannotated RNAs are located across from introns (anti-introns) or across from the junction between two genes (anti-intergenic junctions). Many of these unannotated RNAs are abundant and exhibit sporulation-specific changes in expression patterns. All work, including heat maps of the tiling array, annotation for the SK1 strain, and phastCONS conservation analysis, is available at http://groups.molbiosci.northwestern.edu/sontheimer/sk1meiosis.php. Our high-resolution transcriptome analyses reveal that coding and noncoding transcript architectures are exceptionally dynamic in S. cerevisiae and suggest a vast array of novel transcriptional and post-transcriptional control mechanisms that are activated upon meiosis and sporulation.
Collapse
Affiliation(s)
- Karen S. Kim Guisbert
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Yong Zhang
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | - Jared Flatow
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Sara Hurtado
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Jonathan P. Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Simon Lin
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Erik J. Sontheimer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
- Corresponding author.E-mail .
| |
Collapse
|
59
|
Jänicke A, Vancuylenberg J, Boag PR, Traven A, Beilharz TH. ePAT: a simple method to tag adenylated RNA to measure poly(A)-tail length and other 3' RACE applications. RNA (NEW YORK, N.Y.) 2012; 18:1289-95. [PMID: 22543866 PMCID: PMC3358650 DOI: 10.1261/rna.031898.111] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The addition of a poly(A)-tail to the 3' termini of RNA molecules influences stability, nuclear export, and efficiency of translation. In the cytoplasm, dynamic changes in the length of the poly(A)-tail have long been recognized as reflective of the switch between translational silence and activation. Thus, measurement of the poly(A)-tail associated with any given mRNA at steady-state can serve as a surrogate readout of its translation-state. Here, we describe a simple new method to 3'-tag adenylated RNA in total RNA samples using the intrinsic property of Escherichia coli DNA polymerase I to extend an RNA primer using a DNA template. This tag can serve as an anchor for cDNA synthesis and subsequent gene-specific PCR to assess poly(A)-tail length. We call this method extension Poly(A) Test (ePAT). The ePAT approach is as efficient as traditional Ligation-Mediated Poly(A) Test (LM-PAT) assays, avoids problems of internal priming associated with oligo-dT-based methods, and allows for the accurate analysis of both the poly(A)-tail length and alternate 3' UTR usage in 3' RACE applications.
Collapse
Affiliation(s)
- Amrei Jänicke
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - John Vancuylenberg
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Peter R. Boag
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Traude H. Beilharz
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Corresponding author.E-mail .
| |
Collapse
|
60
|
Derti A, Garrett-Engele P, Macisaac KD, Stevens RC, Sriram S, Chen R, Rohl CA, Johnson JM, Babak T. A quantitative atlas of polyadenylation in five mammals. Genome Res 2012; 22:1173-83. [PMID: 22454233 PMCID: PMC3371698 DOI: 10.1101/gr.132563.111] [Citation(s) in RCA: 502] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We developed PolyA-seq, a strand-specific and quantitative method for high-throughput sequencing of 3′ ends of polyadenylated transcripts, and used it to globally map polyadenylation (polyA) sites in 24 matched tissues in human, rhesus, dog, mouse, and rat. We show that PolyA-seq is as accurate as existing RNA sequencing (RNA-seq) approaches for digital gene expression (DGE), enabling simultaneous mapping of polyA sites and quantitative measurement of their usage. In human, we confirmed 158,533 known sites and discovered 280,857 novel sites (FDR < 2.5%). On average 10% of novel human sites were also detected in matched tissues in other species. Most novel sites represent uncharacterized alternative polyA events and extensions of known transcripts in human and mouse, but primarily delineate novel transcripts in the other three species. A total of 69.1% of known human genes that we detected have multiple polyA sites in their 3′UTRs, with 49.3% having three or more. We also detected polyadenylation of noncoding and antisense transcripts, including constitutive and tissue-specific primary microRNAs. The canonical polyA signal was strongly enriched and positionally conserved in all species. In general, usage of polyA sites is more similar within the same tissues across different species than within a species. These quantitative maps of polyA usage in evolutionarily and functionally related samples constitute a resource for understanding the regulatory mechanisms underlying alternative polyadenylation.
