51
|
Chen C, Zhou X, Jing J, Cheng J, Luo Y, Chen J, Xu X, Leng F, Li X, Lu Z. Decreased LINE-1 methylation levels in aldosterone-producing adenoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:4104-4111. [PMID: 25120789 PMCID: PMC4129024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/23/2014] [Indexed: 06/03/2023]
Abstract
PURPOSE Abnormal global DNA methylation levels are associated with many diseases. In this study, we examined long interspersed nuclear elements-1 (LINE-1) methylation as a biomarker for abnormal global DNA methylation and aldosterone-producing adenoma (APA). METHODS Tissues from 25 APA and 6 normal adrenal glands (NAs) were analyzed for LINE-1 methylation by real-time methylation-specific polymerase chain reaction. The estimated LINE-1 methylation level was then tested for correlation with the clinicopathologic parameters of APA patients. RESULTS The methylation index (MI) level for LINE-1 was 0.91 in NA samples and 0.77 in APA samples (P < 0.001). For the APA samples, there were no statistical correlations between the MI level and various clinicopathologic parameters such as gender (P = 0.07). CONCLUSION LINE-1 methylation is significantly lower in APA samples than in NA samples. LINE-1 methylation is not correlated with the clinical characteristics of APA.
Collapse
Affiliation(s)
- Chen Chen
- Department of Endocrinology, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Xiaoyu Zhou
- Institute of Planned Parenthood ResearchShanghai, China
| | - Jing Jing
- Department of Endocrinology, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Jing Cheng
- Department of Endocrinology, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Yu Luo
- Department of Endocrinology, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Jiachao Chen
- Department of Endocrinology, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Xi Xu
- Department of Endocrinology, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Fei Leng
- Department of Endocrinology, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Xiaomu Li
- Department of Endocrinology, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Zhiqiang Lu
- Department of Endocrinology, Zhongshan Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
52
|
Parrott BB, Bowden JA, Kohno S, Cloy-McCoy JA, Hale MD, Bangma JT, Rainwater TR, Wilkinson PM, Kucklick JR, Guillette LJ. Influence of tissue, age, and environmental quality on DNA methylation in Alligator mississippiensis. Reproduction 2014; 147:503-13. [DOI: 10.1530/rep-13-0498] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic modifications are key mediators of the interactions between the environment and an organism's genome. DNA methylation represents the best-studied epigenetic modification to date and is known to play key roles in regulating transcriptional activity and promoting chromosome stability. Our laboratory has previously demonstrated the utility of the American alligator (Alligator mississippiensis) as a sentinel species to investigate the persistent effects of environmental contaminant exposure on reproductive health. Here, we incorporate a liquid chromatography–tandem mass spectrometry method to directly measure the total (global) proportion of 5-methyl-2′-deoxycytidine (5mdC) in ovarian and whole blood DNA from alligators. Global DNA methylation in ovaries was significantly elevated in comparison with that of whole blood. However, DNA methylation appeared similar in juvenile alligators reared under controlled laboratory conditions but originating from three sites with dissimilar environmental qualities, indicating an absence of detectable site-of-origin effects on persistent levels of global 5mdC content. Analyses of tissues across individuals revealed a surprising lack of correlation between global methylation levels in blood and ovary. In addition, global DNA methylation in blood samples from juvenile alligators was elevated compared with those from adults, suggesting that age, as observed in mammals, may negatively influence global DNA methylation levels in alligators. To our knowledge, this is the first study examining global levels of DNA methylation in the American alligator and provides a reference point for future studies examining the interplay of epigenetics and environmental factors in a long-lived sentinel species.
Collapse
|
53
|
Barciszewska AM, Nowak S, Naskręt-Barciszewska MZ. The degree of global DNA hypomethylation in peripheral blood correlates with that in matched tumor tissues in several neoplasia. PLoS One 2014; 9:e92599. [PMID: 24651295 PMCID: PMC3961436 DOI: 10.1371/journal.pone.0092599] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/24/2014] [Indexed: 11/18/2022] Open
Abstract
There are no good blood and serum biomarkers for detection, follow up, or prognosis of brain tumors. However, they are needed for more detailed tumor classification, better prognosis estimation and selection of an efficient therapeutic strategy. The aim of this study was to use the epigenetic changes in DNA of peripheral blood samples as a molecular marker to diagnose brain tumors as well as other diseases. We have applied a very precise thin-layer chromatography (TLC) analysis of the global amount of 5-methylcytosine (m5C) in DNA from brain tumors, colon and breast cancer tissues and peripheral blood samples of the same patients. The m5C level in tissue DNA from different brain tumor types, expressed as R coefficient, changes within the range of 0.2–1.6 and overlaps with R of that of blood samples. It negatively correlates with the WHO malignancy grade. The global DNA hypomethylation quantitative measure in blood, demonstrates a big potential for development of non-invasive applications for detection of a low and a high grade brain tumors. We have also used this approach to analyze patients with breast and colon cancers. In all these cases the m5C amount in DNA cancer tissue match with data of blood. This study is the first to demonstrate the potential role of global m5C content in blood DNA for early detection of brain tumors and others diseases. So, genomic DNA hypomethylation is a promising marker for prognosis of various neoplasms as well as other pathologies.
Collapse
Affiliation(s)
- Anna-Maria Barciszewska
- Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
- * E-mail:
| | - Stanisław Nowak
- Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
54
|
Andreotti G, Karami S, Pfeiffer RM, Hurwitz L, Liao LM, Weinstein SJ, Albanes D, Virtamo J, Silverman DT, Rothman N, Moore LE. LINE1 methylation levels associated with increased bladder cancer risk in pre-diagnostic blood DNA among US (PLCO) and European (ATBC) cohort study participants. Epigenetics 2014; 9:404-15. [PMID: 24316677 PMCID: PMC4053459 DOI: 10.4161/epi.27386] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 11/15/2013] [Accepted: 12/02/2013] [Indexed: 12/12/2022] Open
Abstract
Global methylation in blood DNA has been associated with bladder cancer risk in case-control studies, but has not been examined prospectively. We examined the association between LINE1 total percent 5-methylcytosine and bladder cancer risk using pre-diagnostic blood DNA from the United States-based, Prostate, Lung, Colorectal, Ovarian Cancer Screening Trial (PLCO) (299 cases/676 controls), and the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) cohort of Finnish male smokers (391 cases/778 controls). Logistic regression adjusted for age at blood draw, study center, pack-years of smoking, and sex was used to estimate odd ratios (ORs) and 95% confidence intervals (CIs) using study- and sex-specific methylation quartiles. In PLCO, higher, although non-significant, bladder cancer risks were observed for participants in the highest three quartiles (Q2-Q4) compared with the lowest quartile (Q1) (OR = 1.36, 95% CI: 0.96 -1.92). The association was stronger in males (Q2-Q4 vs. Q1 OR = 1.48, 95% CI: 1.00-2.20) and statistically significant among male smokers (Q2-Q4 vs. Q1 OR = 1.83, 95% CI: 1.14-2.95). No association was found among females or female smokers. Findings for male smokers were validated in ATBC (Q2-Q4 vs. Q1: OR = 2.31, 95% CI: 1.62-3.30) and a highly significant trend was observed (P = 8.7 × 10(-7)). After determining that study data could be combined, pooled analysis of PLCO and ATBC male smokers (580 cases/1119 controls), ORs were significantly higher in Q2-Q4 compared with Q1 (OR = 2.03, 95% CI: 1.52-2.72), and a trend across quartiles was observed (P = 0.0001). These findings suggest that higher global methylation levels prior to diagnosis may increase bladder cancer risk, particularly among male smokers.
