51
|
Xu L, Guo L, Wang Z, Xu X, Zhang S, Wu X, Kuang H, Xu C. Profiling and Identification of Biocatalyzed Transformation of Sulfoxaflor In Vivo. Angew Chem Int Ed Engl 2020; 59:16218-16224. [DOI: 10.1002/anie.202007079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Liwei Xu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Bi ointerface and Biodetection and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Bi ointerface and Biodetection and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Zhongxing Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Bi ointerface and Biodetection and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Bi ointerface and Biodetection and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Shuang Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Bi ointerface and Biodetection and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Bi ointerface and Biodetection and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Bi ointerface and Biodetection and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
52
|
Thompson DA, Lehmler HJ, Kolpin DW, Hladik ML, Vargo JD, Schilling KE, LeFevre GH, Peeples TL, Poch MC, LaDuca LE, Cwiertny DM, Field RW. A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1315-1346. [PMID: 32267911 PMCID: PMC11755762 DOI: 10.1039/c9em00586b] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Neonicotinoid insecticides are widely used in both urban and agricultural settings around the world. Historically, neonicotinoid insecticides have been viewed as ideal replacements for more toxic compounds, like organophosphates, due in part to their perceived limited potential to affect the environment and human health. This critical review investigates the environmental fate and toxicity of neonicotinoids and their metabolites and the potential risks associated with exposure. Neonicotinoids are found to be ubiquitous in the environment, drinking water, and food, with low-level exposure commonly documented below acceptable daily intake standards. Available toxicological data from animal studies indicate possible genotoxicity, cytotoxicity, impaired immune function, and reduced growth and reproductive success at low concentrations, while limited data from ecological or cross-sectional epidemiological studies have identified acute and chronic health effects ranging from acute respiratory, cardiovascular, and neurological symptoms to oxidative genetic damage and birth defects. Due to the heavy use of neonicotinoids and potential for cumulative chronic exposure, these insecticides represent novel risks and necessitate further study to fully understand their risks to humans.
Collapse
Affiliation(s)
- Darrin A Thompson
- University of Iowa, College of Public Health, Iowa City, IA, USA. and University of Iowa, Center for Health Effects of Environmental Contamination, Iowa City, IA, USA
| | | | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, IA, USA
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA
| | - John D Vargo
- State Hygienic Laboratory at the University of Iowa, Iowa City, IA, USA
| | | | - Gregory H LeFevre
- University of Iowa, Department of Civil & Environmental Engineering, Iowa City, IA, USA
| | - Tonya L Peeples
- Department of Chemical Engineering, University Park, PA, USA
| | - Matthew C Poch
- University of Iowa, College of Public Health, Iowa City, IA, USA.
| | - Lauren E LaDuca
- University of Iowa, College of Public Health, Iowa City, IA, USA.
| | - David M Cwiertny
- University of Iowa, Center for Health Effects of Environmental Contamination, Iowa City, IA, USA and University of Iowa, Department of Civil & Environmental Engineering, Iowa City, IA, USA
| | - R William Field
- University of Iowa, College of Public Health, Iowa City, IA, USA.
