51
|
Lu W, Xin Z, Shida W, Jiyao L, Xin X. [Role of small noncoding RNA in the regulation of bacterial virulence]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 34:433-438. [PMID: 28317367 DOI: 10.7518/hxkq.2016.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the long-term interaction between pathogens and host, the pathogens regulate the expression of related viru-lence genes to fit the host environment in response to the changes in the host microenvironment. Gene expression was believed to be controlled mainly at the level of transcription initiation by repressors or activators. Recent studies have revealed that small noncoding RNAs (sRNAs) are key regulators in bacterial pathogenesis. sRNA in bacteria is a noncoding RNA with length ranging from 50 to 500 nucleotides. Pathogens can sense the changes in the host environment and consequently regulate the expression of virulence genes by sRNAs. This condition promotes the ability of pathogens to survive within the host, which is beneficial to the invasion and pathogenicity of pathogens. In contrast to transcriptional factors, sRNA-mediated gene regu-lation makes rapid and sensitive responses to environmental cues. Many sRNAs involved in bacterial virulence and pathogenesis have been identified. These sRNAs are key components of coordinated regulation networks, playing important roles in regulating the expression of virulence genes at post-transcriptional level. This review aims to provide an overview on the molecular mechanisms and roles of sRNAs in the regulation of bacterial virulence.
Collapse
Affiliation(s)
- Wang Lu
- State Key Laboratory of Oral Diseases, Dept. of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Xin
- State Key Laboratory of Oral Diseases, Dept. of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wang Shida
- State Key Laboratory of Oral Diseases, Dept. of General Clinic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Jiyao
- State Key Laboratory of Oral Diseases, Dept. of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Xin
- State Key Laboratory of Oral Diseases, Dept. of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
52
|
RNA Sequencing Identifies New RNase III Cleavage Sites in Escherichia coli and Reveals Increased Regulation of mRNA. mBio 2017; 8:mBio.00128-17. [PMID: 28351917 PMCID: PMC5371410 DOI: 10.1128/mbio.00128-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribonucleases facilitate rapid turnover of RNA, providing cells with another mechanism to adjust transcript and protein levels in response to environmental conditions. While many examples have been documented, a comprehensive list of RNase targets is not available. To address this knowledge gap, we compared levels of RNA sequencing coverage of Escherichia coli and a corresponding RNase III mutant to expand the list of known RNase III targets. RNase III is a widespread endoribonuclease that binds and cleaves double-stranded RNA in many critical transcripts. RNase III cleavage at novel sites found in aceEF, proP, tnaC, dctA, pheM, sdhC, yhhQ, glpT, aceK, and gluQ accelerated RNA decay, consistent with previously described targets wherein RNase III cleavage initiates rapid degradation of secondary messages by other RNases. In contrast, cleavage at three novel sites in the ahpF, pflB, and yajQ transcripts led to stabilized secondary transcripts. Two other novel sites in hisL and pheM overlapped with transcriptional attenuators that likely serve to ensure turnover of these highly structured RNAs. Many of the new RNase III target sites are located on transcripts encoding metabolic enzymes. For instance, two novel RNase III sites are located within transcripts encoding enzymes near a key metabolic node connecting glycolysis and the tricarboxylic acid (TCA) cycle. Pyruvate dehydrogenase activity was increased in an rnc deletion mutant compared to the wild-type (WT) strain in early stationary phase, confirming the novel link between RNA turnover and regulation of pathway activity. Identification of these novel sites suggests that mRNA turnover may be an underappreciated mode of regulating metabolism. The concerted action and overlapping functions of endoribonucleases, exoribonucleases, and RNA processing enzymes complicate the study of global RNA turnover and recycling of specific transcripts. More information about RNase specificity and activity is needed to make predictions of transcript half-life and to design synthetic transcripts with optimal stability. RNase III does not have a conserved target sequence but instead recognizes RNA secondary structure. Prior to this study, only a few RNase III target sites in E. coli were known, so we used RNA sequencing to provide a more comprehensive list of cleavage sites and to examine the impact of RNase III on transcript degradation. With this added information on how RNase III participates in transcript regulation and recycling, a more complete picture of RNA turnover can be developed for E. coli. Similar approaches could be used to augment our understanding of RNA turnover in other bacteria.
