51
|
Laan L, Koschwanez JH, Murray AW. Evolutionary adaptation after crippling cell polarization follows reproducible trajectories. eLife 2015; 4. [PMID: 26426479 PMCID: PMC4630673 DOI: 10.7554/elife.09638] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022] Open
Abstract
Cells are organized by functional modules, which typically contain components whose removal severely compromises the module's function. Despite their importance, these components are not absolutely conserved between parts of the tree of life, suggesting that cells can evolve to perform the same biological functions with different proteins. We evolved Saccharomyces cerevisiae for 1000 generations without the important polarity gene BEM1. Initially the bem1∆ lineages rapidly increase in fitness and then slowly reach >90% of the fitness of their BEM1 ancestors at the end of the evolution. Sequencing their genomes and monitoring polarization reveals a common evolutionary trajectory, with a fixed sequence of adaptive mutations, each improving cell polarization by inactivating proteins. Our results show that organisms can be evolutionarily robust to physiologically destructive perturbations and suggest that recovery by gene inactivation can lead to rapid divergence in the parts list for cell biologically important functions. DOI:http://dx.doi.org/10.7554/eLife.09638.001 Cells use the genetic instructions provided by genes in particular combinations called ‘modules’ to perform particular jobs. Very different organisms can share many of the same modules because certain abilities are fundamental to the survival of all cells and so they have been retained over the course of evolution. That said, these modules may not necessarily involve the same genes because it is often possible to achieve the same result using different components. One way to study how those modules can diversify is to deliberately disrupt one of the genes in a module, and observe how the organism and its descendants respond over many generations. Other genes in these organisms may acquire genetic mutations that enable the genes to take on the role of the missing protein. However, the removal of a single component can be detrimental to the survival of the organisms or may affect many different processes. This can make it difficult to understand what is going on. A gene called BEM1 is crucial for yeast cells to establish polarity, that is, to allow the different sides of a cell to become distinct from one another. This activity is essential for the yeast to replicate itself. Previous studies have shown that the BEM1 gene had a different role in other species of fungi, which suggests that yeast may have other genes that previously assumed the role that BEM1 does now. In this study, Laan et al. removed BEM1 from yeast and allowed the population of mutant cells to evolve for a thousand generations. The approach differs from previous studies because Laan et al. deliberately selected for yeast that had acquired multiple genetic mutations that can together almost fully compensate for the loss of BEM1. Initially, the mutant cells grew very slowly, were abnormal in shape and likely to burst open. However, by the end of the experiment, the cells were able to grow almost as well as the original yeast cells had before the gene deletion. Genetic analysis revealed that the deletion of BEM1 triggers the inactivation of other genes that are also involved in the regulation of polarity, which largely restored the ability of the disrupted polarity module to work. This restoration follows a ‘reproducible trajectory’, as the same genes were switched off in the same order in different populations of yeast that were studied at the same time. The work is an example of reproducible evolution, whereby a specific order of changes to gene activity repeatedly enables cells with severe defects in important processes to adapt and restore a gene module, using whatever components they have left. The next challenge will be to understand how the particular roles of important modules affect their adaptability. DOI:http://dx.doi.org/10.7554/eLife.09638.002
Collapse
Affiliation(s)
- Liedewij Laan
- FAS Center for Systems Biology, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - John H Koschwanez
- FAS Center for Systems Biology, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Andrew W Murray
- FAS Center for Systems Biology, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
52
|
Abstract