| |
Collapse
|
53
|
Pang S, Lin Z, Zhang W, Mishra S, Bhatt P, Chen S. Insights Into the Microbial Degradation and Biochemical Mechanisms of Neonicotinoids. Front Microbiol 2020; 11:868. [PMID: 32508767 PMCID: PMC7248232 DOI: 10.3389/fmicb.2020.00868] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Neonicotinoids are derivatives of synthetic nicotinoids with better insecticidal capabilities, including imidacloprid, nitenpyram, acetamiprid, thiacloprid, thiamethoxam, clothianidin, and dinotefuran. These are mainly used to control harmful insects and pests to protect crops. Their main targets are nicotinic acetylcholine receptors. In the past two decades, the environmental residues of neonicotinoids have enormously increased due to large-scale applications. More and more neonicotinoids remain in the environment and pose severe toxicity to humans and animals. An increase in toxicological and hazardous pollution due to the introduction of neonicotinoids into the environment causes problems; thus, the systematic remediation of neonicotinoids is essential and in demand. Various technologies have been developed to remove insecticidal residues from soil and water environments. Compared with non-bioremediation methods, bioremediation is a cost-effective and eco-friendly approach for the treatment of pesticide-polluted environments. Certain neonicotinoid-degrading microorganisms, including Bacillus, Mycobacterium, Pseudoxanthomonas, Rhizobium, Rhodococcus, Actinomycetes, and Stenotrophomonas, have been isolated and characterized. These microbes can degrade neonicotinoids under laboratory and field conditions. The microbial degradation pathways of neonicotinoids and the fate of several metabolites have been investigated in the literature. In addition, the neonicotinoid-degrading enzymes and the correlated genes in organisms have been explored. However, few reviews have focused on the neonicotinoid-degrading microorganisms along with metabolic pathways and degradation mechanisms. Therefore, this review aimed to summarize the microbial degradation and biochemical mechanisms of neonicotinoids. The potentials of neonicotinoid-degrading microbes for the bioremediation of contaminated sites were also discussed.
Collapse
Affiliation(s)
- Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
54
|
Yan S, Meng Z, Tian S, Teng M, Yan J, Jia M, Li R, Zhou Z, Zhu W. Neonicotinoid insecticides exposure cause amino acid metabolism disorders, lipid accumulation and oxidative stress in ICR mice. CHEMOSPHERE 2020; 246:125661. [PMID: 31891846 DOI: 10.1016/j.chemosphere.2019.125661] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Neonicotinoids are increasingly being used for pest control, and their potential health risks are now receiving attention. In this study, the toxic effects of three neonicotinoids (dinotefuran, nitenpyram and acetamiprid) were evaluated in ICR mice. After 30 days of exposure to neonicotinoids (1/200 LD50), oxidative stress levels, biochemical parameters, free fatty acids contents, and 1H NMR-based hepatic metabolomics were tested. All treatment groups showed signs of amino acid metabolism disorders especially elevated branched chain amino acids and phenylalanine. Furthermore, animals exposed to neonicotinoids had elevated lipid levels, which induced oxidative stress. Overall, we found that oxidative stress is a common toxic effect of exposure to neonicotinoids. In addition, lipid accumulation induced by amino acid metabolism disorder may be the cause of oxidative stress. Our results further our understanding of the toxicological effects of neonicotinoids on mammals.
Collapse
Affiliation(s)
- Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Sinuo Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Miaomiao Teng
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Ming Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Ruisheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
55
|
Yang L, Shen Q, Zeng T, Li J, Li W, Wang Y. Enrichment of imidacloprid and its metabolites in lizards and its toxic effects on gonads. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113748. [PMID: 31874432 DOI: 10.1016/j.envpol.2019.113748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Soil contaminants can cause direct harm to lizards due to their regular swallowing of soil particles. As the world's fastest growing insecticide with long half-life in soil, the endocrine disrupting effect of neonicotinoids on lizards deserves more attention. In this report, we assessed the endocrine disrupting effect of imidacloprid on Eremias argus during 28 days of continuous exposure. Among the imidacloprid and its metabolites, only the metabolite 6-chloropyridic acid had a significant accumulation in the gonads and was positively correlated with its blood concentration. Imidacloprid might cause endocrine disrupting effects on lizards in two ways. First, the desnitro metabolites of imidacloprid could accumulate in the brain, inhibited the secretion of gonadotropin-releasing hormone, and ultimately affected the feedback regulation of hypothalamic-pituitary-gonadal related hormones. Secondly, imidacloprid severely inhibited the gene expression of the corresponding enzymes in the gonadal anti-oxidative stress system, causing histological damage to the gonads and ultimately affecting gonadal function. Specifically, exposure to imidacloprid resulted in abnormal arrangement of spermatogenic epithelial epithelium, hyperplasia of epididymal wall, and oligospermia of male lizard. Meanwhile, gene expressions of cyp17, cyp19, and hsd17β were severely inhibited in the imidacloprid exposure group, consistent with decreased levels of testosterone and estradiol in plasma. Imidacloprid exposure could cause insufficient androgen secretion and less spermatogenesis in male lizards. The risk of imidacloprid exposure to female lizards was not as severe as that of male lizards, but it still inhibited the expression of cyp19 in the ovaries and led to a decrease in the synthesis of estradiol. This study firstly reported the endocrine disruption of imidacloprid to lizards, providing new data for limiting the use of neonicotinoids.
