51
|
Friedt J, Leavens FMV, Mercier E, Wieden HJ, Kothe U. An arginine-aspartate network in the active site of bacterial TruB is critical for catalyzing pseudouridine formation. Nucleic Acids Res 2014; 42:3857-70. [PMID: 24371284 PMCID: PMC3973310 DOI: 10.1093/nar/gkt1331] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/27/2013] [Accepted: 11/30/2013] [Indexed: 11/12/2022] Open
Abstract
Pseudouridine synthases introduce the most common RNA modification and likely use the same catalytic mechanism. Besides a catalytic aspartate residue, the contributions of other residues for catalysis of pseudouridine formation are poorly understood. Here, we have tested the role of a conserved basic residue in the active site for catalysis using the bacterial pseudouridine synthase TruB targeting U55 in tRNAs. Substitution of arginine 181 with lysine results in a 2500-fold reduction of TruB's catalytic rate without affecting tRNA binding. Furthermore, we analyzed the function of a second-shell aspartate residue (D90) that is conserved in all TruB enzymes and interacts with C56 of tRNA. Site-directed mutagenesis, biochemical and kinetic studies reveal that this residue is not critical for substrate binding but influences catalysis significantly as replacement of D90 with glutamate or asparagine reduces the catalytic rate 30- and 50-fold, respectively. In agreement with molecular dynamics simulations of TruB wild type and TruB D90N, we propose an electrostatic network composed of the catalytic aspartate (D48), R181 and D90 that is important for catalysis by fine-tuning the D48-R181 interaction. Conserved, negatively charged residues similar to D90 are found in a number of pseudouridine synthases, suggesting that this might be a general mechanism.
Collapse
Affiliation(s)
- Jenna Friedt
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Fern M. V. Leavens
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Evan Mercier
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Hans-Joachim Wieden
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Ute Kothe
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| |
Collapse
|
52
|
Spenkuch F, Motorin Y, Helm M. Pseudouridine: still mysterious, but never a fake (uridine)! RNA Biol 2014; 11:1540-54. [PMID: 25616362 PMCID: PMC4615568 DOI: 10.4161/15476286.2014.992278] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/23/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023] Open
Abstract
Pseudouridine (Ψ) is the most abundant of >150 nucleoside modifications in RNA. Although Ψ was discovered as the first modified nucleoside more than half a century ago, neither the enzymatic mechanism of its formation, nor the function of this modification are fully elucidated. We present the consistent picture of Ψ synthases, their substrates and their substrate positions in model organisms of all domains of life as it has emerged to date and point out the challenges that remain concerning higher eukaryotes and the elucidation of the enzymatic mechanism.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Humans
- Intramolecular Transferases/genetics
- Intramolecular Transferases/metabolism
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Nucleic Acid Conformation
- Pseudouridine/metabolism
- RNA/genetics
- RNA/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Mitochondrial
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Uridine/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Felix Spenkuch
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University of Mainz; Mainz, Germany
| | - Yuri Motorin
- Laboratoire IMoPA; Ingénierie Moléculaire et Physiopathologie Articulaire; BioPôle de l'Université de Lorraine; Campus Biologie-Santé; Faculté de Médecine; Vandoeuvre-les-Nancy Cedex, France
| | - Mark Helm
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University of Mainz; Mainz, Germany
| |
Collapse
|
53
|
Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics 2013; 194:43-67. [PMID: 23633143 DOI: 10.1534/genetics.112.147470] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transfer RNAs (tRNAs) are essential for protein synthesis. In eukaryotes, tRNA biosynthesis employs a specialized RNA polymerase that generates initial transcripts that must be subsequently altered via a multitude of post-transcriptional steps before the tRNAs beome mature molecules that function in protein synthesis. Genetic, genomic, biochemical, and cell biological approaches possible in the powerful Saccharomyces cerevisiae system have led to exciting advances in our understandings of tRNA post-transcriptional processing as well as to novel insights into tRNA turnover and tRNA subcellular dynamics. tRNA processing steps include removal of transcribed leader and trailer sequences, addition of CCA to the 3' mature sequence and, for tRNA(His), addition of a 5' G. About 20% of yeast tRNAs are encoded by intron-containing genes. The three-step splicing process to remove the introns surprisingly occurs in the cytoplasm in yeast and each of the splicing enzymes appears to moonlight in functions in addition to tRNA splicing. There are 25 different nucleoside modifications that are added post-transcriptionally, creating tRNAs in which ∼15% of the residues are nucleosides other than A, G, U, or C. These modified nucleosides serve numerous important functions including tRNA discrimination, translation fidelity, and tRNA quality control. Mature tRNAs are very stable, but nevertheless yeast cells possess multiple pathways to degrade inappropriately processed or folded tRNAs. Mature tRNAs are also dynamic in cells, moving from the cytoplasm to the nucleus and back again to the cytoplasm; the mechanism and function of this retrograde process is poorly understood. Here, the state of knowledge for tRNA post-transcriptional processing, turnover, and subcellular dynamics is addressed, highlighting the questions that remain.
Collapse
|
54
|
Ge J, Yu YT. RNA pseudouridylation: new insights into an old modification. Trends Biochem Sci 2013; 38:210-8. [PMID: 23391857 PMCID: PMC3608706 DOI: 10.1016/j.tibs.2013.01.002] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/22/2012] [Accepted: 01/07/2013] [Indexed: 12/18/2022]
Abstract
Pseudouridine is the most abundant post-transcriptionally modified nucleotide in various stable RNAs of all organisms. Pseudouridine is derived from uridine via base-specific isomerization, resulting in an extra hydrogen-bond donor that distinguishes it from other nucleotides. In eukaryotes, uridine-to-pseudouridine isomerization is catalyzed primarily by box H/ACA RNPs, ribonucleoproteins that act as pseudouridylases. When introduced into RNA, pseudouridine contributes significantly to RNA-mediated cellular processes. It was recently discovered that pseudouridylation can be induced by stress, suggesting a regulatory role for pseudouridine. It has also been reported that pseudouridine can be artificially introduced into mRNA by box H/ACA RNPs and that such introduction can mediate nonsense-to-sense codon conversion, thus demonstrating a new means of generating coding or protein diversity.
Collapse
Affiliation(s)
- Junhui Ge
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
55
|
Aulds J, Wierzbicki S, McNairn A, Schmitt ME. Global identification of new substrates for the yeast endoribonuclease, RNase mitochondrial RNA processing (MRP). J Biol Chem 2012; 287:37089-97. [PMID: 22977255 DOI: 10.1074/jbc.m112.389023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNase mitochondrial RNA processing (MRP) is an essential, evolutionarily conserved endoribonuclease composed of 10 different protein subunits and a single RNA. RNase MRP has established roles in multiple pathways including ribosome biogenesis, cell cycle regulation, and mitochondrial DNA replication. Although each of these functions is important to cell growth, additional functions may exist given the essential nature of the complex. To identify novel RNase MRP substrates, we utilized RNA immunoprecipitation and microarray chip analysis to identify RNA that physically associates with RNase MRP. We identified several new potential substrates for RNase MRP including a cell cycle-regulated transcript, CTS1; the yeast homolog of the mammalian p27(Kip1), SIC1; and the U2 RNA component of the spliceosome. In addition, we found RNase MRP to be involved in the regulation of the Ty1 transposon RNA. These results reinforce and broaden the role of RNase MRP in cell cycle regulation and help to identify new roles of this endoribonuclease.
