51
|
Hu X, Zhang X, Liu Z, Li S, Zheng X, Nie Y, Tao Y, Zhou X, Wu W, Yang G, Zhao Q, Zhang Y, Xu Q, Mou C. Exploration of key regulators driving primary feather follicle induction in goose skin. Gene 2020; 731:144338. [PMID: 31923576 DOI: 10.1016/j.gene.2020.144338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
The primary feather follicles are universal skin appendages widely distributed in the skin of feathered birds. The morphogenesis and development of the primary feather follicles in goose skin remain largely unknown. Here, the induction of primary feather follicles in goose embryonic skin (pre-induction vs induction) was investigated by de novo transcriptome analyses to reveal 409 differentially expressed genes (DEGs). The DEGs were characterized to potentially regulate the de novo formation of feather follicle primordia consisting of placode (4 genes) and dermal condensate (12 genes), and the thickening of epidermis (5 genes) and dermal fibroblasts (17 genes), respectively. Further analyses enriched DEGs into GO terms represented as cell adhesion and KEGG pathways including Wnt and Hedgehog signaling pathways that are highly correlated with cell communication and molecular regulation. Six selected Wnt pathway genes were detected by qPCR with up-regulation in goose skin during the induction of primary feather follicles. The localization of WNT16, SFRP1 and FRZB by in situ hybridization showed weak expression in the primary feather primordia, whereas FZD1, LEF1 and DKK1 were expressed initially in the inter-follicular skin and feather follicle primordia, then mainly restricted in the feather primordia. The spatial-temporal expression patterns indicate that Wnt pathway genes DKK1, FZD1 and LEF1 are the important regulators functioned in the induction of primary feather follicle in goose skin. The dynamic molecular changes and specific gene expression patterns revealed in this report provide the general knowledge of primary feather follicle and skin development in waterfowl, and contribute to further understand the diversity of hair and feather development beyond the mouse and chicken models.
Collapse
Affiliation(s)
- Xuewen Hu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xiaokang Zhang
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Zhiwei Liu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Shaomei Li
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xinting Zheng
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yangfan Nie
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yingfeng Tao
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xiaoliu Zhou
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Wenqing Wu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Ge Yang
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Qianqian Zhao
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yang Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Chunyan Mou
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China.
| |
Collapse
|
52
|
Edelkamp J, Gherardini J, Bertolini M. Methods to Study Human Hair Follicle Growth Ex Vivo: Human Microdissected Hair Follicle and Human Full Thickness Skin Organ Culture. Methods Mol Biol 2020; 2154:105-119. [PMID: 32314211 DOI: 10.1007/978-1-0716-0648-3_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The culture of microdissected hair follicles (HFs) and scalp skin enriched in terminal HFs are the best currently available preclinical assays for studying hair and skin biology/pathology in the human system. While microdissected HF organ culture only allows the testing of compounds added into the culture medium, mimicking a systemic application, the scalp skin organ culture also is suitable to test topical and intradermal applications. Here, we describe different methods for isolation of human scalp HFs, the procedures for culturing the scalp skin and microdissected HFs and we also outline different delivery techniques (e.g., topical, systemic) to test active and control substances.
Collapse
Affiliation(s)
- Janin Edelkamp
- Monasterium Laboratory Skin & Hair Research Solutions GmbH, Muenster, Germany.