Collapse
Affiliation(s)
- Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics (DCEG); U.S. National Cancer Institute (NCI); National Institutes of Health (NIH); Department of Health and Human Services (DHHS); Bethesda, MD USA
| | - Sara Karami
- Division of Cancer Epidemiology and Genetics (DCEG); U.S. National Cancer Institute (NCI); National Institutes of Health (NIH); Department of Health and Human Services (DHHS); Bethesda, MD USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics (DCEG); U.S. National Cancer Institute (NCI); National Institutes of Health (NIH); Department of Health and Human Services (DHHS); Bethesda, MD USA
| | - Lauren Hurwitz
- Division of Cancer Epidemiology and Genetics (DCEG); U.S. National Cancer Institute (NCI); National Institutes of Health (NIH); Department of Health and Human Services (DHHS); Bethesda, MD USA
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics (DCEG); U.S. National Cancer Institute (NCI); National Institutes of Health (NIH); Department of Health and Human Services (DHHS); Bethesda, MD USA
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics (DCEG); U.S. National Cancer Institute (NCI); National Institutes of Health (NIH); Department of Health and Human Services (DHHS); Bethesda, MD USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics (DCEG); U.S. National Cancer Institute (NCI); National Institutes of Health (NIH); Department of Health and Human Services (DHHS); Bethesda, MD USA
| | - Jarmo Virtamo
- Department of Chronic Disease Prevention; National Institute for Health and Welfare; Helsinki, Finland
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics (DCEG); U.S. National Cancer Institute (NCI); National Institutes of Health (NIH); Department of Health and Human Services (DHHS); Bethesda, MD USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics (DCEG); U.S. National Cancer Institute (NCI); National Institutes of Health (NIH); Department of Health and Human Services (DHHS); Bethesda, MD USA
| | - Lee E Moore
- Division of Cancer Epidemiology and Genetics (DCEG); U.S. National Cancer Institute (NCI); National Institutes of Health (NIH); Department of Health and Human Services (DHHS); Bethesda, MD USA
| |
Collapse
|
55
|
Watkins DJ, Wellenius GA, Butler RA, Bartell SM, Fletcher T, Kelsey KT. Associations between serum perfluoroalkyl acids and LINE-1 DNA methylation. ENVIRONMENT INTERNATIONAL 2014; 63:71-6. [PMID: 24263140 PMCID: PMC4181536 DOI: 10.1016/j.envint.2013.10.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 05/22/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are persistent, synthetic compounds that are used in a number of consumer products. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been associated with cardiovascular risk factors, and changes in gene expression and DNA methylation in animals and cellular systems. However, whether PFAA exposure is associated with LINE-1 DNA methylation, a potential marker of cardiovascular risk, in humans remains unknown. We sought to evaluate the cross-sectional associations between serum PFAAs and LINE-1 DNA methylation in a population highly exposed to PFOA. We measured serum PFAAs twice four to five years apart in 685 adult participants (47% male, mean age±SD=42±11years). We measured percent LINE-1 DNA methylation in peripheral blood leukocytes at the second time point (follow-up), and estimated absolute differences in LINE-1 methylation associated with an interquartile (IQR) shift in mean PFAA serum levels. IQR increases in mean serum PFOA, PFOS, perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS) were associated with differences of -0.04 (p=0.16), 0.20 (p=0.001), 0.06 (p=0.19), and 0.02 (p=0.57), respectively, in % LINE-1 methylation at follow-up after adjustment for potential confounders. We observed a monotonic increase in LINE-1 DNA methylation across tertiles of PFOS and PFNA (ptrend=0.02 for both associations), but not across tertiles of PFOA or PFHxS (ptrend=0.71 and 0.44, respectively). In summary, serum PFOS was associated with LINE-1 methylation, while serum PFOA, PFHxS, and PFNA were not. Additional research is needed to more precisely determine whether these compounds are epigenetically active.
Collapse
Affiliation(s)
- Deborah J Watkins
- Department of Epidemiology, Center for Environmental Health and Technology, Brown University, Providence, RI, USA
| | - Gregory A Wellenius
- Department of Epidemiology, Center for Environmental Health and Technology, Brown University, Providence, RI, USA
| | - Rondi A Butler
- Department of Epidemiology, Center for Environmental Health and Technology, Brown University, Providence, RI, USA
| | - Scott M Bartell
- Program in Public Health, University of California, Irvine, CA, USA
| | - Tony Fletcher
- Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Karl T Kelsey
- Department of Epidemiology, Center for Environmental Health and Technology, Brown University, Providence, RI, USA; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
56
|
Armstrong DA, Lesseur C, Conradt E, Lester BM, Marsit CJ. Global and gene-specific DNA methylation across multiple tissues in early infancy: implications for children's health research. FASEB J 2014; 28:2088-97. [PMID: 24478308 DOI: 10.1096/fj.13-238402] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An increasing number of population studies are assessing epigenetic variation in relation to early-life outcomes in tissues accessible to epidemiologic researchers. Epigenetic mechanisms are highly tissue specific, however, and it is unclear whether the variation observed in one of the tissue types is representative of other sources or whether the variation in DNA methylation is distinct, reflecting potential functional differences across tissues. To assess relations between DNA methylation in various samples from newborns and children in early infancy, we measured promoter or gene-body DNA methylation in matched term placenta, cord blood, and 3-6 mo saliva samples from 27 unrelated infants enrolled in the Rhode Island Child Health Study. We investigated 7 gene loci (KLF15, NR3C1, LEP, DEPTOR, DDIT4, HSD11B2, and CEBPB) and global methylation, using repetitive region LINE-1 and ALUYb8 sequences. We observed a great degree of interlocus, intertissue, and interindividual epigenetic variation in most of the analyzed loci. In correlation analyses, only cord blood NR3C1 promoter methylation correlated negatively with methylation in saliva. We conclude that placenta, cord blood, and saliva cannot be used as a substitute for one another to evaluate DNA methylation at these loci during infancy. Each tissue has a unique epigenetic signature that likely reflects their differential functions. Future studies should consider the uniqueness of these features, to improve epigenetic biomarker discovery and translation.