Collapse
Affiliation(s)
- Jason Aulds
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
56
|
Yu AT, Ge J, Yu YT. Pseudouridines in spliceosomal snRNAs. Protein Cell 2011; 2:712-25. [PMID: 21976061 PMCID: PMC4722041 DOI: 10.1007/s13238-011-1087-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/22/2011] [Indexed: 01/14/2023] Open
Abstract
Spliceosomal RNAs are a family of small nuclear RNAs (snRNAs) that are essential for pre-mRNA splicing. All vertebrate spliceosomal snRNAs are extensively pseudouridylated after transcription. Pseudouridines in spliceosomal snRNAs are generally clustered in regions that are functionally important during splicing. Many of these modified nucleotides are conserved across species lines. Recent studies have demonstrated that spliceosomal snRNA pseudouridylation is catalyzed by two different mechanisms: an RNA-dependent mechanism and an RNA-independent mechanism. The functions of the pseudouridines in spliceosomal snRNAs (U2 snRNA in particular) have also been extensively studied. Experimental data indicate that virtually all pseudouridines in U2 snRNA are functionally important. Besides the currently known pseudouridines (constitutive modifications), recent work has also indicated that pseudouridylation can be induced at novel positions under stress conditions, thus strongly suggesting that pseudouridylation is also a regulatory modification.
Collapse
Affiliation(s)
- Andrew T. Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Junhui Ge
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003 China
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 USA
| |
Collapse
|
57
|
Wu G, Yu AT, Kantartzis A, Yu YT. Functions and mechanisms of spliceosomal small nuclear RNA pseudouridylation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:571-81. [PMID: 21957045 PMCID: PMC4161978 DOI: 10.1002/wrna.77] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pseudouridines are the most abundant and highly conserved modified nucleotides identified in spliceosomal small nuclear RNAs (snRNAs). Most pseudouridines are also clustered in functionally important regions of spliceosomal snRNAs. Experiments carried out in several independent experimental systems show that the pseudouridines in spliceosomal snRNAs are functionally important for pre-messenger RNA (mRNA) splicing. Experimental data also indicate that spliceosomal snRNA pseudouridylation can be catalyzed by both RNA-dependent (box H/ACA Ribonucleoproteins) and RNA-independent (protein-only enzymes) mechanisms.
Collapse
Affiliation(s)
- Guowei Wu
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Andrew T. Yu
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Athena Kantartzis
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
58
|
Wu G, Xiao M, Yang C, Yu YT. U2 snRNA is inducibly pseudouridylated at novel sites by Pus7p and snR81 RNP. EMBO J 2010; 30:79-89. [PMID: 21131909 DOI: 10.1038/emboj.2010.316] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 11/10/2010] [Indexed: 12/16/2022] Open
Abstract
All pseudouridines identified in RNA are considered constitutive modifications. Here, we demonstrate that pseudouridylation of Saccharomyces cerevisiae U2 snRNA can be conditionally induced. While only Ψ35, Ψ42 and Ψ44 are detected in U2 under normal conditions, nutrient deprivation leads to additional pseudouridylation at positions 56 and 93. Pseudouridylation at position 56 can also be induced by heat shock. Detailed analyses have shown that Pus7p, a single polypeptide pseudouridylase known to modify U2 at position 35 and tRNA at position 13, catalyses Ψ56 formation, and that snR81 RNP, a box H/ACA RNP known to modify U2 snRNA at position 42 and 25S rRNA at position 1051, catalyses Ψ93 formation. Using mutagenesis, we have demonstrated that the inducibility can be attributed to the imperfect substrate sequences. By introducing Ψ93 into log-phase cells, we further show that Ψ93 has a role in pre-mRNA splicing. Our results thus demonstrate for the first time that pseudouridylation of RNA can be induced at sites of imperfect sequences, and that Pus7p and snR81 RNP can catalyse both constitutive and inducible pseudouridylation.
Collapse
Affiliation(s)
- Guowei Wu
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
59
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
60
|
Demirci H, Larsen LHG, Hansen T, Rasmussen A, Cadambi A, Gregory ST, Kirpekar F, Jogl G. Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus. RNA (NEW YORK, N.Y.) 2010; 16:1584-1596. [PMID: 20558545 PMCID: PMC2905757 DOI: 10.1261/rna.2088310] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 04/26/2010] [Indexed: 05/29/2023]
Abstract
Cells devote a significant effort toward the production of multiple modified nucleotides in rRNAs, which fine tune the ribosome function. Here, we report that two methyltransferases, RsmB and RsmF, are responsible for all four 5-methylcytidine (m(5)C) modifications in 16S rRNA of Thermus thermophilus. Like Escherichia coli RsmB, T. thermophilus RsmB produces m(5)C967. In contrast to E. coli RsmF, which introduces a single m(5)C1407 modification, T. thermophilus RsmF modifies three positions, generating m(5)C1400 and m(5)C1404 in addition to m(5)C1407. These three residues are clustered near the decoding site of the ribosome, but are situated in distinct structural contexts, suggesting a requirement for flexibility in the RsmF active site that is absent from the E. coli enzyme. Two of these residues, C1400 and C1404, are sufficiently buried in the mature ribosome structure so as to require extensive unfolding of the rRNA to be accessible to RsmF. In vitro, T. thermophilus RsmF methylates C1400, C1404, and C1407 in a 30S subunit substrate, but only C1400 and C1404 when naked 16S rRNA is the substrate. The multispecificity of T. thermophilus RsmF is potentially explained by three crystal structures of the enzyme in a complex with cofactor S-adenosyl-methionine at up to 1.3 A resolution. In addition to confirming the overall structural similarity to E. coli RsmF, these structures also reveal that key segments in the active site are likely to be dynamic in solution, thereby expanding substrate recognition by T. thermophilus RsmF.
Collapse
Affiliation(s)
- Hasan Demirci
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Grosjean H, de Crécy-Lagard V, Marck C. Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes. FEBS Lett 2010; 584:252-64. [PMID: 19931533 DOI: 10.1016/j.febslet.2009.11.052] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/11/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
Abstract
The strategies organisms use to decode synonymous codons in cytosolic protein synthesis are not uniform. The complete isoacceptor tRNA repertoire and the type of modified nucleoside found at the wobble position 34 of their anticodons were analyzed in all kingdoms of life. This led to the identification of four main decoding strategies that are diversely used in Bacteria, Archaea and Eukarya. Many of the modern tRNA modification enzymes acting at position 34 of tRNAs are present only in specific domains and obviously have arisen late during evolution. In an evolutionary fine-tuning process, these enzymes must have played an essential role in the progressive introduction of new amino acids, and in the refinement and standardization of the canonical nuclear genetic code observed in all extant organisms (functional convergent evolutionary hypothesis).
Collapse
Affiliation(s)
- Henri Grosjean
- Université Paris-Sud, CNRS, UMR8621, Institut de Génétique et de Microbiologie, Orsay F-91405, France.