CcrM is an orphan DNA methyltransferase nearly universally conserved in a vast group of Alphaproteobacteria. In Caulobacter crescentus, it controls the expression of key genes involved in the regulation of the cell cycle and cell division. Here, we demonstrate, using an experimental evolution approach, that C. crescentus can significantly compensate, through easily accessible genetic changes like point mutations, the severe loss in fitness due to the absence of CcrM, quickly improving its growth rate and cell morphology in rich medium. By analyzing the compensatory mutations genome-wide in 12 clones sampled from independent ΔccrM populations evolved for ~300 generations, we demonstrated that each of the twelve clones carried at least one mutation that potentially stimulated ftsZ expression, suggesting that the low intracellular levels of FtsZ are the major burden of ΔccrM mutants. In addition, we demonstrate that the phosphoenolpyruvate-carbohydrate phosphotransfer system (PTS) actually modulates ftsZ and mipZ transcription, uncovering a previously unsuspected link between metabolic regulation and cell division in Alphaproteobacteria. We present evidence that point mutations found in genes encoding proteins of the PTS provide the strongest fitness advantage to ΔccrM cells cultivated in rich medium despite being disadvantageous in minimal medium. This environmental sign epistasis might prevent such mutations from getting fixed under changing natural conditions, adding a plausible explanation for the broad conservation of CcrM. In bacteria, DNA methylation has a variety of functions, including the control of DNA replication and/or gene expression. The cell cycle-regulated DNA methyltransferase CcrM modulates the transcription of many genes and is critical for fitness in Caulobacter crescentus. Here, we used an original experimental evolution approach to determine which of its many targets make CcrM so important physiologically. We show that populations lacking CcrM evolve quickly, accumulating an excess of mutations affecting, directly or indirectly, the expression of the ftsZ cell division gene. This finding suggests that the most critical function of CcrM in C. crescentus is to promote cell division by enhancing FtsZ intracellular levels. During this work, we also discovered an unexpected link between metabolic regulation and cell division that might extend to other Alphaproteobacteria.
Collapse
|
53
|
Gonen S, Bishop SC, Houston RD. Exploring the utility of cross-laboratory RAD-sequencing datasets for phylogenetic analysis. BMC Res Notes 2015; 8:299. [PMID: 26152111 PMCID: PMC4495686 DOI: 10.1186/s13104-015-1261-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Restriction site-Associated DNA sequencing (RAD-Seq) is widely applied to generate genome-wide sequence and genetic marker datasets. RAD-Seq has been extensively utilised, both at the population level and across species, for example in the construction of phylogenetic trees. However, the consistency of RAD-Seq data generated in different laboratories, and the potential use of cross-species orthologous RAD loci in the estimation of genetic relationships, have not been widely investigated. This study describes the use of SbfI RAD-Seq data for the estimation of evolutionary relationships amongst ten teleost fish species, using previously established phylogeny as a benchmark. RESULTS The number of orthologous SbfI RAD loci identified decreased with increasing evolutionary distance between the species, with several thousand loci conserved across five salmonid species (divergence ~50 MY), and several hundred conserved across the more distantly related teleost species (divergence ~100-360 MY). The majority (>70%) of loci identified between the more distantly related species were genic in origin, suggesting that the bias of SbfI towards genic regions is useful for identifying distant orthologs. Interspecific single nucleotide variants at each orthologous RAD locus were identified. Evolutionary relationships estimated using concatenated sequences of interspecific variants were congruent with previously published phylogenies, even for distantly (divergence up to ~360 MY) related species. CONCLUSION Overall, this study has demonstrated that orthologous SbfI RAD loci can be identified across closely and distantly related species. This has positive implications for the repeatability of SbfI RAD-Seq and its potential to address research questions beyond the scope of the original studies. Furthermore, the concordance in tree topologies and relationships estimated in this study with published teleost phylogenies suggests that similar meta-datasets could be utilised in the prediction of evolutionary relationships across populations and species with readily available RAD-Seq datasets, but for which relationships remain uncharacterised.