Collapse
Affiliation(s)
- David A Armstrong
- 2Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, 7650 Remsen, Hanover, NH 03755, USA.
| | | | | | | | | |
Collapse
|
57
|
Differential expression of the tumor suppressor A-kinase anchor protein 12 in human diffuse and pilocytic astrocytomas is regulated by promoter methylation. J Neuropathol Exp Neurol 2013; 72:933-41. [PMID: 24042196 DOI: 10.1097/nen.0b013e3182a59a88] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The scaffold protein A-kinase anchor protein 12 (AKAP12) exerts tumor suppressor activity and is downregulated in several tumor entities. We characterized AKAP12 expression and regulation in astrocytomas, including pilocytic and diffusely infiltrating astrocytomas. We examined 194 human gliomas and 23 normal brain white matter samples by immunohistochemistry or immunoblotting for AKAP12 expression. We further performed quantitative methylation analysis of the AKAP12 promoter by MassARRAY® of normal brain, World Health Organization (WHO) grade I to IV astrocytomas, and glioma cell lines. Our results show that AKAP12 is expressed in a perivascular distribution in normal CNS, strongly upregulated in tumor cells in pilocytic astrocytomas, and weakly expressed in diffuse astrocytomas of WHO grade II to IV. Methylation analyses revealed specific hypermethylation of AKAP12α promoter in WHO grade II to IV astrocytomas. Restoration experiments using 5-aza-2'-deoxycytidine in primary glioblastoma cells decreased AKAP12α promoter methylation and markedly increased AKAP12α mRNA levels. In summary, we demonstrate that AKAP12 is differentially expressed in human astrocytomas showing high expression in pilocytic but low expression in diffuse astrocytomas of all WHO-grades. Our results further indicate that epigenetic mechanisms are involved in silencing AKAP12 in diffuse astrocytomas; however, a tumor suppressive role of AKAP12 in distinct astrocytoma subtypes remains to be determined.
Collapse
|
58
|
Benard A, van de Velde CJH, Lessard L, Putter H, Takeshima L, Kuppen PJK, Hoon DSB. Epigenetic status of LINE-1 predicts clinical outcome in early-stage rectal cancer. Br J Cancer 2013; 109:3073-83. [PMID: 24220694 PMCID: PMC3859941 DOI: 10.1038/bjc.2013.654] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We evaluated the clinical prognostic value of methylation of two non-coding repeat sequences, long interspersed element 1 (LINE-1) and Alu, in rectal tumour tissues. In addition to DNA methylation, expression of histone modifications H3K27me3 and H3K9Ac was studied in this patient cohort. METHODS LINE-1 and Alu methylation were assessed in DNA extracted from formalin-fixed paraffin-embedded tissues. A pilot (30 tumour and 25 normal tissues) and validation study (189 tumour and 53 normal tissues) were performed. Histone modifications H3K27me3 and H3K9Ac were immunohistochemically stained on tissue microarrays of the study cohort. RESULTS In early-stage rectal cancer (stage I-II), hypomethylation of LINE-1 was an independent clinical prognostic factor, showing shorter patient survival (P=0.014; HR: 4.6) and a higher chance of tumour recurrence (P=0.001; HR: 9.6). Alu methylation did not show any significant correlation with clinical parameters, suggesting an active role of LINE-1 in tumour development. Expression of H3K27me3 (silencing gene expression) and H3K9Ac (activating gene expression) in relation to methylation status of LINE-1 and Alu supported this specific role of LINE-1 methylation. CONCLUSION The epigenetic status of LINE-1, but not of Alu, is prognostic in rectal cancer, indicating an active role for LINE-1 in determining clinical outcome.
Collapse
Affiliation(s)
- A Benard
- 1] Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, CA 90404, USA [2] Department of Surgery, Leiden University Medical Center, Leiden 2300RC, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
59
|
Delgado-Cruzata L, Wu HC, Liao Y, Santella RM, Terry MB. Differences in DNA methylation by extent of breast cancer family history in unaffected women. Epigenetics 2013; 9:243-8. [PMID: 24172832 DOI: 10.4161/epi.26880] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Breast cancer clusters within families but genetic factors identified to date explain only a portion of this clustering. Lower global DNA methylation in white blood cells (WBC) has been associated with increased breast cancer risk. We examined whether WBC DNA methylation varies by extent of breast cancer family history in unaffected women from high-risk breast cancer families. We evaluated DNA methylation levels in LINE-1, Alu and Sat2 in 333 cancer-free female family members of the New York site of the Breast Cancer Family Registry, the minority of which were known BRCA1 or BRCA2 mutation carriers. We used generalized estimated equation models to test for differences in DNA methylation levels by extent of their breast cancer family history after adjusting for age. All unaffected women had at least one sister affected with breast cancer. LINE-1 and Sat2 DNA methylation levels were lower in individuals with 3 or more (3+) first-degree relatives with breast cancer relative to women with only one first-degree relative. For LINE-1, Alu, and Sat2, having 3+ affected first-degree relatives was associated with a decrease of 23.4% (95%CI = -46.8%, 0.1%), 17.9% (95%CI = -39.5%, 3.7%) and 11.4% (95% CI = -20.3%, -2.5%), respectively, relative to individuals with only one affected first-degree relative, but the results were only statistically significant for Sat2. Individuals having an affected mother had 17.9% lower LINE-1 DNA methylation levels (95% CI = -28.8%, -7.1%) when compared with those not having an affected mother. No associations were observed for Alu or Sat2 by maternal breast cancer status. If replicated, these results indicate that lower global WBC DNA methylation levels in families with extensive cancer histories may be one explanation for the clustering of cancers in these families. Family clustering of disease may reflect epigenetic as well as genetic and shared environmental factors.