| | | | | |
Collapse
|
62
|
Phizicky EM, Alfonzo JD. Do all modifications benefit all tRNAs? FEBS Lett 2009; 584:265-71. [PMID: 19931536 DOI: 10.1016/j.febslet.2009.11.049] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
Despite the universality of tRNA modifications, some tRNAs lacking specific modifications are subject to degradation pathways, while other tRNAs lacking the same modifications are resistant. Here, we suggest a model in which some modifications have minor, possibly redundant, roles in specific tRNAs. This model is consistent with the low specificity of some modification enzymes. Limitations of this model include the limited assays and growth conditions on which these conclusions are based, as well as the high specificity exhibited by many modification enzymes with important roles in translation. The specificity of these enzymes is often enhanced by complex substrate recognition patterns and sub-cellular compartmentalization.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | |
Collapse
|
63
|
Muller S, Urban A, Hecker A, Leclerc F, Branlant C, Motorin Y. Deficiency of the tRNATyr:Psi 35-synthase aPus7 in Archaea of the Sulfolobales order might be rescued by the H/ACA sRNA-guided machinery. Nucleic Acids Res 2009; 37:1308-22. [PMID: 19139072 PMCID: PMC2651775 DOI: 10.1093/nar/gkn1037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 12/11/2008] [Accepted: 12/12/2008] [Indexed: 11/21/2022] Open
Abstract
Up to now, Psi formation in tRNAs was found to be catalysed by stand-alone enzymes. By computational analysis of archaeal genomes we detected putative H/ACA sRNAs, in four Sulfolobales species and in Aeropyrum pernix, that might guide Psi 35 formation in pre-tRNA(Tyr)(GUA). This modification is achieved by Pus7p in eukarya. The validity of the computational predictions was verified by in vitro reconstitution of H/ACA sRNPs using the identified Sulfolobus solfataricus H/ACA sRNA. Comparison of Pus7-like enzymes encoded by archaeal genomes revealed amino acid substitutions in motifs IIIa and II in Sulfolobales and A. pernix Pus7-like enzymes. These conserved RNA:Psi-synthase- motifs are essential for catalysis. As expected, the recombinant Pyrococcus abyssi aPus7 was fully active and acted at positions 35 and 13 and other positions in tRNAs, while the recombinant S. solfataricus aPus7 was only found to have a poor activity at position 13. We showed that the presence of an A residue 3' to the target U residue is required for P. abyssi aPus7 activity, and that this is not the case for the reconstituted S. solfataricus H/ACA sRNP. In agreement with the possible formation of Psi 35 in tRNA(Tyr)(GUA) by aPus7 in P. abyssi and by an H/ACA sRNP in S. solfataricus, the A36G mutation in the P. abyssi tRNA(Tyr)(GUA) abolished Psi 35 formation when using P. abyssi extract, whereas the A36G substitution in the S. solfataricus pre-tRNA(Tyr) did not affect Psi 35 formation in this RNA when using an S. solfataricus extract.
Collapse
Affiliation(s)
- Sébastien Muller
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy Université, BP 239, 54506 Vandoeuvre-les-Nancy Cedex and Institut de Génétique et Microbiologie, Université Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France
| | - Alan Urban
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy Université, BP 239, 54506 Vandoeuvre-les-Nancy Cedex and Institut de Génétique et Microbiologie, Université Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France
| | - Arnaud Hecker
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy Université, BP 239, 54506 Vandoeuvre-les-Nancy Cedex and Institut de Génétique et Microbiologie, Université Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France
| | - Fabrice Leclerc
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy Université, BP 239, 54506 Vandoeuvre-les-Nancy Cedex and Institut de Génétique et Microbiologie, Université Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France
| | - Christiane Branlant
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy Université, BP 239, 54506 Vandoeuvre-les-Nancy Cedex and Institut de Génétique et Microbiologie, Université Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France
| | - Yuri Motorin
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy Université, BP 239, 54506 Vandoeuvre-les-Nancy Cedex and Institut de Génétique et Microbiologie, Université Paris-Sud, IFR115, UMR8621-CNRS, 91405 Orsay, France
| |
Collapse
|
64
|
Urban A, Behm-Ansmant I, Branlant C, Motorin Y. RNA sequence and two-dimensional structure features required for efficient substrate modification by the Saccharomyces cerevisiae RNA:{Psi}-synthase Pus7p. J Biol Chem 2008; 284:5845-58. [PMID: 19114708 DOI: 10.1074/jbc.m807986200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA:pseudouridine (Psi) synthase Pus7p of Saccharomyces cerevisiae is a multisite-specific enzyme that is able to modify U(13) in several yeast tRNAs, U(35) in the pre-tRNA(Tyr) (GPsiA), U(35) in U2 small nuclear RNA, and U(50) in 5 S rRNA. Pus7p belongs to the universally conserved TruD-like family of RNA:Psi-synthases found in bacteria, archaea, and eukarya. Although several RNA substrates for yeast Pus7p have been identified, specificity of their recognition and modification has not been studied. However, conservation of a 7-nt-long sequence, including the modified U residue, in all natural Pus7p substrates suggested the importance of these nucleotides for Pus7p recognition and/or catalysis. Using site-directed mutagenesis, we designed a set of RNA variants derived from the yeast tRNA(Asp)(GUC), pre-tRNA(Tyr)(GPsiA), and U2 small nuclear RNA and tested their ability to be modified by Pus7p in vitro. We demonstrated that the highly conserved U(-2) and A(+1) residues (nucleotide numbers refer to target U(0)) are crucial identity elements for efficient modification by Pus7p. Nucleotide substitutions at other surrounding positions (-4, -3, +2, +3) have only a moderate effect. Surprisingly, the identity of the nucleotide immediately 5' to the target U(0) residue (position -1) is not important for efficient modification. Alteration of tRNA three-dimensional structure had no detectable effect on Pus7p activity at position 13. However, our results suggest that the presence of at least one stem-loop structure including or close to the target U nucleotide is required for Pus7p-catalyzed modification.
Collapse
Affiliation(s)
- Alan Urban
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567, CNRS-UHP Nancy I, Nancy Université, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | |
Collapse
|
65
|
Box C/D RNA-guided 2'-O methylations and the intron of tRNATrp are not essential for the viability of Haloferax volcanii. J Bacteriol 2008; 190:7308-13. [PMID: 18757532 DOI: 10.1128/jb.00820-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deleting the box C/D RNA-containing intron in the Haloferax volcanii tRNATrp gene abolishes RNA-guided 2'-O methylations of C34 and U39 residues of tRNATrp. However, this deletion does not affect growth under standard conditions.
Collapse
|
66
|
Decatur WA, Schnare MN. Different mechanisms for pseudouridine formation in yeast 5S and 5.8S rRNAs. Mol Cell Biol 2008; 28:3089-100. [PMID: 18332121 PMCID: PMC2423156 DOI: 10.1128/mcb.01574-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/23/2007] [Accepted: 02/26/2008] [Indexed: 12/29/2022] Open
Abstract
The selection of sites for pseudouridylation in eukaryotic cytoplasmic rRNA occurs by the base pairing of the rRNA with specific guide sequences within the RNA components of box H/ACA small nucleolar ribonucleoproteins (snoRNPs). Forty-four of the 46 pseudouridines (Psis) in the cytoplasmic rRNA of Saccharomyces cerevisiae have been assigned to guide snoRNAs. Here, we examine the mechanism of Psi formation in 5S and 5.8S rRNA in which the unassigned Psis occur. We show that while the formation of the Psi in 5.8S rRNA is associated with snoRNP activity, the pseudouridylation of 5S rRNA is not. The position of the Psi in 5.8S rRNA is guided by snoRNA snR43 by using conserved sequence elements that also function to guide pseudouridylation elsewhere in the large-subunit rRNA; an internal stem-loop that is not part of typical yeast snoRNAs also is conserved in snR43. The multisubstrate synthase Pus7 catalyzes the formation of the Psi in 5S rRNA at a site that conforms to the 7-nucleotide consensus sequence present in other substrates of Pus7. The different mechanisms involved in 5S and 5.8S rRNA pseudouridylation, as well as the multiple specificities of the individual trans factors concerned, suggest possible roles in linking ribosome production to other processes, such as splicing and tRNA synthesis.