Collapse
|
53
|
Le Rhun A, Beer YY, Reimegård J, Chylinski K, Charpentier E. RNA sequencing uncovers antisense RNAs and novel small RNAs in Streptococcus pyogenes. RNA Biol 2016; 13:177-95. [PMID: 26580233 PMCID: PMC4829319 DOI: 10.1080/15476286.2015.1110674] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pyogenes is a human pathogen responsible for a wide spectrum of diseases ranging from mild to life-threatening infections. During the infectious process, the temporal and spatial expression of pathogenicity factors is tightly controlled by a complex network of protein and RNA regulators acting in response to various environmental signals. Here, we focus on the class of small RNA regulators (sRNAs) and present the first complete analysis of sRNA sequencing data in S. pyogenes. In the SF370 clinical isolate (M1 serotype), we identified 197 and 428 putative regulatory RNAs by visual inspection and bioinformatics screening of the sequencing data, respectively. Only 35 from the 197 candidates identified by visual screening were assigned a predicted function (T-boxes, ribosomal protein leaders, characterized riboswitches or sRNAs), indicating how little is known about sRNA regulation in S. pyogenes. By comparing our list of predicted sRNAs with previous S. pyogenes sRNA screens using bioinformatics or microarrays, 92 novel sRNAs were revealed, including antisense RNAs that are for the first time shown to be expressed in this pathogen. We experimentally validated the expression of 30 novel sRNAs and antisense RNAs. We show that the expression profile of 9 sRNAs including 2 predicted regulatory elements is affected by the endoribonucleases RNase III and/or RNase Y, highlighting the critical role of these enzymes in sRNA regulation.
Collapse
Affiliation(s)
- Anaïs Le Rhun
- a The Laboratory for Molecular Infection Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Department of Molecular Biology; Umeå University, S-90187 , Umeå , Sweden.,b Helmholtz Centre for Infection Research (HZI), Department of Regulation in Infection Biology, D-38124 , Braunschweig , Germany
| | - Yan Yan Beer
- b Helmholtz Centre for Infection Research (HZI), Department of Regulation in Infection Biology, D-38124 , Braunschweig , Germany
| | - Johan Reimegård
- c Science for Life Laboratory , Department of Cell and Molecular Biology, Uppsala University, S-75003 , Uppsala , Sweden
| | - Krzysztof Chylinski
- a The Laboratory for Molecular Infection Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Department of Molecular Biology; Umeå University, S-90187 , Umeå , Sweden.,d Max F. Perutz Laboratories (MFPL), University of Vienna, A-1030 , Vienna , Austria
| | - Emmanuelle Charpentier
- a The Laboratory for Molecular Infection Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Department of Molecular Biology; Umeå University, S-90187 , Umeå , Sweden.,b Helmholtz Centre for Infection Research (HZI), Department of Regulation in Infection Biology, D-38124 , Braunschweig , Germany.,e Hannover Medical School (MHH), D-30625 , Hannover , Germany.,f Max Planck Institute for Infection Biology , Department of Regulation in Infection Biology, D-10117 , Berlin , Germany
| |
Collapse
|
54
|
Abstract
Gene organization and control are described by models conceived in the 1960s. These models explain basic gene regulatory mechanisms and underpin current genome annotation. However, such models struggle to explain recent genome-scale observations. For example, accounts of RNA synthesis initiating within genes, widespread antisense transcription and non-canonical DNA binding by gene regulatory proteins are difficult to reconcile with traditional thinking. As a result, unexpected observations have often been dismissed and downstream consequences ignored. In this paper I will argue that, to fully understand the biology of bacterial chromosomes, we must embrace their hidden layers of complexity.
Collapse
Affiliation(s)
- David C Grainger
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
55
|
Abstract
Gram-negative and gram-positive bacteria use a variety of enzymatic pathways to degrade mRNAs. Although several recent reviews have outlined these pathways, much less attention has been paid to the regulation of mRNA decay. The functional half-life of a particular mRNA, which affects how much protein is synthesized from it, is determined by a combination of multiple factors. These include, but are not necessarily limited to, (a) stability elements at either the 5' or the 3' terminus, (b) posttranscriptional modifications, (c) ribosome density on individual mRNAs, (d) small regulatory RNA (sRNA) interactions with mRNAs, (e) regulatory proteins that alter ribonuclease binding affinities, (f) the presence or absence of endonucleolytic cleavage sites, (g) control of intracellular ribonuclease levels, and (h) physical location within the cell. Changes in physiological conditions associated with environmental alterations can significantly alter the impact of these factors in the decay of a particular mRNA.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, Georgia 30602;
| | - Sidney R Kushner
- Department of Genetics, University of Georgia, Athens, Georgia 30602;
| |
Collapse
|
56
|
Müller P, Jahn N, Ring C, Maiwald C, Neubert R, Meißner C, Brantl S. A multistress responsive type I toxin-antitoxin system: bsrE/SR5 from the B. subtilis chromosome. RNA Biol 2016; 13:511-23. [PMID: 26940229 DOI: 10.1080/15476286.2016.1156288] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
bsrE/SR5 is a type I TA system from prophage-like element P6 of the B. subtilis chromosome. The 256 nt bsrE RNA encodes a 30 aa toxin. The antitoxin SR5 is a 163 nt antisense RNA. Both genes overlap at their 3' ends. Overexpression of bsrE causes cell lysis on agar plates, which can be neutralized by sr5 overexpression, whereas deletion of the chromosomal sr5 copy has no effect. SR5 is short-lived with a half-life of ≈7 min, whereas bsrE RNA is stable with a half-life of >80 min. The sr5 promoter is 10-fold stronger than the bsrE promoter. SR5 interacts with the 3' UTR of bsrE RNA, thereby promoting its degradation by recruiting RNase III. RNase J1 is the main RNase responsible for SR5 and bsrE RNA degradation, and PnpA processes an SR5 precursor to the mature RNA. Hfq stabilizes SR5, but is not required for its inhibitory function. While bsrE RNA is affected by temperature shock and alkaline stress, the amount of SR5 is significantly influenced by various stresses, among them pH, anoxia and iron limitation. Only the latter one is dependent on sigB. Both RNAs are extremely unstable upon ethanol stress due to rapid degradation by RNase Y.