Collapse
Affiliation(s)
- Lu Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Yuquan RD 19A, Beijing, 100049, PR China
| | - Qiuxuan Shen
- Beijing Jingshan School Chaoyang Campus, Beijing, 100012, PR China
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Jianzhong Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China
| | - Yinghuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China.
| |
Collapse
|
56
|
La Merrill MA, Vandenberg LN, Smith MT, Goodson W, Browne P, Patisaul HB, Guyton KZ, Kortenkamp A, Cogliano VJ, Woodruff TJ, Rieswijk L, Sone H, Korach KS, Gore AC, Zeise L, Zoeller RT. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol 2020; 16:45-57. [PMID: 31719706 PMCID: PMC6902641 DOI: 10.1038/s41574-019-0273-8] [Citation(s) in RCA: 469] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with hormone action, thereby increasing the risk of adverse health outcomes, including cancer, reproductive impairment, cognitive deficits and obesity. A complex literature of mechanistic studies provides evidence on the hazards of EDC exposure, yet there is no widely accepted systematic method to integrate these data to help identify EDC hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we have developed ten KCs of EDCs based on our knowledge of hormone actions and EDC effects. In this Expert Consensus Statement, we describe the logic by which these KCs are identified and the assays that could be used to assess several of these KCs. We reflect on how these ten KCs can be used to identify, organize and utilize mechanistic data when evaluating chemicals as EDCs, and we use diethylstilbestrol, bisphenol A and perchlorate as examples to illustrate this approach.
Collapse
Affiliation(s)
- Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| | - Laura N Vandenberg
- Department of Environmental Health Science, School of Public Health and Health Sciences, University of Masschusetts, Amherst, MA, USA
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA, USA
| | - William Goodson
- California Pacific Medical Center Research Institute, Sutter Hospital, San Francisco, CA, USA
| | - Patience Browne
- Environmental Directorate, Organisation for Economic Co-operation and Development, Paris, France
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kathryn Z Guyton
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | - Vincent J Cogliano
- Office of the Science Advisor, United States Environmental Protection Agency, Washington, DC, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Linda Rieswijk
- School of Public Health, University of California, Berkeley, CA, USA
- Institute of Data Science, Maastricht University, Maastricht, Netherlands
| | - Hideko Sone
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | - Kenneth S Korach
- Receptor Biology, Section Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Science, Durham, NC, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency, Sacramento, CA, USA
| | - R Thomas Zoeller
- Biology Department, University of Masschusetts, Amherst, MA, USA
| |
Collapse
|
57
|
Wang A, Mahai G, Wan Y, Jiang Y, Meng Q, Xia W, He Z, Xu S. Neonicotinoids and carbendazim in indoor dust from three cities in China: Spatial and temporal variations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133790. [PMID: 31422335 DOI: 10.1016/j.scitotenv.2019.133790] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/14/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Neonicotinoid insecticides (NNIs) are a relatively new class of insecticides, and carbendazim (CBDZ) is a representative antifungal biocide. The occurrence of them in indoor dust was not documented in China. In this study, 336 indoor dust samples were collected from 3 cities, including Taiyuan (October 2016), Wuhan (October 2016 and 2018), and Shenzhen (February 2019), located in North, Central, and South China, for determination of the residues of six NNIs, two of their metabolites, and CBDZ. Acetamiprid (ACE), imidacloprid (IMI), and CBDZ were found to be the major target analytes in dust samples from all selected cities with detection frequencies of 98.8%, 99.7%, and 95.2%, respectively. At least one target NNI was detected for all of the dust samples, with the median concentration of 25.8 ng/g for the imidacloprid-equivalent total neonicotinoids (IMIeq: generated by the relative potency factor method), and the median for CBDZ was 35.8 ng/g. Higher levels of several NNIs and CBDZ were found in urban areas of Taiyuan and Wuhan than those in rural areas. A significant increase of the NNI residues was observed in dust of Wuhan from 2016 to 2018 (while not significant for CBDZ). Finally, the estimated daily intake (EDI) of IMIeq and CBDZ for infants and toddlers were higher than that found in other age groups through dust ingestion, which indicated that infants and toddlers may be susceptible to current residue of NNIs and CBDZ in indoor dust, and dust ingestion of NNIs might be <1% of that reported for dietary intakes in China. This is the first study to report the residue levels of NNIs and CBDZ in dust samples from indoor environment in China.