Collapse
MESH Headings
- Ascomycota/genetics
- Ascomycota/metabolism
- Base Sequence
- DNA Primers/genetics
- Gene Deletion
- Genes, Fungal
- Genetic Complementation Test
- Hydro-Lyases/genetics
- Hydro-Lyases/metabolism
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Pseudouridine/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal, 5.8S/chemistry
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Homology, Nucleic Acid
- Spliceosomes/metabolism
Collapse
Affiliation(s)
- Wayne A Decatur
- Department of Biochemistry and Molecular Biology, 903 Lederle Graduate Research Tower, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
67
|
Muller S, Leclerc F, Behm-Ansmant I, Fourmann JB, Charpentier B, Branlant C. Combined in silico and experimental identification of the Pyrococcus abyssi H/ACA sRNAs and their target sites in ribosomal RNAs. Nucleic Acids Res 2008; 36:2459-75. [PMID: 18304947 PMCID: PMC2377435 DOI: 10.1093/nar/gkn077] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
How far do H/ACA sRNPs contribute to rRNA pseudouridylation in Archaea was still an open question. Hence here, by computational search in three Pyrococcus genomes, we identified seven H/ACA sRNAs and predicted their target sites in rRNAs. In parallel, we experimentally identified 17 Ψ residues in P. abyssi rRNAs. By in vitro reconstitution of H/ACA sRNPs, we assigned 15 out of the 17 Ψ residues to the 7 identified H/ACA sRNAs: one H/ACA motif can guide up to three distinct pseudouridylations. Interestingly, by using a 23S rRNA fragment as the substrate, one of the two remaining Ψ residues could be formed in vitro by the aCBF5/aNOP10/aGAR1 complex without guide sRNA. Our results shed light on structural constraints in archaeal H/ACA sRNPs: the length of helix H2 is of 5 or 6 bps, the distance between the ANA motif and the targeted U residue is of 14 or 15 nts, and the stability of the interaction formed by the substrate rRNA and the 3′-guide sequence is more important than that formed with the 5′-guide sequence. Surprisingly, we showed that a sRNA–rRNA interaction with the targeted uridine in a single-stranded 5′-UNN-3′ trinucleotide instead of the canonical 5′-UN-3′ dinucleotide is functional.
Collapse
Affiliation(s)
- Sébastien Muller
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP, Nancy Université, Faculté des Sciences et Techniques, 54506 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
68
|
Behm-Ansmant I, Branlant C, Motorin Y. The Saccharomyces cerevisiae Pus2 protein encoded by YGL063w ORF is a mitochondrial tRNA:Psi27/28-synthase. RNA (NEW YORK, N.Y.) 2007; 13:1641-7. [PMID: 17684231 PMCID: PMC1986808 DOI: 10.1261/rna.605607] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The RNA:pseudouridine (Psi)-synthase family is one of the most complex families of RNA modification enzymes. Ten genes encoding putative RNA:Psi-synthases have been identified in S. cerevisiae. Most of the encoded enzymes have been characterized experimentally. Only the putative RNA:Psi-synthase Pus2p (encoded by the YGL063w ORF) had no identified substrate. Here, we analyzed Psi residues in cytoplasmic and mitochondrial tRNAs extracted from S. cerevisiae strains, carrying disruptions in the PUS1 and/or PUS2 ORFs. Our results demonstrate that Pus2p is a mitochondrial-specific tRNA:Psi-synthase acting at positions 27 and 28 in tRNAs. The importance of the Asp56 residue in the conserved ARTD motif of the Pus2p catalytic site is demonstrated in vivo. Interestingly, in spite of the absence of a characteristic N-terminal targeting signal, our data strongly suggest an efficient and rapid targeting of Pus2p in yeast mitochondria. In contradiction with the commonly held idea that a unique nuclear gene encodes the enzyme required for both cytoplasmic and mitochondrial tRNA modifications, here we show the existence of an enzyme specifically dedicated to mitochondrial tRNA modification (Pus2p), the corresponding modification in cytoplasmic tRNAs being catalyzed by another protein (Pus1p).
Collapse
Affiliation(s)
- Isabelle Behm-Ansmant
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Faculté des Sciences, BP 239,54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | |
Collapse
|
69
|
Muller S, Fourmann JB, Loegler C, Charpentier B, Branlant C. Identification of determinants in the protein partners aCBF5 and aNOP10 necessary for the tRNA:Psi55-synthase and RNA-guided RNA:Psi-synthase activities. Nucleic Acids Res 2007; 35:5610-24. [PMID: 17704128 PMCID: PMC2018633 DOI: 10.1093/nar/gkm606] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 07/25/2007] [Accepted: 07/25/2007] [Indexed: 11/13/2022] Open
Abstract
Protein aNOP10 has an essential scaffolding function in H/ACA sRNPs and its interaction with the pseudouridine(Psi)-synthase aCBF5 is required for the RNA-guided RNA:Psi-synthase activity. Recently, aCBF5 was shown to catalyze the isomerization of U55 in tRNAs without the help of a guide sRNA. Here we show that the stable anchoring of aCBF5 to tRNAs relies on its PUA domain and the tRNA CCA sequence. Nonetheless, interaction of aNOP10 with aCBF5 can counterbalance the absence of the PUA domain or the CCA sequence and more generally helps the aCBF5 tRNA:Psi55-synthase activity. Whereas substitution of the aNOP10 residue Y14 by an alanine disturbs this activity, it only impairs mildly the RNA-guided activity. The opposite effect was observed for the aNOP10 variant H31A. Substitution K53A or R202A in aCBF5 impairs both the tRNA:Psi55-synthase and the RNA-guided RNA:Psi-synthase activities. Remarkably, the presence of aNOP10 compensates for the negative effect of these substitutions on the tRNA: Psi55-synthase activity. Substitution of the aCBF5 conserved residue H77 that is expected to extrude the targeted U residue in tRNA strongly affects the efficiency of U55 modification but has no major effect on the RNA-guided activity. This negative effect can also be compensated by the presence of aNOP10.
Collapse
Affiliation(s)
| | | | | | - Bruno Charpentier
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP, Nancy Université, Université Henri Poincaré-BP 239, 54506 Vandoeuvre-Lès-Nancy cedex, France
| | | |
Collapse
|
70
|
Bykhovskaya Y, Mengesha E, Fischel-Ghodsian N. Pleiotropic effects and compensation mechanisms determine tissue specificity in mitochondrial myopathy and sideroblastic anemia (MLASA). Mol Genet Metab 2007; 91:148-56. [PMID: 17374500 PMCID: PMC1986728 DOI: 10.1016/j.ymgme.2007.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 02/06/2007] [Indexed: 11/30/2022]
Abstract
The tissue specificity of mitochondrial diseases is poorly understood. Recently, tissue-specific quantitative differences of the components of the mitochondrial translation system have been found to correlate with disease presentation in fatal hepatopathy caused by mutations in mitochondrial translation factor EFG1. MLASA is an autosomal recessive inherited progressive oxidative phosphorylation disorder that affects muscle and erythroid cells. The disease is caused by the homozygous point mutation C656T (R116W) in the catalytic domain of the pseudouridylate synthase 1 (PUS1) gene, which leads to a complete lack of pseudouridylation at the expected sites in mitochondrial and cytoplasmic tRNAs. Despite the presence of these altered tRNAs, most tissues are unaffected, and even in muscle and erythroid cells the disease phenotype only slowly emerges over the course of years. In order to elucidate intracellular pathways through which the homozygous mutation leads to tissue-restricted phenotype, we performed microarray expression analysis of EBV-transformed lymphoblasts from MLASA patients, heterozygous parents, and controls using human Beadchip microarray with 47,296 transcripts. Genes coding for proteins involved in DNA transcription and its regulation, and metal binding proteins, demonstrated major differences in expression between patients and all other individuals with normal phenotype. Genes coding for ribosomal proteins differed significantly between individual with at least one copy of the mutated PUS1 gene and controls. These findings indicate that the lack of tRNA pseudouridylation can be overcome by compensatory changes in levels of ribosomal proteins, and that the disease phenotype in affected tissues is likely due to pleiotropic effects of PUS1p on non-tRNA molecules involved in DNA transcription and iron metabolism. Similar combinations of mechanisms may play a role in the tissue specificity of other mitochondrial disorders.
