51
|
Belostotsky DA, Sieburth LE. Kill the messenger: mRNA decay and plant development. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:96-102. [PMID: 18990607 DOI: 10.1016/j.pbi.2008.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 09/02/2008] [Indexed: 05/13/2023]
Abstract
A pervasive theme in development is that dynamic changes in gene expression drive developmental progression; yet in studies of gene expression, the general RNA decay pathways have historically played second fiddle to transcription. However, recent advances in this field have revealed a surprising degree of mRNA specificity for particular branches of these RNA decay pathways. General cytoplasmic mRNA decay typically initiates with deadenylation, following which the deadenylated mRNA can continue decay from the 3'-end through the action of the exosome, or it can undergo 5'-to-3' decay. Functional characterization of exosome subunits using inducible knock-outs uncovered a surprising complexity of molecular phenotypes and RNA substrates. Decay in the 5'-to-3' direction requires decapping, which is carried out by the decapping complex in Processing bodies (PBs). Recent analyses of decapping mutants have also revealed substrate specificity and roles in translational regulation. In addition, recent studies of specialized pathways such as nonsense-mediated decay and silencing reveal interactions with the general RNA decay pathways.
Collapse
Affiliation(s)
- Dmitry A Belostotsky
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| | | |
Collapse
|
52
|
Allosteric regulation of human poly(A)-specific ribonuclease by cap and potassium ions. Biochem Biophys Res Commun 2008; 379:341-5. [PMID: 19103158 DOI: 10.1016/j.bbrc.2008.12.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 12/11/2008] [Indexed: 11/20/2022]
Abstract
Poly(A)-specific ribonuclease (PARN), a multi-domain dimeric enzyme, is a deadenylase in higher vertebrates and plants with the unique property of cap-dependent catalysis and processivity. We found that PARN is an allosteric enzyme, and potassium ions and the cap analogue were effectors with binding sites located at the RRM domain. The binding of K(+) to the entire RRM domain led to an increase of substrate-binding affinity but a decrease in the cooperativity of the substrate-binding site, while the binding of the cap analogue decreased both the catalytic efficiency and the substrate-binding affinity. The dissimilar kinetic properties of the enzymes with and without the entire RRM domain suggested that the RRM domain played a central role in the allosteric communications of PARN regulation. The allostery is proposed to be important to the multi-level regulation of PARN to achieve precise control of the mRNA poly(A) tail length.
Collapse
|
53
|
Jiao Y, Riechmann JL, Meyerowitz EM. Transcriptome-wide analysis of uncapped mRNAs in Arabidopsis reveals regulation of mRNA degradation. THE PLANT CELL 2008; 20:2571-85. [PMID: 18952771 PMCID: PMC2590717 DOI: 10.1105/tpc.108.062786] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The composition of the transcriptome is determined by a balance between mRNA synthesis and degradation. An important route for mRNA degradation produces uncapped mRNAs, and this decay process can be initiated by decapping enzymes, endonucleases, and small RNAs. Although uncapped mRNAs are an important intermediate for mRNA decay, their identity and abundance have never been studied on a large scale until recently. Here, we present an experimental method for transcriptome-wide profiling of uncapped mRNAs that can be used in any eukaryotic system. We applied the method to study the prevalence of uncapped transcripts during the early stages of Arabidopsis thaliana flower development. Uncapped transcripts were identified for the majority of expressed genes, although at different levels. By comparing uncapped RNA levels with steady state overall transcript levels, our study provides evidence for widespread mRNA degradation control in numerous biological processes involving genes of varied molecular functions, implying that uncapped mRNA levels are dynamically regulated. Sequence analyses identified structural features of transcripts and cis-elements that were associated with different levels of uncapping. These transcriptome-wide profiles of uncapped mRNAs will aid in illuminating new regulatory mechanisms of eukaryotic transcriptional networks.
Collapse
Affiliation(s)
- Yuling Jiao
- California Institute of Technology, Division of Biology 156-29, Pasadena, California 91125, USA.
| | | | | |
Collapse
|
54
|
Liu WF, Yan YB. Biophysical and biochemical characterization of recombinant human Pop2 deadenylase. Protein Expr Purif 2008; 60:46-52. [DOI: 10.1016/j.pep.2008.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/12/2008] [Accepted: 03/16/2008] [Indexed: 11/25/2022]
|
55
|
Abstract
Dynamic changes of the lengths of mRNA poly(A) tails are catalysed by diverse deadenylase enzymes. Modulating the length of the poly(A) tail of an mRNA is a widespread means of controlling protein production and mRNA stability. Recent insights illuminate the specialized activities, biological functions and regulation of deadenylases. We propose that the recruitment of multifunctional deadenylase complexes provides unique opportunities to control mRNAs and that the heterogeneity of the deadenylase complexes is exploited to control translation and mRNA stability.