Collapse
Affiliation(s)
- Serap Gonen
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK.
| | - Stephen C Bishop
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK.
| | - Ross D Houston
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK.
| |
Collapse
|
54
|
Liu X, Wang B, Xu L. Statistical Analysis of Hurst Exponents of Essential/Nonessential Genes in 33 Bacterial Genomes. PLoS One 2015; 10:e0129716. [PMID: 26067107 PMCID: PMC4466317 DOI: 10.1371/journal.pone.0129716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/12/2015] [Indexed: 12/04/2022] Open
Abstract
Methods for identifying essential genes currently depend predominantly on biochemical experiments. However, there is demand for improved computational methods for determining gene essentiality. In this study, we used the Hurst exponent, a characteristic parameter to describe long-range correlation in DNA, and analyzed its distribution in 33 bacterial genomes. In most genomes (31 out of 33) the significance levels of the Hurst exponents of the essential genes were significantly higher than for the corresponding full-gene-set, whereas the significance levels of the Hurst exponents of the nonessential genes remained unchanged or increased only slightly. All of the Hurst exponents of essential genes followed a normal distribution, with one exception. We therefore propose that the distribution feature of Hurst exponents of essential genes can be used as a classification index for essential gene prediction in bacteria. For computer-aided design in the field of synthetic biology, this feature can build a restraint for pre- or post-design checking of bacterial essential genes. Moreover, considering the relationship between gene essentiality and evolution, the Hurst exponents could be used as a descriptive parameter related to evolutionary level, or be added to the annotation of each gene.
Collapse
Affiliation(s)
- Xiao Liu
- College of Communication Engineering, Chongqing University, 174 ShaPingBa District, Chongqing, 400044, China
- * E-mail:
| | - Baojin Wang
- College of Communication Engineering, Chongqing University, 174 ShaPingBa District, Chongqing, 400044, China
| | - Luo Xu
- College of Communication Engineering, Chongqing University, 174 ShaPingBa District, Chongqing, 400044, China
| |
Collapse
|
55
|
Das J, Podder S, Ghosh TC. Insights into the miRNA regulations in human disease genes. BMC Genomics 2014; 15:1010. [PMID: 25416156 PMCID: PMC4256923 DOI: 10.1186/1471-2164-15-1010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/11/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND MicroRNAs are a class of short non-coding RNAs derived from either cellular or viral transcripts that act post-transcriptionally to regulate mRNA stability and translation. In recent days, increasing numbers of miRNAs have been shown to be involved in the development and progression of a variety of diseases. We, therefore, intend to enumerate miRNA targets in several known disease classes to explore the degree of miRNA regulations on them which is unexplored till date. RESULTS Here, we noticed that miRNA hits in cancer genes are remarkably higher than other diseases in human. Our observation suggests that UTRs and the transcript length of cancer related genes have a significant contribution in higher susceptibility to miRNA regulation. Moreover, gene duplication, mRNA stability, AREScores and evolutionary rate were likely to have implications for more miRNA targeting on cancer genes. Consequently, the regression analysis have confirmed that the AREScores plays most important role in detecting miRNA targets on disease genes. Interestingly, we observed that epigenetic modifications like CpG methylation and histone modification are less effective than miRNA regulations in controlling the gene expression of cancer genes. CONCLUSIONS The intrinsic properties of cancer genes studied here, for higher miRNA targeting will enhance the knowledge on cancer gene regulation.
Collapse
Affiliation(s)
| | - Soumita Podder
- Bioinformatics Centre, Bose Institute, P 1/12, C,I,T, Scheme VII M, Kolkata 700 054, India.
| | | |
Collapse
|
56
|
Juhas M, Reuß DR, Zhu B, Commichau FM. Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering. Microbiology (Reading) 2014; 160:2341-2351. [DOI: 10.1099/mic.0.079376-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Investigation of essential genes, besides contributing to understanding the fundamental principles of life, has numerous practical applications. Essential genes can be exploited as building blocks of a tightly controlled cell ‘chassis’. Bacillus subtilis and Escherichia coli K-12 are both well-characterized model bacteria used as hosts for a plethora of biotechnological applications. Determination of the essential genes that constitute the B. subtilis and E. coli minimal genomes is therefore of the highest importance. Recent advances have led to the modification of the original B. subtilis and E. coli essential gene sets identified 10 years ago. Furthermore, significant progress has been made in the area of genome minimization of both model bacteria. This review provides an update, with particular emphasis on the current essential gene sets and their comparison with the original gene sets identified 10 years ago. Special attention is focused on the genome reduction analyses in B. subtilis and E. coli and the construction of minimal cell factories for industrial applications.
