51
|
Eicher T, Kinnebrew G, Patt A, Spencer K, Ying K, Ma Q, Machiraju R, Mathé EA. Metabolomics and Multi-Omics Integration: A Survey of Computational Methods and Resources. Metabolites 2020; 10:E202. [PMID: 32429287 PMCID: PMC7281435 DOI: 10.3390/metabo10050202] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
As researchers are increasingly able to collect data on a large scale from multiple clinical and omics modalities, multi-omics integration is becoming a critical component of metabolomics research. This introduces a need for increased understanding by the metabolomics researcher of computational and statistical analysis methods relevant to multi-omics studies. In this review, we discuss common types of analyses performed in multi-omics studies and the computational and statistical methods that can be used for each type of analysis. We pinpoint the caveats and considerations for analysis methods, including required parameters, sample size and data distribution requirements, sources of a priori knowledge, and techniques for the evaluation of model accuracy. Finally, for the types of analyses discussed, we provide examples of the applications of corresponding methods to clinical and basic research. We intend that our review may be used as a guide for metabolomics researchers to choose effective techniques for multi-omics analyses relevant to their field of study.
Collapse
Affiliation(s)
- Tara Eicher
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Computer Science and Engineering Department, The Ohio State University College of Engineering, Columbus, OH 43210, USA
| | - Garrett Kinnebrew
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA;
- Bioinformatics Shared Resource Group, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew Patt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD, 20892, USA;
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kyle Spencer
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Nationwide Children’s Research Hospital, Columbus, OH 43210, USA
| | - Kevin Ying
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA;
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Qin Ma
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
| | - Raghu Machiraju
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Computer Science and Engineering Department, The Ohio State University College of Engineering, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Ewy A. Mathé
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD, 20892, USA;
| |
Collapse
|
52
|
Kuang E, Marney M, Cuevas D, Edwards RA, Forsberg EM. Towards Predicting Gut Microbial Metabolism: Integration of Flux Balance Analysis and Untargeted Metabolomics. Metabolites 2020; 10:metabo10040156. [PMID: 32316423 PMCID: PMC7240944 DOI: 10.3390/metabo10040156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 11/21/2022] Open
Abstract
Genomics-based metabolic models of microorganisms currently have no easy way of corroborating predicted biomass with the actual metabolites being produced. This study uses untargeted mass spectrometry-based metabolomics data to generate a list of accurate metabolite masses produced from the human commensal bacteria Citrobacter sedlakii grown in the presence of a simple glucose carbon source. A genomics-based flux balance metabolic model of this bacterium was previously generated using the bioinformatics tool PyFBA and phenotypic growth curve data. The high-resolution mass spectrometry data obtained through timed metabolic extractions were integrated with the predicted metabolic model through a program called MS_FBA. This program correlated untargeted metabolomics features from C. sedlakii with 218 of the 699 metabolites in the model using an exact mass match, with 51 metabolites further confirmed using predicted isotope ratios. Over 1400 metabolites were matched with additional metabolites in the ModelSEED database, indicating the need to incorporate more specific gene annotations into the predictive model through metabolomics-guided gap filling.
Collapse
Affiliation(s)
- Ellen Kuang
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Matthew Marney
- Department of Biomedical Informatics, San Diego State University, San Diego, CA 92182, USA
| | - Daniel Cuevas
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Robert A. Edwards
- Department of Biomedical Informatics, San Diego State University, San Diego, CA 92182, USA
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Erica M. Forsberg
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
- Department of Biomedical Informatics, San Diego State University, San Diego, CA 92182, USA
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
- Correspondence: ; Tel.: +1-619-594-5806
| |
Collapse
|
53
|
Damiani C, Gaglio D, Sacco E, Alberghina L, Vanoni M. Systems metabolomics: from metabolomic snapshots to design principles. Curr Opin Biotechnol 2020; 63:190-199. [PMID: 32278263 DOI: 10.1016/j.copbio.2020.02.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Metabolomics is a rapidly expanding technology that finds increasing application in a variety of fields, form metabolic disorders to cancer, from nutrition and wellness to design and optimization of cell factories. The integration of metabolic snapshots with metabolic fluxes, physiological readouts, metabolic models, and knowledge-informed Artificial Intelligence tools, is required to obtain a system-level understanding of metabolism. The emerging power of multi-omic approaches and the development of integrated experimental and computational tools, able to dissect metabolic features at cellular and subcellular resolution, provide unprecedented opportunities for understanding design principles of metabolic (dis)regulation and for the development of precision therapies in multifactorial diseases, such as cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Damiani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; ISBE.IT, SYSBIO Centre of Systems Biology, Piazza della Scienza 2, Milan 20126, Italy
| | - Daniela Gaglio
- ISBE.IT, SYSBIO Centre of Systems Biology, Piazza della Scienza 2, Milan 20126, Italy; Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Milan, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; ISBE.IT, SYSBIO Centre of Systems Biology, Piazza della Scienza 2, Milan 20126, Italy
| | - Lilia Alberghina
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; ISBE.IT, SYSBIO Centre of Systems Biology, Piazza della Scienza 2, Milan 20126, Italy
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; ISBE.IT, SYSBIO Centre of Systems Biology, Piazza della Scienza 2, Milan 20126, Italy.