Collapse
|
56
|
Abstract
The 3'-poly(A) tail, found on virtually all mRNAs, is enzymatically shortened by a process referred to as "deadenylation." Deadenylation is a widespread means of controlling mRNA stability and translation. The enzymes involved-so-called deadenylases-are surprisingly diverse. They are controlled by RNA sequences commonly found in 3'-untranslated regions (UTRs), which bind regulatory factors. Both RNA-binding proteins and microRNAs accelerate deadenylation of specific mRNAs. In some cases, regulators enhance deadenylation by binding to and recruiting specific deadenylases to the target mRNA. The many hundreds of potential regulators encoded in mammalian genomes (both RNA-binding proteins and microRNAs) and the numerous deadenylases, coupled with the many potential regulatory sites represented in 3' UTRs of mRNAs, provide fertile ground for regulated deadenylation. Recent global studies of poly(A) regulation support this conclusion. Biochemical and genetic approaches will be essential for exploring regulated deadenylation. The methods we describe focus on the reconstruction in vitro of regulated deadenylation with purified components from yeast. We discuss broadly the strategies, problems, and history of in vitro deadenylation systems. We combine this with a more detailed discussion of the purification, activity, and regulation of the Saccharomyces cerevisiae Ccr4p-Pop2p deadenylase complex and its regulation by PUF (Pumilio and Fem-3 binding factor) RNA-binding proteins.
Collapse
Affiliation(s)
- Aaron C Goldstrohm
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
57
|
Abstract
Proper degradation of plant messenger RNA is crucial for the maintenance of cellular and organismal homeostasis, and it must be properly regulated to enable rapid adjustments in response to endogenous and external cues. Only a few dedicated studies have been done so far to address the fundamental mechanisms of mRNA decay in plants, especially as compared with fungal and mammalian model systems. Consequently, our systems-level understanding of plant mRNA decay remains fairly rudimentary. Nevertheless, a number of serendipitous findings in recent years have reasserted the central position of the regulated mRNA decay in plant physiology. In addition, the meteoric rise to prominence of the plant small RNA field has spawned a renewed interest in the general plant mRNA turnover pathways. Combined with the advent of widely accessible microarray platforms, these advances allow for a renewed hope of rapid progress in our understanding of the fundamental rules governing regulated mRNA degradation in plants. This chapter summarizes recent findings in this field.
Collapse
Affiliation(s)
- D A Belostotsky
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| |
Collapse
|
58
|
Nilsson P, Henriksson N, Niedzwiecka A, Balatsos NAA, Kokkoris K, Eriksson J, Virtanen A. A multifunctional RNA recognition motif in poly(A)-specific ribonuclease with cap and poly(A) binding properties. J Biol Chem 2007; 282:32902-11. [PMID: 17785461 DOI: 10.1074/jbc.m702375200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) is an oligomeric, processive and cap-interacting 3' exoribonuclease that efficiently degrades mRNA poly(A) tails. Here we show that the RNA recognition motif (RRM) of PARN harbors both poly(A) and cap binding properties, suggesting that the RRM plays an important role for the two critical and unique properties that are tightly associated with PARN activity, i.e. recognition and dependence on both the cap structure and poly(A) tail during poly(A) hydrolysis. We show that PARN and its RRM have micromolar affinity to the cap structure by using fluorescence spectroscopy and nanomolar affinity for poly(A) by using filter binding assay. We have identified one tryptophan residue within the RRM that is essential for cap binding but not required for poly(A) binding, suggesting that the cap- and poly(A)-binding sites associated with the RRM are both structurally and functionally separate from each other. RRM is one of the most commonly occurring RNA-binding domains identified so far, suggesting that other RRMs may have both cap and RNA binding properties just as the RRM of PARN.