Collapse
Affiliation(s)
- Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430015, PR China; CDC of Yangtze River Administration and Navigational Affairs, General Hospital of the Yangtze River Shipping, Wuhan 430019, PR China.
| | - Ying Jiang
- Nanshan District Center for Disease Control and Prevention, Shenzhen, Guangdong 518054, PR China
| | - Qianqian Meng
- China Institute for Radiation Protection, Taiyuan, Shanxi 030006, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430015, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
58
|
Park S, Lee JY, Park H, Song G, Lim W. Toxic effects of flufenoxuron on development and vascular formation during zebrafish embryogenesis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105307. [PMID: 31557631 DOI: 10.1016/j.aquatox.2019.105307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Flufenoxuron, a chitin synthesis inhibitor that is widely used in developed countries as an insecticide, is rarely degraded in the environment. In addition to that in insects, flufenoxuron-mediated non-targeted death in organisms such as lizards and bees has been reported. However, the toxic effects of this compound on vascular development during embryogenesis, as well as the underlying mechanism, have not yet been elucidated. In the present study, we assessed abnormal development and cardiovascular damage induced by flufenoxuron in zebrafish embryos. Exposed zebrafish had malformed eyes and pathological characteristics such as heart and yolk sac edema. In accordance with developmental inhibition, cell cycle regulatory genes were dysregulated in zebrafish embryos upon exposure to flufenoxuron. We also discovered that this agent can disrupt vascular formation by interfering with angiogenesis-associated genes including the genes encoding vascular endothelial growth factor Aa (vegfaa), vegfc, fms-related tyrosine kinase 1 (flt1), and flt4 in zebrafish embryos. These anti-angiogenic effects of flufenoxuron were further verified using a well-known angiogenesis model, namely human umbilical vein endothelial cells. In conclusion, our results suggest that flufenoxuron inhibits overall development and angiogenesis during embryogenesis.
Collapse
Affiliation(s)
- Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
59
|
Yancu D, Viau R, Sanderson T. Development of an estrogen-dependent breast cancer co-culture model as a tool for studying endocrine disruptors. Toxicol In Vitro 2019; 62:104658. [PMID: 31629071 DOI: 10.1016/j.tiv.2019.104658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
Abstract
We developed an innovative co-culture system composed of Hs578t human mammary stromal-like cells and T47D hormone-dependent breast epithelial tumor cells as a representative in vitro model of the human hormone-dependent mammary tumor microenvironment. Hs578t cells expressed aromatase (CYP19) mainly via the healthy stromal CYP19 promoter I.4, but also to a lesser extent via the breast cancer-relevant promoters PII, I.3 and I.7, and produced estrogens from androgen precursors. These estrogens stimulated T47D cell proliferation and estrogen receptor-dependent expression of trefoil factor-1 (TFF1), which is known to stimulate mammary tumor cell proliferation and migration. Hs578t cells can also undergo a "promoter-switch" where the normally silent CYP19 promoters PII, I.3 and I.7 become activated, which mimics the in vivo situation in human breast cancer patients. This positive feedback loop is the hallmark of the hormone-dependent breast tumor microenvironment. Using the co-culture model we designed, we evaluated the promoter-specific expression of CYP19, expression of estrogen-dependent gene TFF1, and determined the effects exhibited by basil and fennel seed essential oils on steroidogenesis in the tumor microenvironment.