Collapse
Affiliation(s)
- Yelena Bykhovskaya
- Medical Genetics Institute, Ahmanson Department of Pediatrics, Steven Spielberg Pediatric Research Center, Cedars-Sinai Medical Center and David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Emebet Mengesha
- Medical Genetics Institute, Ahmanson Department of Pediatrics, Steven Spielberg Pediatric Research Center, Cedars-Sinai Medical Center and David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Nathan Fischel-Ghodsian
- Medical Genetics Institute, Ahmanson Department of Pediatrics, Steven Spielberg Pediatric Research Center, Cedars-Sinai Medical Center and David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
71
|
Matsumoto K, Toyooka T, Tomikawa C, Ochi A, Takano Y, Takayanagi N, Endo Y, Hori H. RNA recognition mechanism of eukaryote tRNA (m7G46) methyltransferase (Trm8-Trm82 complex). FEBS Lett 2007; 581:1599-604. [PMID: 17382321 DOI: 10.1016/j.febslet.2007.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/05/2007] [Accepted: 03/09/2007] [Indexed: 01/26/2023]
Abstract
Yeast tRNA (m(7)G46) methyltransferase contains two protein subunits (Trm8 and Trm82). To address the RNA recognition mechanism of the Trm8-Trm82 complex, we investigated methyl acceptance activities of eight truncated yeast tRNA(Phe) transcripts. Both the D-stem and T-stem structures were required for efficient methyl-transfer. To clarify the role of the D-stem structure, we tested four mutant transcripts, in which tertiary base pairs were disrupted. The tertiary base pairs were important but not essential for the methyl-transfer to yeast tRNA(Phe) transcript, suggesting that these base pairs support the induced fit of the G46 base into the catalytic pocket.
Collapse
Affiliation(s)
- Keisuke Matsumoto
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Bunkyo 3, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Takeda H, Toyooka T, Ikeuchi Y, Yokobori SI, Okadome K, Takano F, Oshima T, Suzuki T, Endo Y, Hori H. The substrate specificity of tRNA (m1G37) methyltransferase (TrmD) from Aquifex aeolicus. Genes Cells 2007; 11:1353-65. [PMID: 17121543 DOI: 10.1111/j.1365-2443.2006.01022.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transfer RNA (m(1)G37) methyltransferase (TrmD) catalyzes methyl-transfer from S-adenosyl-L-methionine to the N(1) atom of G37 in tRNA. In Escherichia coli cells, TrmD methylates tRNA species possessing a G36G37 sequence. It was previously believed that G36 was the positive determinant of TrmD recognition. In the current study, we demonstrate that TrmD from Aquifex aeolicus methylates tRNA transcripts possessing an A36G37 sequence as well as tRNA transcripts possessing a G36G37 sequence. In contrast, tRNA transcripts possessing pyrimidine36G37 were not methylated at all. These substrate specificities were confirmed by an in vitro kinetic assay using 16 tRNA transcripts. The modified nucleoside and the position in yeast tRNA(Phe) transcript were confirmed by LC/MS. Furthermore, nine truncated tRNA molecules were tested to clarify the additional recognition site. Unexpectedly, A. aeolicus TrmD protein efficiently methylated the micro helix corresponding to the anti-codon arm. Because the disruption of the anti-codon stem caused the complete loss of the methyl group acceptance activity, the anti-codon stem is essential for the recognition. Moreover, the existence of the D-arm structure inhibited the activity. Recently, it was reported that E. coli TrmD methylates yeast tRNA(Phe) harboring a sequence A36G37. Thus, recognition of the purine36G37 sequence is probably common to eubacteria TrmD proteins.
Collapse
Affiliation(s)
- Hiroshi Takeda
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Bunkyo 3, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Brzezicha B, Schmidt M, Makałowska I, Jarmołowski A, Pieńkowska J, Szweykowska-Kulińska Z. Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res 2006; 34:6034-43. [PMID: 17071714 PMCID: PMC1635329 DOI: 10.1093/nar/gkl765] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We identified a human orthologue of tRNA:m5C methyltransferase from Saccharomyces cerevisiae, which has been previously shown to catalyse the specific modification of C34 in the intron-containing yeast pre-tRNA(CAA)Leu. Using transcripts of intron-less and intron-containing human tRNA(CAA)Leu genes as substrates, we have shown that m5C34 is introduced only in the intron-containing tRNA precursors when the substrates were incubated in the HeLa extract. m5C34 formation depends on the nucleotide sequence surrounding the wobble cytidine and on the structure of the prolongated anticodon stem. Expression of the human Trm4 (hTrm4) cDNA in yeast partially complements the lack of the endogenous Trm4p enzyme. The yeast extract prepared from the strain deprived of the endogenous TRM4 gene and transformed with hTrm4 cDNA exhibits the same activity and substrate specificity toward human pre-tRNALeu transcripts as the HeLa extract. The hTrm4 MTase has a much narrower specificity against the yeast substrates than its yeast orthologue: human enzyme is not able to form m5C at positions 48 and 49 of human and yeast tRNA precursors. To our knowledge, this is the first report showing intron-dependent methylation of human pre-tRNA(CAA)Leu and identification of human gene encoding tRNA methylase responsible for this reaction.
Collapse
Affiliation(s)
| | - Marcin Schmidt
- Department of Biotechnology and Food Microbiology, August Cieszkowski University of AgricultureWojska Polskiego 48, 60-627 Poznań, Poland
| | - Izabela Makałowska
- Center for Computational Genomics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, State CollegePA 16802, USA
| | | | - Joanna Pieńkowska
- Department of Cell Biology, Institute of Experimental Biology, Adam Mickiewicz UniversityUmultowska 89, 61-614 Poznań, Poland
| | | |
Collapse
|
74
|
Behm-Ansmant I, Massenet S, Immel F, Patton JR, Motorin Y, Branlant C. A previously unidentified activity of yeast and mouse RNA:pseudouridine synthases 1 (Pus1p) on tRNAs. RNA (NEW YORK, N.Y.) 2006; 12:1583-93. [PMID: 16804160 PMCID: PMC1524882 DOI: 10.1261/rna.100806] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mouse pseudouridine synthase 1 (mPus1p) was the first vertebrate RNA:pseudouridine synthase that was cloned and characterized biochemically. The mPus1p was previously found to catalyze Psi formation at positions 27, 28, 34, and 36 in in vitro produced yeast and human tRNAs. On the other hand, the homologous Saccharomyces cerevisiae scPus1p protein was shown to modify seven uridine residues in tRNAs (26, 27, 28, 34, 36, 65, and 67) and U44 in U2 snRNA. In this work, we expressed mPus1p in yeast cells lacking scPus1p and studied modification of U2 snRNA and several yeast tRNAs. Our data showed that, in these in vivo conditions, the mouse enzyme efficiently modifies yeast U2 snRNA at position 44 and tRNAs at positions 27, 28, 34, and 36. However, a tRNA:Psi26-synthase activity of mPus1p was not observed. Furthermore, we found that both scPus1p and mPus1p, in vivo and in vitro, have a previously unidentified activity at position 1 in cytoplasmic tRNAArg(ACG). This modification can take place in mature tRNA, as well as in pre-tRNAs with 5' and/or 3' extensions. Thus, we identified the protein carrying one of the last missing yeast tRNA:Psi synthase activities. In addition, our results reveal an additional activity of mPus1p at position 30 in tRNA that scPus1p does not possess.