Collapse
Affiliation(s)
- Per Nilsson
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
59
|
Liu WF, Zhang A, He GJ, Yan YB. The R3H domain stabilizes poly(A)-specific ribonuclease by stabilizing the RRM domain. Biochem Biophys Res Commun 2007; 360:846-51. [PMID: 17624302 DOI: 10.1016/j.bbrc.2007.06.139] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 06/28/2007] [Indexed: 11/29/2022]
Abstract
Poly(A)-specific ribonuclease (PARN), a key enzyme involved in eukaryotic mRNA decay, contains one catalytic domain and two RNA-binding domains. Here we found that at least one RNA-binding domain is required for the substrate binding, but not for the catalysis of PARN. The removal of the R3H domain led to a dramatic decrease in PARN stability and a change in the aggregation kinetic regime, while only minor effects were observed for the removal of the RRM domain or both RNA-binding domains. Thus the R3H domain might stabilize PARN by acting as a protector or intermolecular chaperone of the RRM domain.
Collapse
Affiliation(s)
- Wei-Feng Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
60
|
Kobayashi K, Otegui MS, Krishnakumar S, Mindrinos M, Zambryski P. INCREASED SIZE EXCLUSION LIMIT 2 encodes a putative DEVH box RNA helicase involved in plasmodesmata function during Arabidopsis embryogenesis. THE PLANT CELL 2007; 19:1885-97. [PMID: 17601829 PMCID: PMC1955720 DOI: 10.1105/tpc.106.045666] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 05/29/2007] [Accepted: 06/06/2007] [Indexed: 05/16/2023]
Abstract
Here, we characterize the Arabidopsis thaliana embryo-defective mutant increased size exclusion limit2 (ise2). In contrast with wild-type embryos, ise2 mutants continue to traffic 10-kD fluorescent dextran in the mid-torpedo stage of development. ise2 embryos contain branched as well as simple plasmodesmata (PD) compared with wild-type embryos, which only contain simple PD. Positional cloning reveals that the ISE2 gene encodes a putative DEVH box RNA helicase that shares sequence homology with RNA helicases involved in RNA degradation pathways in other organisms. ISE2 localizes to granule-like structures in the cytoplasm. These granules increase in number when plant cells are stressed. These features are characteristic of stress granules (SGs) in mammalian cells, suggesting that ISE2 granules represent plant-specific SGs. Genetic data demonstrate that the ISE2 helicase is involved in posttranscriptional gene silencing and the determination of cell fate. These data together suggest that ISE2 function affects PD structure and function through the regulation of RNA metabolism and consequent gene expression.
Collapse
Affiliation(s)
- Ken Kobayashi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
61
|
Goeres DC, Van Norman JM, Zhang W, Fauver NA, Spencer ML, Sieburth LE. Components of the Arabidopsis mRNA decapping complex are required for early seedling development. THE PLANT CELL 2007; 19:1549-64. [PMID: 17513503 PMCID: PMC1913740 DOI: 10.1105/tpc.106.047621] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To understand the mechanisms controlling vein patterning in Arabidopsis thaliana, we analyzed two phenotypically similar mutants, varicose (vcs) and trident (tdt). We had previously identified VCS, and recently, human VCS was shown to function in mRNA decapping. Here, we report that TDT encodes the mRNA-decapping enzyme. VCS and TDT function together in small cytoplasmic foci that appear to be processing bodies. To understand the developmental requirements for mRNA decapping, we characterized the vcs and tdt phenotypes. These mutants were small and chlorotic, with severe defects in shoot apical meristem formation and cotyledon vein patterning. Many capped mRNAs accumulated in tdt and vcs mutants, but surprisingly, some mRNAs were specifically depleted. In addition, loss of decapping arrested the decay of some mRNAs, while others showed either modest or no decay defects, suggesting that mRNAs may show specificity for particular decay pathways (3' to 5' and 5' to 3'). Furthermore, the severe block to postembryonic development in vcs and tdt and the accompanying accumulation of embryonic mRNAs indicate that decapping is important for the embryo-to-seedling developmental transition.