| | - Jennifer Gherardini
- Monasterium Laboratory Skin & Hair Research Solutions GmbH, Muenster, Germany
| | - Marta Bertolini
- Monasterium Laboratory Skin & Hair Research Solutions GmbH, Muenster, Germany
| |
Collapse
|
53
|
27 TH Fondation René Touraine Annual SCIENTIFIC MEETING 2019: Skin Appendages - Developmental and Pathophysiological Aspects. Exp Dermatol 2019; 28:1353-1367. [PMID: 31854035 DOI: 10.1111/exd.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
54
|
Ramot Y, Bertolini M, Boboljova M, Uchida Y, Paus R. PPAR-γ signalling as a key mediator of human hair follicle physiology and pathology. Exp Dermatol 2019; 29:312-321. [PMID: 31769892 DOI: 10.1111/exd.14062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are abundantly expressed in human skin, with PPAR-γ being the most intensively investigated isoform. In various ex vivo and in vivo models, PPAR-γ-mediated signalling has recently surfaced as an essential element of hair follicle (HF) development, growth and stem cell biology. Moreover, the availability of novel, topically applicable PPAR-γ modulators with a favourable toxicological profile has extended the range of potential applications in clinical dermatology. In this review, we synthesize where this field currently stands and sketch promising future research avenues, focussing on the role of PPAR-γ-mediated signalling in the biology and pathology of human scalp HFs, with special emphasis on scarring alopecias such as lichen planopilaris and frontal fibrosing alopecia as model human epithelial stem cell diseases. In particular, we discuss whether and how pharmacological modulation of PPAR-γ signalling may be employed for the management of hair growth disorders, for example, in scarring alopecia (by reducing HF inflammation as well as by promoting the survival and suppressing pathological epithelial-mesenchymal transition of keratin 15 + epithelial stem cells in the bulge) and in hirsutism/hypertrichosis (by promoting catagen development). Moreover, we explore the potential role of PPAR-γ in androgenetic alopecia, HF energy metabolism and HF ageing, and consider clinical perspectives that emanate from the limited data available on this so far. As this field of translational human hair research is still in its infancy, many open questions exist, for which we briefly delineate selected experimental approaches that promise to generate instructive answers in the near future.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marta Bertolini
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Maria Boboljova
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Yoshikazu Uchida
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Ralf Paus
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, and NIHR Biomedical Research Centre, Manchester, UK
| |
Collapse
|
55
|
Hawkshaw N, Hardman J, Alam M, Jimenez F, Paus R. Deciphering the molecular morphology of the human hair cycle: Wnt signalling during the telogen–anagen transformation. Br J Dermatol 2019; 182:1184-1193. [DOI: 10.1111/bjd.18356] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
Affiliation(s)
- N.J. Hawkshaw
- Centre for Dermatology Research The University of Manchester and NIHR Biomedical Research Centre Manchester U.K
| | - J.A. Hardman
- Centre for Dermatology Research The University of Manchester and NIHR Biomedical Research Centre Manchester U.K
| | - M. Alam
- Mediteknia Skin and Hair Lab Las Palmas de Gran Canaria Spain
- Monasterium Laboratory Skin and Hair Research Solutions GmbH Münster Germany
- Universidad Fernando Pessoa‐Canarias Las Palmas de Gran Canaria Spain
| | - F. Jimenez
- Mediteknia Skin and Hair Lab Las Palmas de Gran Canaria Spain
- Universidad Fernando Pessoa‐Canarias Las Palmas de Gran Canaria Spain
| | - R. Paus
- Centre for Dermatology Research The University of Manchester and NIHR Biomedical Research Centre Manchester U.K
- Monasterium Laboratory Skin and Hair Research Solutions GmbH Münster Germany
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL U.S.A
| |
Collapse
|
56
|
Vasserot AP, Geyfman M, Poloso NJ. Androgenetic alopecia: combing the hair follicle signaling pathways for new therapeutic targets and more effective treatment options. Expert Opin Ther Targets 2019; 23:755-771. [PMID: 31456448 DOI: 10.1080/14728222.2019.1659779] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: In the past 30 years, only two drugs have received FDA approval for the treatment of androgenetic alopecia reflecting a lack of success in unraveling novel targets for pharmacological intervention. However, as our knowledge of hair biology improves, new signaling pathways and organogenesis processes are being uncovered which have the potential to yield more effective therapeutic modalities. Areas covered: This review focuses on potential targets for drug development to treat hair loss. The physiological processes underlying the promise of regenerative medicine to recreate new functional hair follicles in bald scalp are also examined. Expert opinion: The discovery of promising new targets may soon enable treatment options that modulate the hair cycle to preserve or extend the growth phase of the hair follicle. These new targets could also be leveraged to stimulate progenitor cells and morphogenic pathways to reactivate miniaturized follicles in bald scalp or to harness the potential of wound healing and embryogenic development as an emerging paradigm to generate new hair follicles in barren skin.