Collapse
Affiliation(s)
- Debbie Yancu
- INRS - Institut Armand-Frappier, Laval, QC H7V 1B7, Canada.
| | - Rachel Viau
- INRS - Institut Armand-Frappier, Laval, QC H7V 1B7, Canada
| | | |
Collapse
|
60
|
Yang JC, Chang N, Wu DC, Cheng WC, Chung WM, Chang WC, Lei FJ, Liu CJ, Wu IC, Lai HC, Ma WL. Preclinical evaluation of exemestane as a novel chemotherapy for gastric cancer. J Cell Mol Med 2019; 23:7417-7426. [PMID: 31557413 PMCID: PMC6815818 DOI: 10.1111/jcmm.14605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
CYP19A1/aromatase (Ar) is a prognostic biomarker of gastric cancer (GCa). Ar is a critical enzyme for converting androstenedione to oestradiol in the steroidogenesis cascade. For decades, Ar has been targeted with Ar inhibitors (ARIs) in gynaecologic malignancies; however, it is unexplored in GCa. A single‐cohort tissue microarray examination was conducted to study the association between Ar expression and disease outcome in Asian patients with GCa. The results revealed that Ar was a prognostic promoter. Bioinformatics analyses conducted on a Caucasian‐based cDNA microarray databank showed Ar to be positively associated with GCa prognosis for multiple clinical modalities, including surgery, 5‐Fluorouracil (5‐FU) for adjuvant chemotherapy, or HER2 positivity. These findings imply that targeting Ar expression exhibits a potential for fulfilling unmet medical needs. Hence, Ar‐targeting compounds were tested, and the results showed that exemestane exhibited superior cancer‐suppressing efficacy to other ARIs. In addition, exemestane down‐regulated Ar expression. Ablating Ar abundance with short hairpin (sh)Ar could also suppress GCa cell growth, and adding 5‐FU could facilitate this effect. Notably, adding oestradiol could not prevent exemestane or shAr effects, implicating a nonenzymatic mechanism of Ar in cancer growth. Regarding translational research, treatment with exemestane alone exhibited tumour suppression efficacy in a dose‐dependent manner. Combining subminimal doses of 5‐FU and exemestane exerted an excellent tumour suppression effect without influencing bodyweight. This study validated the therapeutic potentials of exemestane in GCa. Combination of metronomic 5‐FU and exemestane for GCa therapy is recommended.
Collapse
Affiliation(s)
- Juan-Cheng Yang
- Department of Gastroenterology, Chinese Medicine Research and Development Center, Sex Hormone Research Center, Research Center for Tumor Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of OBS & GYN, China Medical University Hospital, Taichung, Taiwan
| | - Ning Chang
- Graduate Institute of Chinese Medicine, Graduate Institute of BioMedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| | - Deng-Chyang Wu
- Department of Medicine, Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Chung Cheng
- Department of Gastroenterology, Chinese Medicine Research and Development Center, Sex Hormone Research Center, Research Center for Tumor Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of OBS & GYN, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Chinese Medicine, Graduate Institute of BioMedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Min Chung
- Department of Gastroenterology, Chinese Medicine Research and Development Center, Sex Hormone Research Center, Research Center for Tumor Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of OBS & GYN, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Chinese Medicine, Graduate Institute of BioMedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chun Chang
- Department of Gastroenterology, Chinese Medicine Research and Development Center, Sex Hormone Research Center, Research Center for Tumor Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of OBS & GYN, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Chinese Medicine, Graduate Institute of BioMedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| | - Fu-Ju Lei
- Department of Gastroenterology, Chinese Medicine Research and Development Center, Sex Hormone Research Center, Research Center for Tumor Medicine, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Chinese Medicine, Graduate Institute of BioMedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| | - Chung-Jung Liu
- Department of Medicine, Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - I-Chen Wu
- Department of Medicine, Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsueh-Chou Lai