Collapse
Affiliation(s)
- Isabelle Behm-Ansmant
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP, Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | | | |
Collapse
|
75
|
Marck C, Kachouri-Lafond R, Lafontaine I, Westhof E, Dujon B, Grosjean H. The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications. Nucleic Acids Res 2006; 34:1816-35. [PMID: 16600899 PMCID: PMC1447645 DOI: 10.1093/nar/gkl085] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/03/2006] [Accepted: 03/03/2006] [Indexed: 01/09/2023] Open
Abstract
We present the first comprehensive analysis of RNA polymerase III (Pol III) transcribed genes in ten yeast genomes. This set includes all tRNA genes (tDNA) and genes coding for SNR6 (U6), SNR52, SCR1 and RPR1 RNA in the nine hemiascomycetes Saccharomyces cerevisiae, Saccharomyces castellii, Candida glabrata, Kluyveromyces waltii, Kluyveromyces lactis, Eremothecium gossypii, Debaryomyces hansenii, Candida albicans, Yarrowia lipolytica and the archiascomycete Schizosaccharomyces pombe. We systematically analysed sequence specificities of tRNA genes, polymorphism, variability of introns, gene redundancy and gene clustering. Analysis of decoding strategies showed that yeasts close to S.cerevisiae use bacterial decoding rules to read the Leu CUN and Arg CGN codons, in contrast to all other known Eukaryotes. In D.hansenii and C.albicans, we identified a novel tDNA-Leu (AAG), reading the Leu CUU/CUC/CUA codons with an unusual G at position 32. A systematic 'p-distance tree' using the 60 variable positions of the tRNA molecule revealed that most tDNAs cluster into amino acid-specific sub-trees, suggesting that, within hemiascomycetes, orthologous tDNAs are more closely related than paralogs. We finally determined the bipartite A- and B-box sequences recognized by TFIIIC. These minimal sequences are nearly conserved throughout hemiascomycetes and were satisfactorily retrieved at appropriate locations in other Pol III genes.
Collapse
MESH Headings
- Ascomycota/enzymology
- Ascomycota/genetics
- Base Sequence
- Codon
- Conserved Sequence
- DNA, Fungal/chemistry
- Evolution, Molecular
- Genes, Fungal
- Genome, Fungal
- Genomics
- Introns
- Molecular Sequence Data
- Multigene Family
- Polymorphism, Genetic
- Promoter Regions, Genetic
- RNA Polymerase III/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Untranslated/genetics
- Transcription Factors, TFIII/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Christian Marck
- Service de Biochimie et de Génétique Moléculaire, Bât 144. CEA/Saclay, 91191 Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|
76
|
Alexandrov A, Chernyakov I, Gu W, Hiley SL, Hughes TR, Grayhack EJ, Phizicky EM. Rapid tRNA decay can result from lack of nonessential modifications. Mol Cell 2006; 21:87-96. [PMID: 16387656 DOI: 10.1016/j.molcel.2005.10.036] [Citation(s) in RCA: 391] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 10/18/2005] [Accepted: 10/28/2005] [Indexed: 11/19/2022]
Abstract
The biological role of many nonessential tRNA modifications outside of the anticodon remains elusive despite their evolutionary conservation. We show here that m7G46 methyltransferase Trm8p/Trm82p acts as a hub of synthetic interactions with several tRNA modification enzymes, resulting in temperature-sensitive growth. Analysis of three double mutants indicates reduced levels of tRNA(Val(AAC)), consistent with a role of the corresponding modifications in maintenance of tRNA levels. Detailed examination of a trm8-delta trm4-delta double mutant demonstrates rapid degradation of preexisting tRNA(Val(AAC)) accompanied by its de-aminoacylation. Multiple copies of tRNA(Val(AAC)) suppress the trm8-delta trm4-delta growth defect, directly implicating this tRNA in the phenotype. These results define a rapid tRNA degradation (RTD) pathway that is independent of the TRF4/RRP6-dependent nuclear surveillance pathway. The degradation of an endogenous tRNA species at a rate typical of mRNA decay demonstrates a critical role of nonessential modifications for tRNA stability and cell survival.
Collapse
Affiliation(s)
- Andrei Alexandrov
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Patton JR, Padgett RW. Pseudouridine modification in Caenorhabditis elegans spliceosomal snRNAs: unique modifications are found in regions involved in snRNA-snRNA interactions. BMC Mol Biol 2005; 6:20. [PMID: 16236171 PMCID: PMC1276797 DOI: 10.1186/1471-2199-6-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 10/19/2005] [Indexed: 01/25/2023] Open
Abstract
Background Pseudouridine (Ψ) is an abundant modified nucleoside in RNA and a number of studies have shown that the presence of Ψ affects RNA structure and function. The positions of Ψ in spliceosomal small nuclear RNAs (snRNAs) have been determined for a number of species but not for the snRNAs from Caenorhabditis elegans (C. elegans), a popular experimental model system of development. Results As a prelude to determining the function of or requirement for this modification in snRNAs, we have mapped the positions of Ψ in U1, U2, U4, U5, and U6 snRNAs from worms using a specific primer extension method. As with other species, C. elegans U2 snRNA has the greatest number of Ψ residues, with nine, located in the 5' half of the U2 snRNA. U5 snRNA has three Ψs, in or near the loop of the large stem-loop that dominates the structure of this RNA. U6 and U1 snRNAs each have one Ψ, and two Ψ residues were found in U4 snRNA. Conclusion The total number of Ψs found in the snRNAs of C. elegans is significantly higher than the minimal amount found in yeasts but it is lower than that seen in sequenced vertebrate snRNAs. When the actual sites of modification on C. elegans snRNAs are compared with other sequenced snRNAs most of the positions correspond to modifications found in other species. However, two of the positions modified on C. elegans snRNAs are unique, one at position 28 on U2 snRNA and one at position 62 on U4 snRNA. Both of these modifications are in regions of these snRNAs that interact with U6 snRNA either in the spliceosome or in the U4/U6 small nuclear ribonucleoprotein particle (snRNP) and the presence of Ψ may be involved in strengthening the intermolecular association of the snRNAs.
Collapse
Affiliation(s)
- Jeffrey R Patton
- Department of Pathology and Microbiology, University of South Carolina School of Medicine Columbia, SC 29208 USA
| | - Richard W Padgett
- Waksman Institute, Department of Molecular Biology and Biochemistry and Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854 USA
| |
Collapse
|
78
|
Barth S, Hury A, Liang XH, Michaeli S. Elucidating the role of H/ACA-like RNAs in trans-splicing and rRNA processing via RNA interference silencing of the Trypanosoma brucei CBF5 pseudouridine synthase. J Biol Chem 2005; 280:34558-68. [PMID: 16107339 DOI: 10.1074/jbc.m503465200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most pseudouridinylation in eukaryotic rRNA and small nuclear RNAs is guided by H/ACA small nucleolar RNAs. In this study, the Trypanosoma brucei pseudouridine synthase, Cbf5p, a snoRNP protein, was identified and silenced by RNAi. Depletion of this protein destabilized all small nucleolar RNAs of the H/ACA-like family. Following silencing, defects in rRNA processing, such as accumulation of precursors and inhibition of cleavages to generate the mature rRNA, were observed. snR30, an H/ACA RNA involved in rRNA maturation, was identified based on prototypical conserved domains characteristic of this RNA in other eukaryotes. The silencing of CBF5 also eliminated the spliced leader-associated (SLA1) RNA that directs pseudouridylation on the spliced leader RNA (SL RNA), which is the substrate for the trans-splicing reaction. Surprisingly, the depletion of Cbf5p not only eliminated the pseudouridine on the SL RNA but also abolished capping at the fourth cap-4 nucleotide. As a result of defects in the SL RNA and decreased modification on the U small nuclear RNA, trans-splicing was inhibited at the first step of the reaction, providing evidence for the essential role of H/ACA RNAs and the modifications they guide on trans-splicing.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Base Sequence
- Blotting, Northern
- Gene Deletion
- Gene Silencing
- Hydro-Lyases/chemistry
- Hydro-Lyases/genetics
- Hydro-Lyases/metabolism
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Models, Genetic
- Molecular Sequence Data
- Oligonucleotides/chemistry
- Oligonucleotides/genetics
- Phenotype
- Pseudouridine/chemistry
- RNA/metabolism
- RNA Interference
- RNA Splicing
- RNA, Messenger/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Ribonucleoproteins, Small Nucleolar/genetics
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Temperature
- Time Factors
- Transfection
- Trypanosoma/metabolism
- Trypanosoma brucei brucei/enzymology
- Trypanosoma brucei brucei/genetics
- Tubulin/chemistry
Collapse
Affiliation(s)
- Sarit Barth
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
79
|
Renalier MH, Joseph N, Gaspin C, Thebault P, Mougin A. The Cm56 tRNA modification in archaea is catalyzed either by a specific 2'-O-methylase, or a C/D sRNP. RNA (NEW YORK, N.Y.) 2005; 11:1051-63. [PMID: 15987815 PMCID: PMC1370790 DOI: 10.1261/rna.2110805] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We identified the first archaeal tRNA ribose 2'-O-methylase, aTrm56, belonging to the Cluster of Orthologous Groups (COG) 1303 that contains archaeal genes only. The corresponding protein exhibits a SPOUT S-adenosylmethionine (AdoMet)-dependent methyltransferase domain found in bacterial and yeast G18 tRNA 2'-O-methylases (SpoU, Trm3). We cloned the Pyrococcus abyssi PAB1040 gene belonging to this COG, expressed and purified the corresponding protein, and showed that in vitro, it specifically catalyzes the AdoMet-dependent 2'-O-ribose methylation of C at position 56 in tRNA transcripts. This tRNA methylation is present only in archaea, and the gene for this enzyme is present in all the archaeal genomes sequenced up to now, except in the crenarchaeon Pyrobaculum aerophilum. In this archaea, the C56 2'-O-methylation is provided by a C/D sRNP. Our work is the first demonstration that, within the same kingdom, two different mechanisms are used to modify the same nucleoside in tRNAs.