Collapse
Affiliation(s)
- Mario Juhas
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Daniel R. Reuß
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Bingyao Zhu
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Fabian M. Commichau
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| |
Collapse
|
57
|
Domingues S, da Silva GJ, Nielsen KM. Integrons: Vehicles and pathways for horizontal dissemination in bacteria. Mob Genet Elements 2014; 2:211-223. [PMID: 23550063 PMCID: PMC3575428 DOI: 10.4161/mge.22967] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Integrons are genetic elements first described at the end of the 1980s. Although most integrons were initially described in human clinical isolates, they have now been identified in many non-clinical environments, such as water and soil. Integrons are present in ≈10% of the sequenced bacterial genomes and are frequently linked to mobile genetic elements (MGEs); particularly the class 1 integrons. Genetic linkage to a diverse set of MGEs facilitates horizontal transfer of class 1 integrons within and between bacterial populations and species. The mechanistic aspects limiting transfer of MGEs will therefore limit the transfer of class 1 integrons. However, horizontal movement due to genes provided in trans and homologous recombination can result in class 1 integron dynamics independent of MGEs. A key determinant for continued dissemination of class 1 integrons is the probability that transferred MGEs will be vertically inherited in the recipient bacterial population. Heritability depends both on genetic stability as well as the fitness costs conferred to the host. Here we review the factors known to govern the dissemination of class 1 integrons in bacteria.
Collapse
Affiliation(s)
- Sara Domingues
- Centre of Pharmaceutical Studies; Faculty of Pharmacy; University of Coimbra; Coimbra, Portugal ; Department of Pharmacy; Faculty of Health Sciences; University of Tromsø; Tromsø, Norway
| | | | | |
Collapse
|
58
|
Szamecz B, Boross G, Kalapis D, Kovács K, Fekete G, Farkas Z, Lázár V, Hrtyan M, Kemmeren P, Groot Koerkamp MJA, Rutkai E, Holstege FCP, Papp B, Pál C. The genomic landscape of compensatory evolution. PLoS Biol 2014; 12:e1001935. [PMID: 25157590 PMCID: PMC4144845 DOI: 10.1371/journal.pbio.1001935] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/18/2014] [Indexed: 12/29/2022] Open
Abstract
The Genomic Landscape of Compensatory Evolution Laboratory selection experiment explains how organisms compensate for the loss of genes during evolution, and reveals the deleterious side-effects of this process when adapting to novel environments. Adaptive evolution is generally assumed to progress through the accumulation of beneficial mutations. However, as deleterious mutations are common in natural populations, they generate a strong selection pressure to mitigate their detrimental effects through compensatory genetic changes. This process can potentially influence directions of adaptive evolution by enabling evolutionary routes that are otherwise inaccessible. Therefore, the extent to which compensatory mutations shape genomic evolution is of central importance. Here, we studied the capacity of the baker's yeast genome to compensate the complete loss of genes during evolution, and explored the long-term consequences of this process. We initiated laboratory evolutionary experiments with over 180 haploid baker's yeast genotypes, all of which initially displayed slow growth owing to the deletion of a single gene. Compensatory evolution following gene loss was rapid and pervasive: 68% of the genotypes reached near wild-type fitness through accumulation of adaptive mutations elsewhere in the genome. As compensatory mutations have associated fitness costs, genotypes with especially low fitnesses were more likely to be subjects of compensatory evolution. Genomic analysis revealed that as compensatory mutations were generally specific to the functional defect incurred, convergent evolution at the molecular level was extremely rare. Moreover, the majority of the gene expression changes due to gene deletion remained unrestored. Accordingly, compensatory evolution promoted genomic divergence of parallel evolving populations. However, these different evolutionary outcomes