Collapse
Affiliation(s)
- Lissette Delgado-Cruzata
- Department of Environmental Health Sciences; Mailman School of Public Health of Columbia University; New York, NY USA; Department of Science; John Jay College of Criminal Justice; City University of New York; New York, NY USA
| | - Hui-Chen Wu
- Department of Environmental Health Sciences; Mailman School of Public Health of Columbia University; New York, NY USA; Department of Epidemiology; Mailman School of Public Health of Columbia University; New York, NY USA
| | - Yuyan Liao
- Department of Epidemiology; Mailman School of Public Health of Columbia University; New York, NY USA
| | - Regina M Santella
- Department of Environmental Health Sciences; Mailman School of Public Health of Columbia University; New York, NY USA; Herbert Irving Comprehensive Cancer Center; Columbia University Medical Center; New York, NY USA
| | - Mary Beth Terry
- Department of Epidemiology; Mailman School of Public Health of Columbia University; New York, NY USA; Herbert Irving Comprehensive Cancer Center; Columbia University Medical Center; New York, NY USA
| |
Collapse
|
60
|
Deroo LA, Bolick SCE, Xu Z, Umbach DM, Shore D, Weinberg CR, Sandler DP, Taylor JA. Global DNA methylation and one-carbon metabolism gene polymorphisms and the risk of breast cancer in the Sister Study. Carcinogenesis 2013; 35:333-8. [PMID: 24130171 DOI: 10.1093/carcin/bgt342] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Global decrease in DNA methylation is a common feature of cancer and is associated with genomic and chromosomal instability. Retrospective case-control studies have reported that cancer patients have lower global methylation levels in blood DNA than do controls. We used prospectively collected samples and a case-cohort study design to examine global DNA methylation and incident breast cancer in 294 cases and a sample of 646 non-cases in the Sister Study, a study of 50 884 women aged 35-74 years who had not been diagnosed with breast cancer at the time of blood draw. Global methylation in DNA from peripheral blood was assessed by pyrosequencing of the LINE-1 repetitive element. Quartiles of LINE-1 methylation levels were associated with the risk of breast cancer in a dose-dependent fashion (P, trend = 0.002), with an increased risk observed among women in the lowest quartile compared with those in the highest quartile (hazard ratio = 1.75; 95% confidence interval 1.19, 2.59). We also examined 22 polymorphisms in 10 one-carbon metabolism genes in relation to both LINE-1 methylation levels and breast cancer. We found three single-nucleotide polymorphisms in those genes associated with LINE-1 methylation: SLC19A1 (rs1051266); MTRR (rs10380) and MTHFR (rs1537514), one of which was also associated with breast cancer risk: MTHFR (rs1537514). PON1 (rs757158) was associated with breast cancer but not methylation.
Collapse
Affiliation(s)
- Lisa A Deroo
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Marsit CJ, Koestler DC, Watson-Smith D, Boney CM, Padbury JF, Luks F. Developmental genes targeted for epigenetic variation between twin-twin transfusion syndrome children. Clin Epigenetics 2013; 5:18. [PMID: 24090360 PMCID: PMC4016001 DOI: 10.1186/1868-7083-5-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epigenetic mechanisms are thought to be critical in mediating the role of the intrauterine environment on lifelong health and disease. Twin-twin transfusion syndrome (TTTS) is a rare condition wherein fetuses share the placenta and develop vascular anastomoses, which allow blood to flow between the fetuses. The unequal flow results in reciprocal hypo- and hypervolemia in the affected twins, striking growth differences and physiologic adaptations in response to this significant stressor. The donor twin in the TTTS syndrome can be profoundly growth restricted and there is likely a nutritional imbalance between the twins. The consequences of TTTS on fetal programming are unknown. This condition can now be effectively treated through the use of fetal laparoscopic procedures, but the potential for lifelong morbidity related to this condition during development is apparent. As this condition and the resulting uteroplacental discordance can play a role in the epigenetic process, we sought to investigate the DNA methylation profiles of childhood survivors of TTTS (n = 14). We focused on differences in both global measures and genome-wide CpG specific DNA methylation between donor and recipient children in this pilot study in order to generate hypotheses for further research. RESULTS We identified significant hypomethylation of the LINE1 repetitive element in the peripheral blood of donor children and subtle variation in the genome-wide profiles of CpG specific methylation most prominent at CpG sites which are targets for polycomb group repressive complexes. CONCLUSIONS These preliminary results suggest that coordinated epigenetic alterations result from the intrauterine environment experienced by infants with TTTS and may, at least in part, be responsible for downstream health conditions experienced by individuals surviving this condition.
Collapse
Affiliation(s)
- Carmen J Marsit
- Department of Pharmacology and Toxicology, Geisel Medical School at Dartmouth, Hanover, NH 03755, USA.
| | | | | | | | | | | |
Collapse
|
62
|
Smirnikhina SA, Voronina ES, Strelnikov VV, Tanas AS, Lavrov AV. Mutagen influence with different mechanisms of action on DNA global methylation in human whole-blood lymphocytes in vitro. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413060124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
63
|
Duan H, He Z, Ma J, Zhang B, Sheng Z, Bin P, Cheng J, Niu Y, Dong H, Lin H, Dai Y, Zhu B, Chen W, Xiao Y, Zheng Y. Global and MGMT promoter hypomethylation independently associated with genomic instability of lymphocytes in subjects exposed to high-dose polycyclic aromatic hydrocarbon. Arch Toxicol 2013; 87:2013-2022. [PMID: 23543013 DOI: 10.1007/s00204-013-1046-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 03/19/2013] [Indexed: 12/31/2022]
Abstract
Global hypomethylation, gene-specific methylation, and genome instability are common events in tumorigenesis. To date, few studies have examined the aberrant DNA methylation patterns in coke oven workers, who are highly at risk of lung cancer by occupational exposure to polycyclic aromatic hydrocarbons (PAHs). We recruited 82 PAH-exposed workers and 62 unexposed controls, assessed exposure levels by urinary 1-hydroxypyrene, and measured genetic damages by comet assay, bleomycin sensitivity, and micronucleus assay. The PAHs in coke oven emissions (COE) were estimated based on toxic equivalency factors. We used bisulfite-PCR pyrosequencing to quantitate DNA methylation in long interspersed nuclear element-1 (LINE-1) and O(6)-methylguanine-DNA methyltransferase (MGMT). Further, the methylation alteration was also investigated in COE-treated human bronchial epithelial (16HBE) cells. We found there are higher levels of PAHs in COE. Among PAH-exposed workers, LINE-1 and MGMT methylation levels (with CpG site specificity) were significantly lowered. LINE-1, MGMT, and its hot CpG site-specific methylation were negatively correlated with urinary 1-hydroxypyrene levels (r = -0.329, p < 0.001; r = -0.164, p = 0.049 and r = -0.176, p = 0.034, respectively). In addition, LINE-1 methylation was inversely associated with comet tail moment and micronucleus frequency, and a significant increase of micronucleus in low MGMT methylation group. In vitro study revealed that treatment of COE in 16HBE cells resulted in higher production of BPDE-DNA adducts, LINE-1 hypomethylation, hypomethylation, and suppression of MGMT expression. These findings suggest hypomethylation of LINE-1 and MGMT promoter could be used as markers for PAHs exposure and merit further investigation.