Collapse
MESH Headings
- Amino Acid Sequence
- Catalysis
- Cloning, Molecular
- Consensus Sequence
- Cytosine/metabolism
- Escherichia coli/genetics
- Genome, Archaeal
- Glutathione Transferase/metabolism
- Kinetics
- Molecular Sequence Data
- Molecular Weight
- Open Reading Frames
- Phylogeny
- Protein Structure, Secondary
- Pyrobaculum/genetics
- Pyrobaculum/metabolism
- Pyrococcus abyssi/enzymology
- Pyrococcus abyssi/genetics
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Substrate Specificity
- Temperature
- tRNA Methyltransferases/chemistry
- tRNA Methyltransferases/classification
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- Marie-Hélène Renalier
- IEFG 109, Laboratoire de Biologie Moléculaire des Eucaryotes, (LBME) UMR CNRS/UHP 5099 118, route de Narbonne, 31062 Toulouse Cedex 02, France
| | | | | | | | | |
Collapse
|
80
|
Meier UT. The many facets of H/ACA ribonucleoproteins. Chromosoma 2005; 114:1-14. [PMID: 15770508 PMCID: PMC4313906 DOI: 10.1007/s00412-005-0333-9] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 01/31/2005] [Accepted: 02/01/2005] [Indexed: 10/25/2022]
Abstract
The H/ACA ribonucleoproteins (RNPs) are known as one of the two major classes of small nucleolar RNPs. They predominantly guide the site-directed pseudouridylation of target RNAs, such as ribosomal and spliceosomal small nuclear RNAs. In addition, they process ribosomal RNA and stabilize vertebrate telomerase RNA. Taken together, the function of H/ACA RNPs is essential for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. Every cell contains 100-200 different species of H/ACA RNPs, each consisting of the same four core proteins and one function-specifying H/ACA RNA. Most of these RNPs reside in nucleoli and Cajal bodies and mediate the isomerization of specific uridines to pseudouridines. Catalysis of the reaction is mediated by the putative pseudouridylase NAP57 (dyskerin, Cbf5p). Unexpectedly, mutations in this housekeeping enzyme are the major determinants of the inherited bone marrow failure syndrome dyskeratosis congenita. This review details the many diverse functions of H/ACA RNPs, some yet to be uncovered, with an emphasis on the role of the RNP proteins. The multiple functions of H/ACA RNPs appear to be reflected in the complex phenotype of dyskeratosis congenita.
Collapse
Affiliation(s)
- U Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
81
|
Cartlidge RA, Knebel A, Peggie M, Alexandrov A, Phizicky EM, Cohen P. The tRNA methylase METTL1 is phosphorylated and inactivated by PKB and RSK in vitro and in cells. EMBO J 2005; 24:1696-705. [PMID: 15861136 PMCID: PMC1142581 DOI: 10.1038/sj.emboj.7600648] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 03/23/2005] [Indexed: 11/09/2022] Open
Abstract
A substrate for protein kinase B (PKB)alpha in HeLa cell extracts was identified as methyltransferase-like protein-1 (METTL1), the orthologue of trm8, which catalyses the 7-methylguanosine modification of tRNA in Saccharomyces cerevisiae. PKB and ribosomal S6 kinase (RSK) both phosphorylated METTL1 at Ser27 in vitro. Ser27 became phosphorylated when HEK293 cells were stimulated with insulin-like growth factor-1 (IGF-1) and this was prevented by inhibition of phosphatidyinositol 3-kinase. The IGF-1-induced Ser27 phosphorylation did not occur in 3-phosphoinositide-dependent protein kinase-1 (PDK1)-deficient embryonic stem cells, but occurred normally in PDK1[L155E] cells, indicating that the effect of IGF-1 is mediated by PKB. METTL1 also became phosphorylated at Ser27 in response to phorbol-12-myristate 13-acetate and this was prevented by PD 184352 or pharmacological inhibition of RSK. Phosphorylation of METTL1 by PKB or RSK inactivated METTL1 in vitro, as did mutation of Ser27 to Asp or Glu. Expression of METTL1[S27D] or METTL1[S27E] did not rescue the growth phenotype of yeast lacking trm8. In contrast, expression of METTL1 or METTL1[S27A] partially rescued growth. These results demonstrate that METTL1 is inactivated by PKB and RSK in cells, and the potential implications of this finding are discussed.
Collapse
Affiliation(s)
- Robert A Cartlidge
- MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB complex, University of Dundee, Dundee, UK
| | - Axel Knebel
- MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB complex, University of Dundee, Dundee, UK
| | - Mark Peggie
- Division of Signal Transduction Therapy, School of Life Sciences, MSI/WTB complex, University of Dundee, Dundee, UK
| | - Andrei Alexandrov
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY, USA
| | - Philip Cohen
- MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB complex, University of Dundee, Dundee, UK
- Division of Signal Transduction Therapy, School of Life Sciences, MSI/WTB complex, University of Dundee, Dundee, UK
- MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB complex, University of Dundee, Dow Street, Dundee DD1 5EH, UK. Tel.: +44 1382 344238; Fax: 44 1382 223778; E-mail:
| |
Collapse
|
82
|
Transfer RNA modifications and modifying enzymes in Saccharomyces cerevisiae. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b105814] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
83
|
Yang C, McPheeters DS, Yu YT. Psi35 in the branch site recognition region of U2 small nuclear RNA is important for pre-mRNA splicing in Saccharomyces cerevisiae. J Biol Chem 2004; 280:6655-62. [PMID: 15611063 DOI: 10.1074/jbc.m413288200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pseudouridine 35 (psi35) in the branch site recognition region of yeast U2 small nuclear RNA is absolutely conserved in all eukaryotes examined. Pus7p catalyzes pseudouridylation at position 35 in Saccharomyces cerevisiae U2. The pus7 deletion strain, although viable in rich medium, is growth-disadvantaged under certain conditions. To clarify the function of U2 psi35 in yeast, we used this pus7 deletion strain to screen a collection of mutant U2 small nuclear RNAs, each containing a point mutation near the branch site recognition sequence, for a synthetic growth defect phenotype. The screen identified two U2 mutants, one containing a U40 --> G40 substitution (U40G) and another having a U40 deletion (U40Delta). Yeast strains carrying either of these U2 mutations grew as well as the wild-type strain in the selection medium, but they exhibited a temperature-sensitive growth defect phenotype when coupled with the pus7 deletion (pus7Delta). A subsequent temperature shift assay and a conditional pus7 depletion (via GAL promoter shutoff) in the U2-U40 mutant genetic background caused pre-mRNA accumulation, suggesting that psi35 is required for pre-mRNA splicing under certain conditions.