| |
Collapse
|
54
|
Integration of Time-Series Transcriptomic Data with Genome-Scale CHO Metabolic Models for mAb Engineering. Processes (Basel) 2020. [DOI: 10.3390/pr8030331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are the most commonly used cell lines in biopharmaceutical manufacturing. Genome-scale metabolic models have become a valuable tool to study cellular metabolism. Despite the presence of reference global genome-scale CHO model, context-specific metabolic models may still be required for specific cell lines (for example, CHO-K1, CHO-S, and CHO-DG44), and for specific process conditions. Many integration algorithms have been available to reconstruct specific genome-scale models. These methods are mainly based on integrating omics data (i.e., transcriptomics, proteomics, and metabolomics) into reference genome-scale models. In the present study, we aimed to investigate the impact of time points of transcriptomics integration on the genome-scale CHO model by assessing the prediction of growth rates with each reconstructed model. We also evaluated the feasibility of applying extracted models to different cell lines (generated from the same parental cell line). Our findings illustrate that gene expression at various stages of culture slightly impacts the reconstructed models. However, the prediction capability is robust enough on cell growth prediction not only across different growth phases but also in expansion to other cell lines.
Collapse
|
55
|
Hadadi N, Pandey V, Chiappino-Pepe A, Morales M, Gallart-Ayala H, Mehl F, Ivanisevic J, Sentchilo V, Meer JRVD. Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models. NPJ Syst Biol Appl 2020; 6:1. [PMID: 32001719 PMCID: PMC6946695 DOI: 10.1038/s41540-019-0121-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/28/2019] [Indexed: 11/18/2022] Open
Abstract
Understanding the adaptive responses of individual bacterial strains is crucial for microbiome engineering approaches that introduce new functionalities into complex microbiomes, such as xenobiotic compound metabolism for soil bioremediation. Adaptation requires metabolic reprogramming of the cell, which can be captured by multi-omics, but this data remains formidably challenging to interpret and predict. Here we present a new approach that combines genome-scale metabolic modeling with transcriptomics and exometabolomics, both of which are common tools for studying dynamic population behavior. As a realistic demonstration, we developed a genome-scale model of Pseudomonas veronii 1YdBTEX2, a candidate bioaugmentation agent for accelerated metabolism of mono-aromatic compounds in soil microbiomes, while simultaneously collecting experimental data of P. veronii metabolism during growth phase transitions. Predictions of the P. veronii growth rates and specific metabolic processes from the integrated model closely matched experimental observations. We conclude that integrative and network-based analysis can help build predictive models that accurately capture bacterial adaptation responses. Further development and testing of such models may considerably improve the successful establishment of bacterial inoculants in more complex systems.
Collapse
Affiliation(s)
- Noushin Hadadi
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Vikash Pandey
- Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Anush Chiappino-Pepe
- Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Marian Morales
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | | | - Florence Mehl
- Metabolomics Platform, University of Lausanne, 1015, Lausanne, Switzerland
| | | | - Vladimir Sentchilo
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Jan R van der Meer
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
56
|
Human Systems Biology and Metabolic Modelling: A Review-From Disease Metabolism to Precision Medicine. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8304260. [PMID: 31281846 PMCID: PMC6590590 DOI: 10.1155/2019/8304260] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/07/2019] [Accepted: 05/20/2019] [Indexed: 01/06/2023]
Abstract
In cell and molecular biology, metabolism is the only system that can be fully simulated at genome scale. Metabolic systems biology offers powerful abstraction tools to simulate all known metabolic reactions in a cell, therefore providing a snapshot that is close to its observable phenotype. In this review, we cover the 15 years of human metabolic modelling. We show that, although the past five years have not experienced large improvements in the size of the gene and metabolite sets in human metabolic models, their accuracy is rapidly increasing. We also describe how condition-, tissue-, and patient-specific metabolic models shed light on cell-specific changes occurring in the metabolic network, therefore predicting biomarkers of disease metabolism. We finally discuss current challenges and future promising directions for this research field, including machine/deep learning and precision medicine. In the omics era, profiling patients and biological processes from a multiomic point of view is becoming more common and less expensive. Starting from multiomic data collected from patients and N-of-1 trials where individual patients constitute different case studies, methods for model-building and data integration are being used to generate patient-specific models. Coupled with state-of-the-art machine learning methods, this will allow characterizing each patient's disease phenotype and delivering precision medicine solutions, therefore leading to preventative medicine, reduced treatment, and in silico clinical trials.
Collapse
|