Collapse
Affiliation(s)
- Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, People's Republic of China
| | - Zhini He
- Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Junxiang Ma
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, People's Republic of China
| | - Bo Zhang
- Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Zhiguo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Ping Bin
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, People's Republic of China
| | - Juan Cheng
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, People's Republic of China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, People's Republic of China
| | - Haiyan Dong
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, People's Republic of China
| | - Han Lin
- Institute of Industrial Health, Anshan Steel Industrial Corporation, Anshan, 114044, People's Republic of China
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, People's Republic of China
| | - Benzhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Wen Chen
- Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yongmei Xiao
- Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yuxin Zheng
- Key Laboratory of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, People's Republic of China.
| |
Collapse
|
64
|
Subramanyam MA, Diez-Roux AV, Pilsner JR, Villamor E, Donohue KM, Liu Y, Jenny NS. Social factors and leukocyte DNA methylation of repetitive sequences: the multi-ethnic study of atherosclerosis. PLoS One 2013; 8:e54018. [PMID: 23320117 PMCID: PMC3539988 DOI: 10.1371/journal.pone.0054018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 12/05/2012] [Indexed: 12/29/2022] Open
Abstract
Epigenetic changes are a potential mechanism contributing to race/ethnic and socioeconomic disparities in health. However, there is scant evidence of the race/ethnic and socioeconomic patterning of epigenetic marks. We used data from the Multi-Ethnic Study of Atherosclerosis Stress Study (N = 988) to describe age- and gender- independent associations of race/ethnicity and socioeconomic status (SES) with methylation of Alu and LINE-1 repetitive elements in leukocyte DNA. Mean Alu and Line 1 methylation in the full sample were 24% and 81% respectively. In multivariable linear regression models, African-Americans had 0.27% (p<0.01) and Hispanics 0.20% (p<0.05) lower Alu methylation than whites. In contrast, African-Americans had 0.41% (p<0.01) and Hispanics 0.39% (p<0.01) higher LINE-1 methylation than whites. These associations remained after adjustment for SES. In addition, a one standard deviation higher wealth was associated with 0.09% (p<0.01) higher Alu and 0.15% (p<0.01) lower LINE-1 methylation in age- and gender- adjusted models. Additional adjustment for race/ethnicity did not alter this pattern. No associations were observed with income, education or childhood SES. Our findings, from a large community-based sample, suggest that DNA methylation is socially patterned. Future research, including studies of gene-specific methylation, is needed to understand better the opposing associations of Alu and LINE-1 methylation with race/ethnicity and wealth as well as the extent to which small methylation changes in these sequences may influence disparities in health.
Collapse
Affiliation(s)
- Malavika A Subramanyam
- Social Epidemiology, Indian Institute of Technology Gandhinagar, Ahmedabad, Gujarat, India.
| | | | | | | | | | | | | |
Collapse
|
65
|
Marsit C, Christensen B. Blood-derived DNA methylation markers of cancer risk. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:233-52. [PMID: 22956505 DOI: 10.1007/978-1-4419-9967-2_12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The importance of somatic epigenetic alterations in tissues targeted for carcinogenesis is now well recognized and considered a key molecular step in the development of a tumor. Particularly, alteration of gene-specific and genomic DNA methylation has been extensively characterized in tumors, and has become an attractive biomarker of risk due to its specificity and stability in human samples. It also is clear that tumors do not develop as isolated phenomenon in their target tissue, but instead result from altered processes affecting not only the surrounding cells and tissues, but other organ systems, including the immune system. Thus, alterations to DNA methylation profiles detectable in peripheral blood may be useful not only in understanding the carcinogenic process and response to environmental insults, but can also provide critical insights in a systems biological view of tumorigenesis. Research to date has generally focused on how environmental exposures alter genomic DNA methylation content in peripheral blood. More recent work has begun to translate these findings to clinically useful endpoints, by defining the relationship between DNA methylation alterations and cancer risk. This chapter highlights the existing research linking the environment, blood-derived DNA methylation alterations, and cancer risk, and points out how these epigenetic alterations may be contributing fundamentally to carcinogenesis.
Collapse
Affiliation(s)
- Carmen Marsit
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen, Hanover, NH 03755, USA.
| | | |
Collapse
|
66
|
Brennan K, Flanagan JM. Is there a link between genome-wide hypomethylation in blood and cancer risk? Cancer Prev Res (Phila) 2012; 5:1345-57. [PMID: 23135621 DOI: 10.1158/1940-6207.capr-12-0316] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer cells display widespread genetic and epigenetic abnormalities, but the contribution to disease risk, particularly in normal tissue before disease, is not yet established. Genome-wide hypomethylation occurs frequently in tumors and may facilitate chromosome instability, aberrant transcription and transposable elements reactivation. Several epidemiologic case-control studies have reported genomic hypomethylation in peripheral blood of cancer patients, suggesting a systemic effect of hypomethylation on disease predisposition, which may be exploited for biomarker development. However, more recent studies have failed to reproduce this. Here, we report a meta-analysis, indicating a consistent inverse association between genomic 5-methylcytosine levels and cancer risk [95% confidence interval (CI), 1.2-6.1], but no overall risk association for studies using surrogates for genomic methylation, including methylation at the LINE-1 repetitive element (95% CI, 0.8-1.7). However, studies have been highly heterogeneous in terms of experimental design, assay type, and analytical methods. We discuss the limitations of the current approaches, including the low interindividual variability of surrogate assays such as LINE1 and the importance of using prospective studies to investigate DNA methylation in disease risk. Insights into genomic location of hypomethylation, from recent whole genome, high-resolution methylome maps, will help address this interesting and clinically important question.
Collapse
Affiliation(s)
- Kevin Brennan
- Epigenetics Unit, Department of Surgery and Cancer, Hammersmith Hospital, Imperial College, London, United Kingdom
| | | |
Collapse
|
67
|
Relton CL, Davey Smith G. Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int J Epidemiol 2012; 41:161-76. [PMID: 22422451 DOI: 10.1093/ije/dyr233] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The burgeoning interest in the field of epigenetics has precipitated the need to develop approaches to strengthen causal inference when considering the role of epigenetic mediators of environmental exposures on disease risk. Epigenetic markers, like any other molecular biomarker, are vulnerable to confounding and reverse causation. Here, we present a strategy, based on the well-established framework of Mendelian randomization, to interrogate the causal relationships between exposure, DNA methylation and outcome. The two-step approach first uses a genetic proxy for the exposure of interest to assess the causal relationship between exposure and methylation. A second step then utilizes a genetic proxy for DNA methylation to interrogate the causal relationship between DNA methylation and outcome. The rationale, origins, methodology, advantages and limitations of this novel strategy are presented.