Collapse
Affiliation(s)
- Alain P Vasserot
- Allergan Plc, Research and External Scientific Innovation , Irvine , CA , USA
| | - Mikhail Geyfman
- Allergan Plc, Research and External Scientific Innovation , Irvine , CA , USA
| | - Neil J Poloso
- Allergan Plc, Research and External Scientific Innovation , Irvine , CA , USA
| |
Collapse
|
57
|
Visualization of global RNA synthesis in a human (mini-) organ in situ by click chemistry. Biotechniques 2019; 65:97-100. [PMID: 30091388 DOI: 10.2144/btn-2018-0025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
RNA synthesis can be detected by 5-ethynyl uridine (EU) incorporation and click chemistry. Despite identifying a fundamental functional process, this technique has yet to be widely applied to complex human tissue systems. By incorporating EU into human hair follicle (HF) organs cultured ex vivo, nascent RNA synthesis was detected in situ. EU differentially incorporated across the HF epithelium. Interestingly, RNA synthesis did not correlate with protein synthesis, proliferation or epithelial progenitor cell marker expression. By treating human HFs with the cytotoxic cell cycle inhibitor (R)-CR8, which inhibits transcriptional regulators CDK7 and CDK9, it was further shown that this technique can be used to sensitively detect changes in global RNA synthesis in situ. Together, this work delineates new insights into nascent RNA synthesis within a human (mini)- organ and describes a novel read-out parameter that will enrich future ex vivo human tissue research studies.
Collapse
|
58
|
Przykaza K, Woźniak K, Jurak M, Wiącek AE. Characteristics of Polypeptide/Phospholipid Monolayers on Water and the Plasma‐Activated Polyetheretherketone Support. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kacper Przykaza
- Department of Physical Chemistry‐Interfacial Phenomena, Faculty of ChemistryUniversity of Maria Curie‐Skłodowska Maria Curie‐Skłodowska Sq. 3, 20031 Lublin Poland
| | - Klaudia Woźniak
- Department of Physical Chemistry‐Interfacial Phenomena, Faculty of ChemistryUniversity of Maria Curie‐Skłodowska Maria Curie‐Skłodowska Sq. 3, 20031 Lublin Poland
| | - Małgorzata Jurak
- Department of Physical Chemistry‐Interfacial Phenomena, Faculty of ChemistryUniversity of Maria Curie‐Skłodowska Maria Curie‐Skłodowska Sq. 3, 20031 Lublin Poland
| | - Agnieszka Ewa Wiącek
- Department of Physical Chemistry‐Interfacial Phenomena, Faculty of ChemistryUniversity of Maria Curie‐Skłodowska Maria Curie‐Skłodowska Sq. 3, 20031 Lublin Poland
| |
Collapse
|
59
|
Alam M, Below DA, Chéret J, Langan EA, Bertolini M, Jimenez F, Paus R. Growth Hormone Operates as a Neuroendocrine Regulator of Human Hair Growth Ex Vivo. J Invest Dermatol 2019; 139:1593-1596. [DOI: 10.1016/j.jid.2018.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/05/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022]
|
60
|
Genome-wide identification and characterization of long non-coding RNAs expressed during sheep fetal and postnatal hair follicle development. Sci Rep 2019; 9:8501. [PMID: 31186438 PMCID: PMC6559957 DOI: 10.1038/s41598-019-44600-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/03/2019] [Indexed: 01/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), >200 nt in length, are transcribed from mammalian genomes. They play important regulatory roles in various biological processes; However, the function and expression profile of lncRNAs involved in the development of hair follicles in the fetus, have been relatively under-explored area. To investigate the specific role of lncRNAs and mRNAs that regulate hair follicle development, we herein performed a comprehensive study on the lncRNA and mRNA expression profiles of sheep at multiple embryonic days (E65, E85, E105, and E135) and six lambs aged one week (D7) and one month (D30) using RNA-seq technology. The number of genes (471 lncRNAs and 12,812 mRNAs) differentially expressed and potential targets of differentially expressed lncRNAs were predicted. Differentially expressed lncRNAs were grouped into 10 clusters based on their expression pattern by K-means clustering. Moreover, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that some differentially expressed mRNAs, such as DKK1, DSG4, FOXE1, Hoxc13, SFRP1, SFRP2, and Wnt10A overlapped with lncRNAs targets, and enriched in important hair follicle developmental pathways, including Wnt, TNF, and MAPK signaling pathways. In addition, 9 differentially expressed lncRNAs and 4 differentially expressed mRNAs were validated using quantitative real-time PCR (qRT-PCR). This study helps enrich the Ovis lncRNA databases and provides a comprehensive lncRNA transcriptome profile of fetal and postnatal skin of sheep. Additionally, it provides a foundation for further experiments on the role of lncRNAs in the regulation of hair growth in sheep.