are not phenotypically equivalent, as they generated diverse growth phenotypes across environments. Taken together, these results indicate that gene loss initiates adaptive genomic changes that rapidly restores fitness, but this process has substantial pleiotropic effects on cellular physiology and evolvability upon environmental change. Our work also implies that gene content variation across species could be partly due to the action of compensatory evolution rather than the passive loss of genes. While core cellular processes are generally conserved during evolution, the constituent genes differ somewhat between related species with similar lifestyles. Why should this be so? In this work, we propose that gene loss may initially be deleterious, but organisms can recover fitness by the accumulation of compensatory mutations elsewhere in the genome. To investigate this process in the laboratory, we investigated 180 haploid yeast strains, each of which initially displayed slow growth owing to the deletion of a single gene. Laboratory evolutionary experiments revealed that defects in a broad range of molecular processes can readily be compensated during evolution. Genomic analyses and functional assays demonstrated that compensatory evolution generates hidden genetic and physiological variation across parallel evolving lines, which can be revealed when the environment changes. Strikingly, despite nearly full recovery of fitness, the wild-type genomic expression pattern is generally not restored. Based on these results, we argue that genomes undergo major changes not simply to adapt to external conditions but also to compensate for previously accumulated deleterious mutations.
Collapse
Affiliation(s)
- Béla Szamecz
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Gábor Boross
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Dorottya Kalapis
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Károly Kovács
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Zoltán Farkas
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Mónika Hrtyan
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Patrick Kemmeren
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Edit Rutkai
- Institute for Biotechnology, Bay Zoltán Non-Profit Ltd., Szeged, Hungary
| | - Frank C. P. Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
- * E-mail: (CP); (BP)
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
- * E-mail: (CP); (BP)
| |
Collapse
|
59
|
Wei W, Ning LW, Ye YN, Guo FB. Geptop: a gene essentiality prediction tool for sequenced bacterial genomes based on orthology and phylogeny. PLoS One 2013; 8:e72343. [PMID: 23977285 PMCID: PMC3744497 DOI: 10.1371/journal.pone.0072343] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/09/2013] [Indexed: 01/17/2023] Open
Abstract
Integrative genomics predictors, which score highly in predicting bacterial essential genes, would be unfeasible in most species because the data sources are limited. We developed a universal approach and tool designated Geptop, based on orthology and phylogeny, to offer gene essentiality annotations. In a series of tests, our Geptop method yielded higher area under curve (AUC) scores in the receiver operating curves than the integrative approaches. In the ten-fold cross-validations among randomly upset samples, Geptop yielded an AUC of 0.918, and in the cross-organism predictions for 19 organisms Geptop yielded AUC scores between 0.569 and 0.959. A test applied to the very recently determined essential gene dataset from the Porphyromonas gingivalis, which belongs to a phylum different with all of the above 19 bacterial genomes, gave an AUC of 0.77. Therefore, Geptop can be applied to any bacterial species whose genome has been sequenced. Compared with the essential genes uniquely identified by the lethal screening, the essential genes predicted only by Gepop are associated with more protein-protein interactions, especially in the three bacteria with lower AUC scores (<0.7). This may further illustrate the reliability and feasibility of our method in some sense. The web server and standalone version of Geptop are available at http://cefg.uestc.edu.cn/geptop/ free of charge. The tool has been run on 968 bacterial genomes and the results are accessible at the website.