Collapse
Affiliation(s)
- Caroline L Relton
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | | |
Collapse
|
68
|
Turcot V, Tchernof A, Deshaies Y, Pérusse L, Bélisle A, Marceau S, Biron S, Lescelleur O, Biertho L, Vohl MC. LINE-1 methylation in visceral adipose tissue of severely obese individuals is associated with metabolic syndrome status and related phenotypes. Clin Epigenetics 2012; 4:10. [PMID: 22748066 PMCID: PMC3464682 DOI: 10.1186/1868-7083-4-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/21/2012] [Indexed: 12/25/2022] Open
Abstract
Background Epigenetic mechanisms may be involved in the regulation of genes found to be differentially expressed in the visceral adipose tissue (VAT) of severely obese subjects with (MetS+) versus without (MetS-) metabolic syndrome (MetS). Long interspersed nuclear element 1 (LINE-1) elements DNA methylation levels (%meth) in blood, a marker of global DNA methylation, have recently been associated with fasting glucose, blood lipids, heart diseases and stroke. Aim To test whether LINE-1%meth levels in VAT are associated with MetS phenotypes and whether they can predict MetS risk in severely obese individuals. Methods DNA was extracted from VAT of 34 men (MetS-: n = 14, MetS+: n = 20) and 152 premenopausal women (MetS-: n = 84; MetS+: n = 68) undergoing biliopancreatic diversion for the treatment of obesity. LINE-1%meth levels were assessed by pyrosequencing of sodium bisulfite-treated DNA. Results The mean LINE-1%meth in VAT was of 75.8% (SD = 3.0%). Multiple linear regression analyses revealed that LINE-1%meth was negatively associated with fasting glucose levels (β = -0.04; P = 0.03), diastolic blood pressure (β = -0.65; P = 0.03) and MetS status (β = -0.04; P = 0.004) after adjustments for the effects of age, sex, waist circumference (except for MetS status) and smoking. While dividing subjects into quartiles based on their LINE-1%meth (Q1 to Q4: lower %meth to higher %meth levels), greater risk were observed in the first (Q1: odds ratio (OR) = 4.37, P = 0.004) and the second (Q2: OR = 4.76, P = 0.002) quartiles compared to Q4 (1.00) when adjusting for age, sex and smoking. Conclusions These results suggest that lower global DNA methylation, assessed by LINE-1 repetitive elements methylation analysis, would be associated with a greater risk for MetS in the presence of obesity.
Collapse
Affiliation(s)
- Valérie Turcot
- Institute of Nutraceuticals and Functional Foods, 2440 Hochelaga Blvd, Québec City, G1V 0A6, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
van Bemmel D, Lenz P, Liao LM, Baris D, Sternberg LR, Warner A, Johnson A, Jones M, Kida M, Schwenn M, Schned AR, Silverman DT, Rothman N, Moore LE. Correlation of LINE-1 methylation levels in patient-matched buffy coat, serum, buccal cell, and bladder tumor tissue DNA samples. Cancer Epidemiol Biomarkers Prev 2012; 21:1143-8. [PMID: 22539607 PMCID: PMC3397796 DOI: 10.1158/1055-9965.epi-11-1030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Evidence suggests that global methylation levels in blood cell DNA may be a biomarker for cancer risk. To date, most studies have used genomic DNA isolated from blood or urine as a surrogate marker of global DNA methylation levels in bladder tumor tissue. METHODS A subset of 50 bladder cancer cases was selected from the New England Bladder Cancer Case-Control Study. Genomic DNA was isolated from buffy coat, buccal cells, serum, and formalin-fixed, paraffin-embedded tissue for each participant. DNA methylation at four CpG sites within the long interspersed nucleotide element (LINE-1) repetitive element was quantified using pyrosequencing and expressed as a mean methylation level across sites. RESULTS Overall, the mean percent (%) LINE-1 5-methylcytosine (%5MeC) level was highest in serum (80.47% ± 1.44%) and lowest in bladder tumor DNA (61.36% ± 12.74%) and levels varied significantly across tissue types (P = 0.001). An inverse association between LINE-1 mean %5MeC and tumor stage (P = 0.001) and grade (P = 0.002) was observed. A moderate correlation between patient-matched serum and buffy coat DNA LINE-1 %5MeC levels was found (r = 0.32, P = 0.03) but levels were uncorrelated among other matched genomic DNA samples. CONCLUSIONS The mean promoter LINE-1 %5MeC measurements were correlated between buffy coat and serum DNA samples. No correlation was observed between genomic DNA sources and tumor tissues; however a significant inverse association between tumor percent LINE-1 methylation and tumor stage/grade was found. IMPACT LINE-1 methylation measured in case blood DNA did not reflect that observed in bladder tumor tissue but may represent other factors associated with carcinogenesis.
Collapse
Affiliation(s)
- Dana van Bemmel
- Occupational and Environmental Epidemiology Branch, Epidemiology and Biostatistics Program, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Petra Lenz
- Division of Cancer Epidemiology and Genetics, Science Applications International Corporation-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD, 21702
| | - Linda M Liao
- Occupational and Environmental Epidemiology Branch, Epidemiology and Biostatistics Program, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Dalsu Baris
- Occupational and Environmental Epidemiology Branch, Epidemiology and Biostatistics Program, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Lawrence R. Sternberg
- Pathology/Histotechnology Laboratory, Laboratory Animal Sciences Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD
| | - Andrew Warner
- Pathology/Histotechnology Laboratory, Laboratory Animal Sciences Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD
| | - Alison Johnson
- Vermont Cancer Registry, Burlington, Vermont, USA, Department of Pathology
| | - Michael Jones
- Department of Pathology and Laboratory Medicine, Maine Medical Center Portland, Maine, USA
| | - Masatoshi Kida
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont, USA
| | | | | | - Debra T. Silverman
- Occupational and Environmental Epidemiology Branch, Epidemiology and Biostatistics Program, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Epidemiology and Biostatistics Program, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Lee E. Moore
- Occupational and Environmental Epidemiology Branch, Epidemiology and Biostatistics Program, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| |
Collapse
|
70
|
Delgado-Cruzata L, Wu HC, Perrin M, Liao Y, Kappil MA, Ferris JS, Flom JD, Yazici H, Santella RM, Terry MB. Global DNA methylation levels in white blood cell DNA from sisters discordant for breast cancer from the New York site of the Breast Cancer Family Registry. Epigenetics 2012; 7:868-74. [PMID: 22705975 DOI: 10.4161/epi.20830] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lower global DNA methylation is associated with genomic instability and it is one of the epigenetic mechanisms relevant to carcinogenesis. Emerging evidence for several cancers suggests that lower overall levels of global DNA methylation in blood are associated with different cancer types, although less is known about breast cancer. We examined global DNA methylation levels using a sibling design in 273 sisters affected with breast cancer and 335 unaffected sisters from the New York site of the Breast Cancer Family Registry. We measured global DNA methylation in total white blood cell (WBC) and granulocyte DNA by two different methods, the [ ( 3) H]-methyl acceptance assay and the luminometric methylation assay (LUMA). Global methylation levels were only modestly correlated between sisters discordant for breast cancer (Spearman correlation coefficients ranged from -0.08 to 0.24 depending on assay and DNA source). Using conditional logistic regression models, women in the quartile with the lowest DNA methylation levels (as measured by the [ ( 3) H]-methyl acceptance assay) had a 1.8-fold (95% CI = 1.0-3.3) higher relative association with breast cancer than women in the quartile with the highest DNA methylation levels. When we examined the association on a continuous scale, we also observed a positive association (odds ratio, OR = 1.3, 95% CI = 1.0-1.7, for a one unit change in the natural logarithm of the DPM/μg of DNA). We observed no association between measures by the LUMA assay and breast cancer risk. If replicated in prospective studies, this study suggests that global DNA methylation levels measured in WBC may be a potential biomarker of breast cancer risk even within families at higher risk of cancer.