Collapse
Affiliation(s)
- Adnan Derti
- Department of Informatics IT, Merck and Co., Inc., Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Dynamic changes in nucleosome occupancy are not predictive of gene expression dynamics but are linked to transcription and chromatin regulators. Mol Cell Biol 2012; 32:1645-53. [PMID: 22354995 DOI: 10.1128/mcb.06170-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The response to stressful stimuli requires rapid, precise, and dynamic gene expression changes that must be coordinated across the genome. To gain insight into the temporal ordering of genome reorganization, we investigated dynamic relationships between changing nucleosome occupancy, transcription factor binding, and gene expression in Saccharomyces cerevisiae yeast responding to oxidative stress. We applied deep sequencing to nucleosomal DNA at six time points before and after hydrogen peroxide treatment and revealed many distinct dynamic patterns of nucleosome gain and loss. The timing of nucleosome repositioning was not predictive of the dynamics of downstream gene expression change but instead was linked to nucleosome position relative to transcription start sites and specific cis-regulatory elements. We measured genome-wide binding of the stress-activated transcription factor Msn2p over time and found that Msn2p binds different loci with different dynamics. Nucleosome eviction from Msn2p binding sites was common across the genome; however, we show that, contrary to expectation, nucleosome loss occurred after Msn2p binding and in fact required Msn2p. This negates the prevailing model that nucleosomes obscuring Msn2p sites regulate DNA access and must be lost before Msn2p can bind DNA. Together, these results highlight the complexities of stress-dependent chromatin changes and their effects on gene expression.
Collapse
|
62
|
Pelechano V, Wilkening S, Järvelin AI, Tekkedil MM, Steinmetz LM. Genome-wide polyadenylation site mapping. Methods Enzymol 2012; 513:271-96. [PMID: 22929774 DOI: 10.1016/b978-0-12-391938-0.00012-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alternative polyadenylation site usage gives rise to variation in 3' ends of transcripts in diverse organisms ranging from yeast to human. Accurate mapping of polyadenylation sites of transcripts is of major biological importance, since the length of the 3'UTR can have a strong influence on transcript stability, localization, and translation. However, reads generated using total mRNA sequencing mostly lack the very 3' end of transcripts. Here, we present a method that allows simultaneous analysis of alternative 3' ends and transcriptome dynamics at high throughput. By using transcripts produced in vitro, the high precision of end mapping during the protocol can be controlled. This method is illustrated here for budding yeast. However, this method can be applied to any natural or artificially polyadenylated RNA.
Collapse
Affiliation(s)
- Vicent Pelechano
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
63
|
Pandey R, Mukerji M. From 'JUNK' to Just Unexplored Noncoding Knowledge: the case of transcribed Alus. Brief Funct Genomics 2011; 10:294-311. [DOI: 10.1093/bfgp/elr029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
64
|
Yeast pheromone receptor genes STE2 and STE3 are differently regulated at the transcription and polyadenylation level. Proc Natl Acad Sci U S A 2011; 108:17082-6. [PMID: 21969566 DOI: 10.1073/pnas.1114648108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The orderly expression of specific genes is the basis for cell differentiation. Saccharomyces cerevisiae has two haploid mating types, a and α cells, in which the mating-specific genes are differentially expressed. When a and α cells are committed to mate, their growth is arrested. Here we show that a cryptic polyadenylation site is present inside the coding region of the a-specific STE2 gene, encoding the receptor for the α-factor. The two cell types produce an incomplete STE2 transcript, but only a cells generate full-length STE2 mRNA. We eliminated the cryptic poly(A) signal, thereby allowing the production of a complete STE2 mRNA in α cells. We mutagenized α cells and isolated a mutant producing full-length STE2 mRNA. The mutation occurred in the ITC1 gene, whose product, together with the product of ISW2, is known to repress STE2 transcriptional initiation. We propose that the regulation of the yeast mating genes is achieved through a concerted mechanism involving transcriptional and posttranscriptional events. In particular, the early poly(A) site in STE2 could contribute to a complete shutoff of its expression in α cells, avoiding autocrine activation and growth arrest. Remarkably, no cryptic poly(A) sites are present in the a-factor receptor STE3 gene, indicating that S. cerevisiae has devised different strategies to regulate the two receptor genes. It is predictable that a correlation between the repression of a gene and the presence of a cryptic poly(A) site could also be found in other organisms, especially when expression of that gene may be harmful.