Collapse
Affiliation(s)
- Wen Wei
- Center of Bioinformatics and Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu-Wen Ning
- Center of Bioinformatics and Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan-Nong Ye
- Center of Bioinformatics and Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng-Biao Guo
- Center of Bioinformatics and Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- * E-mail:
| |
Collapse
|
60
|
Ling MHT, Ban Y, Wen H, Wang SM, Ge SX. Conserved expression of natural antisense transcripts in mammals. BMC Genomics 2013; 14:243. [PMID: 23577827 PMCID: PMC3635984 DOI: 10.1186/1471-2164-14-243] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/06/2013] [Indexed: 02/03/2023] Open
Abstract
Background Recent studies had found thousands of natural antisense transcripts originating from the same genomic loci of protein coding genes but from the opposite strand. It is unclear whether the majority of antisense transcripts are functional or merely transcriptional noise. Results Using the Affymetrix Exon array with a modified cDNA synthesis protocol that enables genome-wide detection of antisense transcription, we conducted large-scale expression analysis of antisense transcripts in nine corresponding tissues from human, mouse and rat. We detected thousands of antisense transcripts, some of which show tissue-specific expression that could be subjected to further study for their potential function in the corresponding tissues/organs. The expression patterns of many antisense transcripts are conserved across species, suggesting selective pressure on these transcripts. When compared to protein-coding genes, antisense transcripts show a lesser degree of expression conservation. We also found a positive correlation between the sense and antisense expression across tissues. Conclusion Our results suggest that natural antisense transcripts are subjected to selective pressure but to a lesser degree compared to sense transcripts in mammals.
Collapse
Affiliation(s)
- Maurice H T Ling
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | |
Collapse
|
61
|
Commichau FM, Pietack N, Stülke J. Essential genes in Bacillus subtilis: a re-evaluation after ten years. MOLECULAR BIOSYSTEMS 2013; 9:1068-75. [PMID: 23420519 DOI: 10.1039/c3mb25595f] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In 2003, an initial study on essential genes in the Gram-positive model bacterium described 271 genes as essential. In the past decade, the functions of many unknown genes and their encoded proteins have been elucidated. Moreover, detailed analyses have revealed that 31 genes that were thought to be essential are in fact non-essential whereas 20 novel essential genes have been described. Thus, 261 genes coding for 259 proteins and two functional RNAs are regarded essential as of January 2013. Among the essential proteins, the largest group is involved in protein synthesis, secretion and protein quality control. Other large sets of essential proteins are involved in lipid biosynthesis, cell wall metabolism and cell division, and DNA replication. Another interesting group of essential proteins protects the cell against endogenous toxic proteins, metabolites, or other intermediates. There are only six essential proteins in B. subtilis, for which no function is known. The functional analysis of these important proteins is predicted to be a key issue in the research on this model organism in the coming years.
Collapse
Affiliation(s)
- Fabian M Commichau
- Department of General Microbiology, Georg-August-Universität Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | | | | |
Collapse
|
62
|
Choi SS, Hannenhalli S. Three independent determinants of protein evolutionary rate. J Mol Evol 2013; 76:98-111. [PMID: 23400388 DOI: 10.1007/s00239-013-9543-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/16/2013] [Indexed: 12/15/2022]
Abstract
One of the most widely accepted ideas related to the evolutionary rates of proteins is that functionally important residues or regions evolve slower than other regions, a reasonable outcome of which should be a slower evolutionary rate of the proteins with a higher density of functionally important sites. Oddly, the role of functional importance, mainly measured by essentiality, in determining evolutionary rate has been challenged in recent studies. Several variables other than protein essentiality, such as expression level, gene compactness, protein-protein interactions, etc., have been suggested to affect protein evolutionary rate. In the present review, we try to refine the concept of functional importance of a gene, and consider three factors-functional importance, expression level, and gene compactness, as independent determinants of evolutionary rate of a protein, based not only on their known correlation with evolutionary rate but also on a reasonable mechanistic model. We suggest a framework based on these mechanistic models to correctly interpret the correlations between evolutionary rates and the various variables as well as the interrelationships among the variables.
Collapse
Affiliation(s)
- Sun Shim Choi
- Department of Medical Biotechnology, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, South Korea.
| | | |
Collapse
|