Collapse
Affiliation(s)
- David C Goeres
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | |
Collapse
|
62
|
Zhang A, Liu WF, Yan YB. Role of the RRM domain in the activity, structure and stability of poly(A)-specific ribonuclease. Arch Biochem Biophys 2007; 461:255-62. [PMID: 17391638 DOI: 10.1016/j.abb.2007.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 02/06/2007] [Accepted: 02/16/2007] [Indexed: 11/27/2022]
Abstract
Poly(A) specific ribonuclease (PARN), which contains a catalytic domain and two RNA-binding domains (R3H and RRM), acts as a key enzyme in eukaryotic organisms to regulate the stability of mRNA by degrading the 3' poly-(A) tail. In this research, the activity, structure and stability were compared between the full-length 74kDa PARN, the proteolytic 54kDa fragment with half of the RRM, and a truncated 46kDa form completely missing the RRM. The results indicated that the 46kDa one had the lowest activity and substrate binding affinity, the most hydrophobic exposure in the native state and the least stability upon denaturation. The dissimilarity in the activity, structure and stability of the three PARNs revealed that the entire RRM domain not only contributed to the substrate binding and efficient catalysis of PARN, but also stabilized the overall structures of the protein. Spectroscopic experiments suggested that the RRM domain might be structurally adjacent to the R3H domain, and thus provide a basis for the cooperative binding of poly(A) by the two RNA-binding domains as well as the catalytic domain.
Collapse
Affiliation(s)
- Ao Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, PR China
| | | | | |
Collapse
|
63
|
Abstract
When considering the control of gene expression, the focus has traditionally been on transcriptional regulation. Recently, however, the large contribution made by mRNA decay has become difficult to ignore. Large-scale analyses indicate that as many as half of all changes in the amounts of mRNA in some responses can be attributed to altered rates of decay. In this article, we discuss some of the mechanisms that are used by the cell to mediate and regulate this intriguing process.
Collapse
Affiliation(s)
- Nicole L Garneau
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | |
Collapse
|
64
|
Liu WF, Zhang A, Cheng Y, Zhou HM, Yan YB. Effect of magnesium ions on the thermal stability of human poly(A)-specific ribonuclease. FEBS Lett 2007; 581:1047-52. [PMID: 17306797 DOI: 10.1016/j.febslet.2007.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 12/01/2022]
Abstract
Poly(A)-specific ribonuclease (PARN), a member of the DEDD family, is a key enzyme involved in the deadenylation of mRNA in higher eukaryotic cells. In this research, it was found that Mg(2+) could protect PARN against thermal inactivation by increasing the midpoint of inactivation and decreasing the inactivation rate. This protective effect was unique to Mg(2+) in a concentration-dependent manner. However, the thermal unfolding and aggregation was promoted by the addition of Mg(2+) at high temperatures. These results revealed that Mg(2+) might have dual effects on PARN stability: protecting the active site but endangering the overall structural stability.
Collapse
Affiliation(s)
- Wei-Feng Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
65
|
Jeske M, Meyer S, Temme C, Freudenreich D, Wahle E. Rapid ATP-dependent deadenylation of nanos mRNA in a cell-free system from Drosophila embryos. J Biol Chem 2006; 281:25124-33. [PMID: 16793774 DOI: 10.1074/jbc.m604802200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Shortening of the poly(A) tail (deadenylation) is the first and often rate-limiting step in the degradation pathway of most eukaryotic mRNAs and is also used as a means of translational repression, in particular in early embryonic development. The nanos mRNA is translationally repressed by the protein Smaug in Drosophila embryos. The RNA has a short poly(A) tail at steady state and decays gradually during the first 2-3 h of development. Smaug has recently also been implicated in mRNA deadenylation. To study the mechanism of sequence-dependent deadenylation, we have developed a cell-free system from Drosophila embryos that displays rapid deadenylation of nanos mRNA. The Smaug response elements contained in the nanos 3'-untranslated region are necessary and sufficient to induce deadenylation; thus, Smaug is likely to be involved. Unexpectedly, deadenylation requires the presence of an ATP regenerating system. The activity can be pelleted by ultracentrifugation, and both the Smaug protein and the CCR4.NOT complex, a known deadenylase, are enriched in the active fraction. The same extracts show pronounced translational repression mediated by the Smaug response elements. RNAs lacking a poly(A) tail are poorly translated in the extract; therefore, SRE-dependent deadenylation contributes to translational repression. However, repression is strong even with RNAs either bearing a poly(A) tract that cannot be removed or lacking poly(A) altogether; thus, an additional aspect of translational repression functions independently of deadenylation.