- Department of Gastroenterology, Chinese Medicine Research and Development Center, Sex Hormone Research Center, Research Center for Tumor Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of OBS & GYN, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Chinese Medicine, Graduate Institute of BioMedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Lung Ma
- Department of Gastroenterology, Chinese Medicine Research and Development Center, Sex Hormone Research Center, Research Center for Tumor Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of OBS & GYN, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Chinese Medicine, Graduate Institute of BioMedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
61
|
Mahai G, Wan Y, Xia W, Yang S, He Z, Xu S. Neonicotinoid insecticides in surface water from the central Yangtze River, China. CHEMOSPHERE 2019; 229:452-460. [PMID: 31085348 DOI: 10.1016/j.chemosphere.2019.05.040] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Neonicotinoid insecticides (NNIs) are extensively used insecticides worldwide, yet the data on NNIs residues in the Yangtze River, China is scarce. Occurrence and distribution of six NNIs and a metabolite (desmethyl-acetamiprid) in surface water were investigated in the central Yangtze River, China at 20 sites from March to July and September 2015. Acetamiprid (ACE), imidacloprid (IMI) and thiamethoxam (THM) were the most frequently detected NNIs and IMI had a highest median concentration of 4.37 ng/L, followed by ACE (2.50 ng/L), THM (1.10 ng/L), nitenpyram (NTP; 0.34 ng/L), clothianidin (CLO; 0.10 ng/L), and thiacloprid (THCP; 0.02 ng/L). Significantly higher concentrations and detection frequencies of NNIs were observed in the summer than in the spring, which may be explained by the heavier precipitation in summer. Spatial variation with higher levels among the lower sites than the upper sites may be related with the agriculture land use. NNI contamination presented a low risk to aquatic life according to the risk quotient method, while IMI had potential risk to aquatic life according to the threshold of IMI (8.3 ng/L) in freshwater recommended in Netherland. Using the relative potency factors method for chronic cumulative risk assessment for NNIs, potential exposure to NNIs through water ingestion are three orders of magnitude lower than the recommended relative chronic reference dose. Ongoing environmental monitoring of NNIs is needed due to the increase use of NNIs in China.
Collapse
Affiliation(s)
- Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430015, PR China; CDC of Yangtze River Administration and Navigational Affairs, General Hospital of the Yangtze River Shipping, Wuhan, 430019, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Shunyi Yang
- CDC of Yangtze River Administration and Navigational Affairs, General Hospital of the Yangtze River Shipping, Wuhan, 430019, PR China
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430015, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
62
|
Wan Y, Wang Y, Xia W, He Z, Xu S. Neonicotinoids in raw, finished, and tap water from Wuhan, Central China: Assessment of human exposure potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:513-519. [PMID: 31030157 DOI: 10.1016/j.scitotenv.2019.04.267] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Neonicotinoid insecticides (NNIs) are emerging insecticides compared to organophosphates and pyrethroids. Their occurrence in the environment is not well documented in China. In this study, raw water samples (n=20), finished water samples (n=20), and tap water samples (n=165) originating from the Han River and the Yangtze River in Wuhan, Central China, were collected during 2018 for the determination of the NNI residues. NNIs were found in all raw water samples with a median sum concentration of 27.7ng/L (range: 13.4-186ng/L). Higher concentrations of NNIs were found in July than in May, and higher NNIs were found in the Han River than in the Yangtze River. Most NNIs were not effectively removed during water treatment, except for acetamiprid and thiacloprid which decreased by 40.1% and 20.0%, respectively. At least three NNIs were detected in all tap water samples with the highest sum concentration of NNIs observed in July (median: 96.2ng/L, range: 16.7-138ng/L) among the studied months (median: 15.4, range: 2.59-138ng/L). The estimated daily intake of NNIs via tap water ingestion in July was 8.66ng/kg body weight/day for infants, about 4 times higher than that for adults. The concentrations observed in tap water are elevated in China relative to previous studies that were conducted in the USA and in Canada. This is the first study reporting residue levels of NNIs in China.