Collapse
|
61
|
Properties of the Langmuir and Langmuir–Blodgett monolayers of cholesterol-cyclosporine A on water and polymer support. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00117-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
62
|
Zhang GY, Langan EA, Meier NT, Funk W, Siemers F, Paus R. Thyroxine (T4) may promote re-epithelialisation and angiogenesis in wounded human skin ex vivo. PLoS One 2019; 14:e0212659. [PMID: 30925152 PMCID: PMC6440638 DOI: 10.1371/journal.pone.0212659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
There is a pressing need for improved preclinical model systems in which to study human skin wound healing. Here, we report the development and application of a serum-free full thickness human skin wound healing model. Not only can re-epithelialization (epidermal repair) and angiogenesis be studied in this simple and instructive model, but the model can also be used to identify clinically relevant wound-healing promoting agents, and to dissect underlying candidate mechanisms of action in the target tissue. We present preliminary ex vivo data to suggest that Thyroxine (T4), which reportedly promotes skin wound healing in rodents in vivo, may promote key features of human skin wound healing. Namely, T4 stimulates re-epithelialisation and angiogenesis, and modulates both wound healing-associated epidermal keratin expression and energy metabolism in experimentally wound human skin. Functionally, the wound healing-promoting effects of T4 are at least partially mediated via fibroblast growth factor/fibroblast growth factor receptor-mediated signalling, since they could be significantly antagonized by bFGF-neutralizing antibody. Thus, this pragmatic, easy-to-use full-thickness human skin wound healing model provides a useful preclinical research tool in the search for clinically relevant candidate wound healing-promoting agents. These ex vivo data encourage further pre-clinical testing of topical T4 as a cost-efficient, novel agent in the management of chronic human skin wounds.
Collapse
Affiliation(s)
- Guo-You Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ewan A. Langan
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | | | | | - Frank Siemers
- Department of Plastic and Hand Surgery, BG Klinikum Bergmannstrost, Halle/Salle, Germany
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
63
|
Kruglikov IL, Zhang Z, Scherer PE. The Role of Immature and Mature Adipocytes in Hair Cycling. Trends Endocrinol Metab 2019; 30:93-105. [PMID: 30558832 PMCID: PMC6348020 DOI: 10.1016/j.tem.2018.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/29/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Hair follicles (HFs) strongly interact with adipocytes within the dermal white adipose tissue (dWAT), suggesting a strong physiological dependence on the content of immature and mature adipocytes in this layer. This content is regulated by the proliferation and differentiation of adipocyte precursors, as well as by dedifferentiation of mature existing adipocytes. Spatially, long-range interactions between HFs and dWAT involve the exchange of extracellular vesicles which are differentially released by precursors, preadipocytes, and mature adipocytes. Different exogenous factors, including light irradiation, are likely to modify the release of adipocyte-derived exosomes in dWAT, which can lead to aberrations of the HF cycle. Consequently, dWAT should be considered as a potential target for the modulation of hair growth.
Collapse
Affiliation(s)
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA.
| |
Collapse
|
64
|
Abstract
Wnt/β-catenin signaling pathway is essential for embryo development and adult tissue homeostasis and regeneration, abnormal regulation of the pathway is tightly associated with many disease types, suggesting that Wnt/β-catenin signaling pathway is an attractive target for disease therapy. While the Wnt inhibitors have been extensively reviewed, small molecules activating Wnt/β-catenin signaling were rarely addressed. In this article, we firstly reviewed the diseases that were associated with disruption of Wnt/β-catenin signaling pathway, including hair loss, pigmentary disorders, wound healing, bone diseases, neurodegenerative diseases and chronic obstructive pulmonary diseases, etc. We also comprehensively summarized small molecules that activated Wnt/β-catenin signaling pathway in various models in vitro and in vivo. To evaluate the therapeutic potential of Wnt activation, we focused on the discovery strategies, phenotypic characterization, and target identification of the Wnt activators. Finally, we proposed the challenges and opportunities in development of Wnt activators for pharmacological agents in term of targeting safety and selectivity.
Collapse
|