Collapse
Affiliation(s)
- Chunxing Yang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
84
|
Okamoto H, Watanabe K, Ikeuchi Y, Suzuki T, Endo Y, Hori H. Substrate tRNA Recognition Mechanism of tRNA (m7G46) Methyltransferase from Aquifex aeolicus. J Biol Chem 2004; 279:49151-9. [PMID: 15358762 DOI: 10.1074/jbc.m408209200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transfer RNA (m7G46) methyltransferase catalyzes the methyl transfer from S-adenosylmethionine to N7 atom of the guanine 46 residue in tRNA. Analysis of the Aquifex aeolicus genome revealed one candidate open reading frame, aq065, encoding this gene. The aq065 protein was expressed in Escherichia coli and purified to homogeneity on 15% SDS-polyacrylamide gel electrophoresis. Although the overall amino acid sequence of the aq065 protein differs considerably from that of E. coli YggH, the purified aq065 protein possessed a tRNA (m7G46) methyltransferase activity. The modified nucleoside and its location were determined by liquid chromatography-mass spectroscopy. To clarify the RNA recognition mechanism of the enzyme, we investigated the methyl transfer activity to 28 variants of yeast tRNAPhe and E. coli tRNAThr. It was confirmed that 5'-leader and 3'-trailer RNAs of tRNA precursor are not required for the methyl transfer. We found that the enzyme specificity was critically dependent on the size of the variable loop. Experiments using truncated variants showed that the variable loop sequence inserted between two stems is recognized as a substrate, and the most important recognition site is contained within the T stem. These results indicate that the L-shaped tRNA structure is not required for methyl acceptance activity. It was also found that nucleotide substitutions around G46 in three-dimensional core decrease the activity.
Collapse
Affiliation(s)
- Hironori Okamoto
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Bunkyo 3, Matsuyama, 790-8577, Japan
| | | | | | | | | | | |
Collapse
|
85
|
Behm-Ansmant I, Grosjean H, Massenet S, Motorin Y, Branlant C. Pseudouridylation at position 32 of mitochondrial and cytoplasmic tRNAs requires two distinct enzymes in Saccharomyces cerevisiae. J Biol Chem 2004; 279:52998-3006. [PMID: 15466869 DOI: 10.1074/jbc.m409581200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic and mitochondrial tRNAs contain several pseudouridylation sites, and the tRNA:Psi-synthase acting at position 32 had not been identified in Saccharomyces cerevisiae. By combining genetic and biochemical analyses, we demonstrate that two enzymes, Rib2/Pus8p and Pus9p, are required for Psi32 formation in cytoplasmic and mitochondrial tRNAs, respectively. Pus9p acts mostly in mitochondria, and Rib2/Pus8p is strictly cytoplasmic. This is the first case reported so far of two distinct tRNA modification enzymes acting at the same position but present in two different compartments. This peculiarity may be the consequence of a gene fusion that occurred during yeast evolution. Indeed, Rib2/Pus8p displays two distinct catalytic activities involved in completely unrelated metabolism: its C-terminal domain has a DRAP-deaminase activity required for riboflavin biogenesis in the cytoplasm, whereas its N-terminal domain carries the tRNA:Psi32-synthase activity. Pus9p has only a tRNA:Psi32-synthase activity and contains a characteristic mitochondrial targeting sequence at its N terminus. These results are discussed in terms of RNA:Psi-synthase evolution.
Collapse
Affiliation(s)
- Isabelle Behm-Ansmant
- Laboratoire de Maturation des Acides Ribonucléiques (ARN) et Enzymologie Moléculaire, UMR 7567 CNRSUHP Nancy I, Faculté des Sciences, BP 239, Vandoeuvre-les-Nancy 54506 Cedex, France
| | | | | | | | | |
Collapse
|
86
|
Hoang C, Ferre-D'Amare AR. Crystal structure of the highly divergent pseudouridine synthase TruD reveals a circular permutation of a conserved fold. RNA (NEW YORK, N.Y.) 2004; 10:1026-1033. [PMID: 15208439 PMCID: PMC1370594 DOI: 10.1261/rna.7240504] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 04/15/2004] [Indexed: 05/24/2023]
Abstract
The pseudouridine (Psi) synthases Pus7p and TruD define a family of RNA-modifying enzymes with no sequence similarity to previously characterized Psi synthases. The 2.2 A resolution structure of Escherichia coli TruD reveals a U-shaped molecule with a catalytic domain that superimposes closely on that of other Psi synthases. A domain that appears to be unique to TruD/Pus7p family enzymes hinges over the catalytic domain, possibly serving to clasp the substrate RNAs. The active site comprises residues that are conserved in other Psi synthases, although at least one comes from a structurally distinct part of the protein. Remarkably, the connectivity of the structural elements of the TruD catalytic domain is a circular permutation of that of its paralogs. Because the sequence of the permuted segment, a beta-strand that bisects the catalytic domain, is conserved among orthologs from bacteria, archaea and eukarya, the permutation likely happened early in evolution.
Collapse
Affiliation(s)
- Charmaine Hoang
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA
| | | |
Collapse
|
87
|
Ericsson UB, Nordlund P, Hallberg BM. X-ray structure of tRNA pseudouridine synthase TruD reveals an inserted domain with a novel fold. FEBS Lett 2004; 565:59-64. [PMID: 15135053 DOI: 10.1016/j.febslet.2004.03.085] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 03/22/2004] [Indexed: 11/23/2022]
Abstract
Pseudouridine synthases catalyse the isomerisation of uridine to pseudouridine in structural RNA. The pseudouridine synthase TruD, that modifies U13 in tRNA, belongs to a recently identified and large family of pseudouridine synthases present in all kingdoms of life. We report here the crystal structure of Escherichia coli TruD at 2.0 A resolution. The structure reveals an overall V-shaped molecule with an RNA-binding cleft formed between two domains: a catalytic domain and an insertion domain. The catalytic domain has a fold similar to that of the catalytic domains of previously characterised pseudouridine synthases, whereas the insertion domain displays a novel fold.
Collapse
Affiliation(s)
- Ulrika B Ericsson
- Department of Biochemistry and Biophysics, Stockholm University, Roslagstullsbacken 15, SE-114 21 Stockholm, Sweden
| | | | | |
Collapse
|
88
|
Kaya Y, Del Campo M, Ofengand J, Malhotra A. Crystal structure of TruD, a novel pseudouridine synthase with a new protein fold. J Biol Chem 2004; 279:18107-10. [PMID: 14999002 DOI: 10.1074/jbc.c400072200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TruD, a recently discovered novel pseudouridine synthase in Escherichia coli, is responsible for modifying uridine13 in tRNA(Glu) to pseudouridine. It has little sequence homology with the other 10 pseudouridine synthases in E. coli which themselves have been grouped into four related protein families. Crystal structure determination of TruD revealed a two domain structure consisting of a catalytic domain that differs in sequence but is structurally very similar to the catalytic domain of other pseudouridine synthases and a second large domain (149 amino acids, 43% of total) with a novel alpha/beta fold that up to now has not been found in any other protein.
Collapse
Affiliation(s)
- Yusuf Kaya
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101-6129, USA
| | | | | | | |
Collapse
|