Collapse
Affiliation(s)
- Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430015, PR China; CDC of Yangtze River Administration and Navigational Affairs, General Hospital of the Yangtze River Shipping, Wuhan 430019, PR China; Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yao Wang
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430015, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430015, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| |
Collapse
|
63
|
Ichikawa G, Kuribayashi R, Ikenaka Y, Ichise T, Nakayama SMM, Ishizuka M, Taira K, Fujioka K, Sairenchi T, Kobashi G, Bonmatin JM, Yoshihara S. LC-ESI/MS/MS analysis of neonicotinoids in urine of very low birth weight infants at birth. PLoS One 2019; 14:e0219208. [PMID: 31260498 PMCID: PMC6602294 DOI: 10.1371/journal.pone.0219208] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Neonicotinoid insecticides are widely used systemic pesticides with nicotinic acetylcholine receptor agonist activity that are a concern as environmental pollutants. Neonicotinoids in humans and the environment have been widely reported, but few studies have examined their presence in fetuses and newborns. The objective of this study is to determine exposure to neonicotinoids and metabolites in very low birth weight (VLBW) infants. METHODS An analytical method for seven neonicotinoids and one neonicotinoid metabolite, N-desmethylacetamiprid (DMAP), in human urine using LC-ESI/MS/MS was developed. This method was used for analysis of 57 urine samples collected within 48 hours after birth from VLBW infants of gestational age 23-34 weeks (male/female = 36/21, small for gestational age (SGA)/appropriate gestational age (AGA) = 6/51) who were admitted to the neonatal intensive care unit of Dokkyo Hospital from January 2009 to December 2010. Sixty-five samples collected on postnatal day 14 (M/F = 37/22, SGA/AGA = 7/52) were also analyzed. RESULTS DMAP, a metabolite of acetamiprid, was detected in 14 urine samples collected at birth (24.6%, median level 0.048 ppb) and in 7 samples collected on postnatal day 14 (11.9%, median level 0.09 ppb). The urinary DMAP detection rate and level were higher in SGA than in AGA infants (both p<0.05). There were no correlations between the DMAP level and infant physique indexes (length, height, and head circumference SD scores). CONCLUSION These results provide the first evidence worldwide of neonicotinoid exposure in newborn babies in the early phase after birth. The findings suggest a need to examine potential neurodevelopmental toxicity of neonicotinoids and metabolites in human fetuses.
Collapse
Affiliation(s)
- Go Ichikawa
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Ryota Kuribayashi
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, North West, South Africa
| | - Takahiro Ichise
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shouta M. M. Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kumiko Taira
- Department of Anesthesiology, Tokyo Women’s Medical University Medical Center East, Arakawa-ku, Tokyo, Japan
| | - Kazutoshi Fujioka
- Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Toshimi Sairenchi
- Department of Public Health, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Gen Kobashi
- Department of Public Health, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Jean-Marc Bonmatin
- Centre National de la Recherche Scientifique, Centre de Biophysique moléculaire, Orléans, France
| | - Shigemi Yoshihara
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| |
Collapse
|
64
|
Combarnous Y, Nguyen TMD. Comparative Overview of the Mechanisms of Action of Hormones and Endocrine Disruptor Compounds. TOXICS 2019; 7:toxics7010005. [PMID: 30682876 PMCID: PMC6468742 DOI: 10.3390/toxics7010005] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/23/2022]
Abstract
Endocrine Disruptor Compounds (EDCs) are synthetic or natural molecules in the environment that promote adverse modifications of endogenous hormone regulation in humans and/or in wildlife animals. In the present paper, we review the potential mechanisms of EDCs and point out the similarities and differences between EDCs and hormones. There was only one mechanism, out of nine identified, in which EDCs acted like hormones (i.e. binding and stimulated hormone receptor activity). In the other eight identified mechanisms of action, EDCs exerted their effects either by affecting endogenous hormone concentration, or its availability, or by modifying hormone receptor turn over. This overview is intended to classify the various EDC mechanisms of action in order to better appreciate when in vitro tests would be valid to assess their risks towards humans and wildlife.