Collapse
Affiliation(s)
- Lissette Delgado-Cruzata
- Department of Epidemiology, Mailman School of Public Health of Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Wu HC, Delgado-Cruzata L, Flom JD, Perrin M, Liao Y, Ferris JS, Santella RM, Terry MB. Repetitive element DNA methylation levels in white blood cell DNA from sisters discordant for breast cancer from the New York site of the Breast Cancer Family Registry. Carcinogenesis 2012; 33:1946-52. [PMID: 22678115 DOI: 10.1093/carcin/bgs201] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Global decreases in DNA methylation, particularly in repetitive elements, have been associated with genomic instability and human cancer. Emerging, though limited, data suggest that in white blood cell (WBC) DNA levels of methylation, overall or in repetitive elements, may be associated with cancer risk. We measured methylation levels of three repetitive elements [Satellite 2 (Sat2)], long interspersed nuclear element-1 (LINE-1) and Alu) by MethyLight, and LINE-1 by pyrosequencing in a total of 282 breast cancer cases and 347 unaffected sisters from the New York site of the Breast Cancer Family Registry (BCFR) using DNA from both granulocytes and total WBC. We found that methylation levels in all markers were correlated between sisters (Spearman correlation coefficients ranged from 0.17 to 0.55). Sat2 methylation was statistically significantly associated with increased breast cancer risk [odds ratio (OR) = 2.09, 95% confidence interval (CI) = 1.09-4.03; for each unit decrease in the natural log of the methylation level, OR = 2.12, 95% CI = 0.88-5.11 for the lowest quartile compared with the highest quartile]. These associations were only observed in total WBC but not granulocyte DNA. There was no association between breast cancer and LINE-1 and Alu methylation. If replicated in larger prospective studies, these findings support that selected markers of epigenetic changes measured in WBC, such as Sat2, may be potential biomarkers of breast cancer risk.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Department of Epidemiology, Mailman School of Public Health of Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Pilsner JR, Hall MN, Liu X, Ilievski V, Slavkovich V, Levy D, Factor-Litvak P, Yunus M, Rahman M, Graziano JH, Gamble MV. Influence of prenatal arsenic exposure and newborn sex on global methylation of cord blood DNA. PLoS One 2012; 7:e37147. [PMID: 22662134 PMCID: PMC3360698 DOI: 10.1371/journal.pone.0037147] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 04/13/2012] [Indexed: 01/01/2023] Open
Abstract
Background An emerging body of evidence indicates that early-life arsenic (As) exposure may influence the trajectory of health outcomes later in life. However, the mechanisms underlying these observations are unknown. Objective The objective of this study was to investigate the influence of prenatal As exposure on global methylation of cord blood DNA in a study of mother/newborn pairs in Matlab, Bangladesh. Design Maternal and cord blood DNA were available from a convenience sample of 101 mother/newborn pairs. Measures of As exposure included maternal urinary As (uAs), maternal blood As (mbAs) and cord blood As (cbAs). Several measures of global DNA methylation were assessed, including the [3H]-methyl-incorporation assay and three Pyrosequencing assays: Alu, LINE-1 and LUMA. Results In the total sample, increasing quartiles of maternal uAs were associated with an increase in covariate-adjusted means of newborn global DNA methylation as measured by the [3H]-methyl-incorporation assay (quartile 1 (Q1) and Q2 vs. Q4; p = 0.06 and 0.04, respectively). Sex-specific linear regression analyses, while not reaching significance level of 0.05, indicated that the associations between As exposures and Alu, LINE-1 and LUMA were positive among male newborns (N = 58) but negative among female newborns (N = 43); tests for sex differences were borderline significant for the association of cbAs and mbAs with Alu (p = 0.05 and 0.09, respectively) and for the association between maternal uAs and LINE-1 (p = 0.07). Sex-specific correlations between maternal urinary creatinine and newborn methyl-incorporation, Alu and LINE-1 were also evident (p<0.05). Conclusions These results suggest that prenatal As exposure is associated with global DNA methylation in cord blood DNA, possibly in a sex-specific manner. Arsenic-induced epigenetic modifications in utero may potentially influence disease outcomes later in life. Additional studies are needed to confirm these findings and to examine the persistence of DNA methylation marks over time.
Collapse
Affiliation(s)
- J. Richard Pilsner
- Division of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Megan N. Hall
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Diane Levy
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Mahammad Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Mahfuzar Rahman
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Mary V. Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
73
|
Long interspersed nuclear element-1 hypomethylation and oxidative stress: correlation and bladder cancer diagnostic potential. PLoS One 2012; 7:e37009. [PMID: 22615872 PMCID: PMC3352860 DOI: 10.1371/journal.pone.0037009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/11/2012] [Indexed: 01/07/2023] Open
Abstract
Although, increased oxidative stress and hypomethylation of long interspersed nuclear element-1 (LINE-1) associate with bladder cancer (BCa) development, the relationship between these alterations is unknown. We evaluated the oxidative stress and hypomethylation of the LINE-1 in 61 BCa patients and 45 normal individuals. To measure the methylation levels and to differentiate the LINE-1 loci into hypermethylated, partially methylated and hypomethylated, peripheral blood cells, urinary exfoliated cells and cancerous tissues were evaluated by combined bisulfite restriction analysis PCR. The urinary total antioxidant status (TAS) and plasma protein carbonyl content were determined. The LINE-1 methylation levels and patterns, especially hypomethylated loci, in the blood and urine cells of the BCa patients were different from the levels and patterns in the healthy controls. The urinary TAS was decreased, whereas the plasma protein carbonyl content was increased in the BCa patients relative to the controls. A positive correlation between the methylation of LINE-1 in the blood-derived DNA and urinary TAS was found in both the BCa and control groups. The urinary hypomethylated LINE-1 loci and the plasma protein carbonyl content provided the best diagnostic potential for BCa prediction. Based on post-diagnostic samples, the combination test improved the diagnostic power to a sensitivity of 96% and a specificity of 96%. In conclusion, decreased LINE-1 methylation is associated with increased oxidative stress both in healthy and BCa subjects across the various tissue types, implying a dose-response association. Increases in the LINE-1 hypomethylation levels and the number of hypomethylated loci in both the blood- and urine-derived cells and increase in the oxidative stress were found in the BCa patients. The combination test of the urinary hypomethylated LINE-1 loci and the plasma protein carbonyl content may be useful for BCa screening and monitoring of treatment.