Collapse
|
65
|
Lelandais G, Goudot C, Devaux F. The evolution of gene expression regulatory networks in yeasts. C R Biol 2011; 334:655-61. [PMID: 21819947 DOI: 10.1016/j.crvi.2011.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/02/2011] [Indexed: 12/20/2022]
Abstract
Gene regulation is a major source of phenotypic diversity between and within species. This aspect of evolution has long been addressed from the sole point of view of the genome sequence. The incredible development of transcriptomics approaches now allows one to actually study the topology and the properties of regulatory networks on an evolutionary perspective. This new discipline is called comparative functional genomics or comparative transcriptomics. This article reviews some of the main advances made in this field, using yeast species, and especially the species sequenced in the frame of the Genolevures program, as a model.
Collapse
Affiliation(s)
- Gaëlle Lelandais
- Inserm UMR-S 665, Dynamique des Structures et Interactions des Macromolécules Biologiques, Université Paris Diderot, Sorbonne Paris Cité, INTS, 6 rue Alexandre-Cabanel, 75015 Paris, France.
| | | | | |
Collapse
|
66
|
Wei W, Pelechano V, Järvelin AI, Steinmetz LM. Functional consequences of bidirectional promoters. Trends Genet 2011; 27:267-76. [PMID: 21601935 PMCID: PMC3123404 DOI: 10.1016/j.tig.2011.04.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 04/20/2011] [Accepted: 04/20/2011] [Indexed: 02/07/2023]
Abstract
Several studies have shown that promoters of protein-coding genes are origins of pervasive non-coding RNA transcription and can initiate transcription in both directions. However, only recently have researchers begun to elucidate the functional implications of this bidirectionality and non-coding RNA production. Increasing evidence indicates that non-coding transcription at promoters influences the expression of protein-coding genes, revealing a new layer of transcriptional regulation. This regulation acts at multiple levels, from modifying local chromatin to enabling regional signal spreading and more distal regulation. Moreover, the bidirectional activity of a promoter is regulated at multiple points during transcription, giving rise to diverse types of transcripts.
Collapse
Affiliation(s)
| | | | | | - Lars M. Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
67
|
Ozsolak F, Kapranov P, Foissac S, Kim SW, Fishilevich E, Monaghan AP, John B, Milos PM. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 2010; 143:1018-29. [PMID: 21145465 PMCID: PMC3022516 DOI: 10.1016/j.cell.2010.11.020] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/28/2010] [Accepted: 11/09/2010] [Indexed: 01/12/2023]
Abstract
The emerging discoveries on the link between polyadenylation and disease states underline the need to fully characterize genome-wide polyadenylation states. Here, we report comprehensive maps of global polyadenylation events in human and yeast generated using refinements to the Direct RNA Sequencing technology. This direct approach provides a quantitative view of genome-wide polyadenylation states in a strand-specific manner and requires only attomole RNA quantities. The polyadenylation profiles revealed an abundance of unannotated polyadenylation sites, alternative polyadenylation patterns, and regulatory element-associated poly(A)(+) RNAs. We observed differences in sequence composition surrounding canonical and noncanonical human polyadenylation sites, suggesting novel noncoding RNA-specific polyadenylation mechanisms in humans. Furthermore, we observed the correlation level between sense and antisense transcripts to depend on gene expression levels, supporting the view that overlapping transcription from opposite strands may play a regulatory role. Our data provide a comprehensive view of the polyadenylation state and overlapping transcription.
Collapse
Affiliation(s)
- Fatih Ozsolak
- Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, USA
| | - Philipp Kapranov
- Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, USA
| | - Sylvain Foissac
- Integromics, S.L., Grisolía, 2 - 28760 Tres Cantos Madrid, Spain
| | - Sang Woo Kim
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Elane Fishilevich
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - A. Paula Monaghan
- Department of Neurobiology, University of Pittsburgh, 3501 Fifth Ave, Pittsburgh, Pennsylvania 15260, USA
| | - Bino John
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Patrice M. Milos
- Helicos BioSciences Corporation, One Kendall Square, Cambridge, MA 02139, USA
| |
Collapse
|
68
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|