Collapse
Affiliation(s)
- Yves Combarnous
- CNRS, INRA, Physiologie de la Reproduction & des Comportements, 37380 Nouzilly, France.
| | - Thi Mong Diep Nguyen
- CNRS, INRA, Physiologie de la Reproduction & des Comportements, 37380 Nouzilly, France.
- Faculty of Biology-Agricultural Engineering, Quy Nhon University, Binh Dinh 820000, Vietnam.
| |
Collapse
|
65
|
Craddock HA, Huang D, Turner PC, Quirós-Alcalá L, Payne-Sturges DC. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999-2015. Environ Health 2019; 18:7. [PMID: 30634980 PMCID: PMC6330495 DOI: 10.1186/s12940-018-0441-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/11/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Neonicotinoids are a class of systemic insecticides widely used on food crops globally. These pesticides may be found in "off-target" food items and persist in the environment. Despite the potential for extensive human exposure, there are limited studies regarding the prevalence of neonicotinoid residues in foods sold and consumed in the United States. METHODS Residue data for seven neonicotinoid pesticides collected between 1999 and 2015 by the US Department of Agriculture's Pesticide Data Program (PDP) were collated and summarized by year across various food commodities, including fruit, vegetable, meat, dairy, grain, honey, and baby food, as well as water to qualitatively describe and examine trends in contamination frequency and residue concentrations. RESULTS The highest detection frequencies (DFs) for neonicotinoids by year on all commodities were generally below 20%. Average DFs over the entire study period, 1999-2015, for domestic and imported commodities were similar at 4.5%. For all the samples (both domestic and imported) imidacloprid was the neonicotinoid with the highest overall detection frequency at 12.0%. However, higher DFs were observed for specific food commodity-neonicotinoid combinations such as: cherries (45.9%), apples (29.5%), pears (24.1%) and strawberries (21.3%) for acetamiprid; and cauliflower (57.5%), celery (20.9%), cherries (26.3%), cilantro (30.6%), grapes (28.9%), collard greens (24.9%), kale (31.4%), lettuce (45.6%), potatoes (31.2%) and spinach (38.7%) for imidacloprid. Neonicotinoids were also detected in organic commodities, (DF < 6%). Individual commodities with at least 5% of samples testing positive for two or more neonicotinoids included apples, celery, and cherries. Generally, neonicotinoid residues on food commodities did not exceed US Environmental Protection Agency tolerance levels. Increases in detection trends for both finished and untreated water samples for imidacloprid were observed from 2004 to 2011. CONCLUSIONS Analysis of PDP data indicates that low levels of neonicotinoids are present in commonly-consumed fruits and vegetables sold in the US. Trends in detection frequencies suggest an increase in use of acetamiprid, clothianidin and thiamethoxam as replacements for imidacloprid. Given these findings, more extensive surveillance of the food and water supply is warranted, as well as biomonitoring studies and assessment of cumulative daily intake in high risk groups, including pregnant women and infants.
Collapse
Affiliation(s)
- Hillary A. Craddock
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 2234 L SPH, 255 Valley Drive, College Park, MD 20742 USA
| | - Dina Huang
- Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, 255 Valley Drive, College Park, MD 20742 USA
| | - Paul C. Turner
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 2234 L SPH, 255 Valley Drive, College Park, MD 20742 USA
| | - Lesliam Quirós-Alcalá
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 2234 L SPH, 255 Valley Drive, College Park, MD 20742 USA
| | - Devon C. Payne-Sturges
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 2234 L SPH, 255 Valley Drive, College Park, MD 20742 USA
| |
Collapse
|
66
|
Schmidt S. Promotional Consideration: A Potential Mechanistic Link between Neonicotinoid Insecticides and Hormone-Dependent Breast Cancer. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:114001. [PMID: 30499692 PMCID: PMC6371762 DOI: 10.1289/ehp4097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 05/27/2023]
|