Collapse
|
74
|
Woo HD, Kim J. Global DNA hypomethylation in peripheral blood leukocytes as a biomarker for cancer risk: a meta-analysis. PLoS One 2012; 7:e34615. [PMID: 22509334 PMCID: PMC3324531 DOI: 10.1371/journal.pone.0034615] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/02/2012] [Indexed: 12/25/2022] Open
Abstract
Background Good biomarkers for early detection of cancer lead to better prognosis. However, harvesting tumor tissue is invasive and cannot be routinely performed. Global DNA methylation of peripheral blood leukocyte DNA was evaluated as a biomarker for cancer risk. Methods We performed a meta-analysis to estimate overall cancer risk according to global DNA hypomethylation levels among studies with various cancer types and analytical methods used to measure DNA methylation. Studies were systemically searched via PubMed with no language limitation up to July 2011. Summary estimates were calculated using a fixed effects model. Results The subgroup analyses by experimental methods to determine DNA methylation level were performed due to heterogeneity within the selected studies (p<0.001, I2: 80%). Heterogeneity was not found in the subgroup of %5-mC (p = 0.393, I2: 0%) and LINE-1 used same target sequence (p = 0.097, I2: 49%), whereas considerable variance remained in LINE-1 (p<0.001, I2: 80%) and bladder cancer studies (p = 0.016, I2: 76%). These results suggest that experimental methods used to quantify global DNA methylation levels are important factors in the association study between hypomethylation levels and cancer risk. Overall, cancer risks of the group with the lowest DNA methylation levels were significantly higher compared to the group with the highest methylation levels [OR (95% CI): 1.48 (1.28–1.70)]. Conclusions Global DNA hypomethylation in peripheral blood leukocytes may be a suitable biomarker for cancer risk. However, the association between global DNA methylation and cancer risk may be different based on experimental methods, and region of DNA targeted for measuring global hypomethylation levels as well as the cancer type. Therefore, it is important to select a precise and accurate surrogate marker for global DNA methylation levels in the association studies between global DNA methylation levels in peripheral leukocyte and cancer risk.
Collapse
Affiliation(s)
- Hae Dong Woo
- Cancer Epidemiology Branch, National Cancer Center, Goyang-si, Korea
| | - Jeongseon Kim
- Cancer Epidemiology Branch, National Cancer Center, Goyang-si, Korea
- * E-mail:
| |
Collapse
|
75
|
Hanna CW, Bloom MS, Robinson WP, Kim D, Parsons PJ, vom Saal FS, Taylor JA, Steuerwald AJ, Fujimoto VY. DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum Reprod 2012; 27:1401-10. [PMID: 22381621 DOI: 10.1093/humrep/des038] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Changes in DNA methylation may play an important role in the deleterious reproductive effects reported in association with exposure to environmental pollutants. In this pilot study, we identify candidate methylation changes associated with exposure to pollutants in women undergoing in vitro fertilization (IVF). METHODS Blood and urine were collected from women on the day of oocyte retrieval. Whole blood was analyzed for mercury and lead, and urine for cadmium using inductively coupled plasma mass spectrometry. Unconjugated bisphenol A (BPA) was analyzed in serum using high-performance liquid chromatography with Coularray detection. Participants were dichotomized as higher or lower exposure groups by median concentrations. Using the Illumina GoldenGate Methylation Cancer Panel I, DNA methylation in whole blood from 43 women was assessed at 1505 CpG sites for association with exposure levels of each pollutant. Candidate CpG sites were identified using a Diff Score >|13| (P< 0.05) and an absolute difference >10% which were confirmed using bisulfite pyrosequencing. RESULTS Methylation of the GSTM1/5 promoter was increased for women with higher mercury exposure (P= 0.04); however, no correlation was observed (r= 0.17, P= 0.27). Reduced methylation was detected in the COL1A2 promoter in women with higher exposure to lead (P= 0.004), and an inverse correlation was observed (r = - 0.45, P= 0.03). Lower methylation of a promoter CpG site at the TSP50 gene was detected in women with higher BPA exposure (P= 0.005), and again an inverse correlation was identified (r = - 0.51, P= 0.001). CONCLUSIONS Altered DNA methylation at various CpG sites was associated with exposure to mercury, lead or BPA, providing candidates to be investigated using a larger study sample, as the results may reflect an independently associated predictor (e.g. socioeconomic status, diet, genetic variants, altered blood cell composition). Further studies accommodating variations in these factors will be needed to confirm these associations and identify their underlying causes.
Collapse
Affiliation(s)
- Courtney W Hanna
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Epigenetic screen of human DNA repair genes identifies aberrant promoter methylation of NEIL1 in head and neck squamous cell carcinoma. Oncogene 2012; 31:5108-16. [DOI: 10.1038/onc.2011.660] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
77
|
Kim M, Bae M, Na H, Yang M. Environmental toxicants--induced epigenetic alterations and their reversers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2012; 30:323-367. [PMID: 23167630 DOI: 10.1080/10590501.2012.731959] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Epigenetics has been emphasized in the postgenome era to clarify obscure health risks of environmental toxicants including endocrine disrupting chemicals (EDCs). In addition, mixed exposure in real life can modify health consequences of the toxicants. Particularly, some nutritional and dietary materials modify individual susceptibility through changes in the epigenome. Therefore, we focused on some environmental toxicants that induce epigenetic alterations, and introduced chemopreventive materials to reverse the toxicants-induced epigenetic alterations. Methodologically, we used global and specific DNA methylation as epigenetic end points and searched epigenetic modulators in food. We reviewed various epigenetic end points induced by environmental toxicants including alcohol, asbestos, nanomaterials, benzene, EDCs, metals, and ionizing radiation. The epigenetic end points can be summarized into global hypomethylation and specific hypermethylation at diverse tumor suppress genes. Exposure timing, dose, sex, or organ specificity should be considered to use the epigenetic end points as biomarkers for exposure to the epimutagenic toxicants. Particularly, neonatal exposure to the epimutagens can influence their future adult health because of characteristics of the epimutagens, which disrupt epigenetic regulation in imprinting, organogenesis, development, etc. Considering interaction between epimutagenic toxicants and their reversers in food, we suggest that multiple exposures to them can alleviate or mask epigenetic toxicity in real life. Our present review provides useful information to find new end points of environmental toxicants and to prevention from environment-related diseases.
Collapse
Affiliation(s)
- Minju Kim
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Yongsan-gu, Seoul, Republic of Korea
| | | | | | | |
Collapse
|