Collapse
Affiliation(s)
- Mandy Jeske
- Institute of Biochemistry, University of Halle, Kurt-Mothes-Strasse 3, 06120 Halle, Germany
| | | | | | | | | |
Collapse
|
66
|
Nishimura N, Kitahata N, Seki M, Narusaka Y, Narusaka M, Kuromori T, Asami T, Shinozaki K, Hirayama T. Analysis of ABA hypersensitive germination2 revealed the pivotal functions of PARN in stress response in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:972-84. [PMID: 16359390 DOI: 10.1111/j.1365-313x.2005.02589.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Accumulating evidence suggests that mRNA degradation systems are crucial for various biological processes in eukaryotes. Here we provide evidence that an mRNA degradation system is associated with some plant hormones and stress responses in plants. We analysed a novel Arabidopsis abscisic acid (ABA)-hypersensitive mutant, ahg2-1, that showed ABA hypersensitivity not only in germination, but also at later developmental stages, and that displayed pleiotropic phenotypes. We found that ahg2-1 accumulated more endogenous ABA in seeds and mannitol-treated plants than did the wild type. Microarray experiments showed that the expressions of ABA-, salicylic acid- and stress-inducible genes were increased in normally grown ahg2-1 plants, suggesting that the ahg2-1 mutation somehow affects various stress responses as well as ABA responses. Map-based cloning of AHG2 revealed that this gene encodes a poly(A)-specific ribonuclease (AtPARN) that is presumed to function in mRNA degradation. Detailed analysis of the ahg2-1 mutation suggests that the mutation reduces AtPARN production. Interestingly, expression of AtPARN was induced by treatment with ABA, high salinity and osmotic stress. These results suggest that both upregulation and downregulation of gene expression by the mRNA-destabilizing activity of AtPARN are crucial for proper ABA, salicylic acid and stress responses.
Collapse
Affiliation(s)
- Noriyuki Nishimura
- Graduate School of Integrated Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Wu M, Reuter M, Lilie H, Liu Y, Wahle E, Song H. Structural insight into poly(A) binding and catalytic mechanism of human PARN. EMBO J 2005; 24:4082-93. [PMID: 16281054 PMCID: PMC1356309 DOI: 10.1038/sj.emboj.7600869] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 10/19/2005] [Indexed: 11/09/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) is a processive, poly(A)-specific 3' exoribonuclease. The crystal structure of C-terminal truncated human PARN determined in two states (free and RNA-bound forms) reveals that PARNn is folded into two domains, an R3H domain and a nuclease domain similar to those of Pop2p and epsilon186. The high similarity of the active site structures of PARNn and epsilon186 suggests that they may have a similar catalytic mechanism. PARNn forms a tight homodimer, with the R3H domain of one subunit partially enclosing the active site of the other subunit and poly(A) bound in a deep cavity of its nuclease domain in a sequence-nonspecific manner. The R3H domain and, possibly, the cap-binding domain are involved in poly(A) binding but these domains alone do not appear to contribute to poly(A) specificity. Mutations disrupting dimerization abolish both the enzymatic and RNA-binding activities, suggesting that the PARN dimer is a structural and functional unit. The cap-binding domain may act in concert with the R3H domain to amplify the processivity of PARN.
Collapse
Affiliation(s)
- Mousheng Wu
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Michael Reuter
- Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Hauke Lilie
- Institute of Biotechnology, Martin-Luther-University Halle, Halle, Germany
| | - Yuying Liu
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Elmar Wahle
- Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Haiwei Song
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore. Tel.: +65 6586 9700; Fax: +65 6779 1117; E-mail:
| |
Collapse
|
68
|
Abstract
RNA-binding proteins play a major part in the control of gene expression during early development. At this stage, the majority of regulation occurs at the levels of translation and RNA localization. These processes are, in general, mediated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated regions of their target RNAs. Although initial work concentrated on the analysis of these sequences and their trans-acting factors, we are now beginning to gain an understanding of the mechanisms by which some of these proteins function. In this review, we will describe a number of different families of RNA-binding proteins, grouping them together on the basis of common regulatory strategies, and emphasizing the recurrent themes that occur, both across different species and as a response to different biological problems.
Collapse
|
69
|
Abstract
By using two very different approaches, recent work by Gazzani et al. (2004) and Souret et al. (2004) reveal a fundamental link between mRNA degradation and RNA silencing pathways in Arabidopsis.
Collapse
Affiliation(s)
- Dmitry Belostotsky
- Department of Biological Sciences, State University of New York at Albany, Albany, New York 12222, USA
| |
Collapse
|