Collapse
Affiliation(s)
- Peter Müller
- a Friedrich-Schiller-Universität Jena , Lehrstuhl für Genetik , AG Bakteriengenetik, Philosophenweg, Jena , Germany
| | - Natalie Jahn
- a Friedrich-Schiller-Universität Jena , Lehrstuhl für Genetik , AG Bakteriengenetik, Philosophenweg, Jena , Germany
| | - Christiane Ring
- a Friedrich-Schiller-Universität Jena , Lehrstuhl für Genetik , AG Bakteriengenetik, Philosophenweg, Jena , Germany
| | - Caroline Maiwald
- a Friedrich-Schiller-Universität Jena , Lehrstuhl für Genetik , AG Bakteriengenetik, Philosophenweg, Jena , Germany
| | - Robert Neubert
- a Friedrich-Schiller-Universität Jena , Lehrstuhl für Genetik , AG Bakteriengenetik, Philosophenweg, Jena , Germany
| | - Christin Meißner
- a Friedrich-Schiller-Universität Jena , Lehrstuhl für Genetik , AG Bakteriengenetik, Philosophenweg, Jena , Germany
| | - Sabine Brantl
- a Friedrich-Schiller-Universität Jena , Lehrstuhl für Genetik , AG Bakteriengenetik, Philosophenweg, Jena , Germany
| |
Collapse
|
57
|
DiChiara JM, Liu B, Figaro S, Condon C, Bechhofer DH. Mapping of internal monophosphate 5' ends of Bacillus subtilis messenger RNAs and ribosomal RNAs in wild-type and ribonuclease-mutant strains. Nucleic Acids Res 2016; 44:3373-89. [PMID: 26883633 PMCID: PMC4838370 DOI: 10.1093/nar/gkw073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 01/29/2016] [Indexed: 11/14/2022] Open
Abstract
The recent findings that the narrow-specificity endoribonuclease RNase III and the 5′ exonuclease RNase J1 are not essential in the Gram-positive model organism, Bacillus subtilis, facilitated a global analysis of internal 5′ ends that are generated or acted upon by these enzymes. An RNA-Seq protocol known as PARE (Parallel Analysis of RNA Ends) was used to capture 5′ monophosphorylated RNA ends in ribonuclease wild-type and mutant strains. Comparison of PARE peaks in strains with RNase III present or absent showed that, in addition to its well-known role in ribosomal (rRNA) processing, many coding sequences and intergenic regions appeared to be direct targets of RNase III. These target sites were, in most cases, not associated with a known antisense RNA. The PARE analysis also revealed an accumulation of 3′-proximal peaks that correlated with the absence of RNase J1, confirming the importance of RNase J1 in degrading RNA fragments that contain the transcription terminator structure. A significant result from the PARE analysis was the discovery of an endonuclease cleavage just 2 nts downstream of the 16S rRNA 3′ end. This latter observation begins to answer, at least for B. subtilis, a long-standing question on the exonucleolytic versus endonucleolytic nature of 16S rRNA maturation.
Collapse
Affiliation(s)
- Jeanne M DiChiara
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Bo Liu
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Sabine Figaro
- CNRS UMR8261 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ciarán Condon
- CNRS UMR8261 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - David H Bechhofer
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
58
|
Meißner C, Jahn N, Brantl S. In Vitro Characterization of the Type I Toxin-Antitoxin System bsrE/SR5 from Bacillus subtilis. J Biol Chem 2015; 291:560-71. [PMID: 26565032 DOI: 10.1074/jbc.m115.697524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 11/06/2022] Open
Abstract
BsrE/SR5 is a new type I toxin/antitoxin system located on the prophage-like region P6 of the Bacillus subtilis chromosome. The bsrE gene encoding a 30-amino acid hydrophobic toxin and the antitoxin gene sr5 overlap at their 3' ends by 112 bp. Overexpression of bsrE causes cell lysis on agar plates. Here, we present a detailed in vitro analysis of bsrE/SR5. The secondary structures of SR5, bsrE mRNA, and the SR5/bsrE RNA complex were determined. Apparent binding rate constants (kapp) of wild-type and mutated SR5 species with wild-type bsrE mRNA were calculated, and SR5 regions required for efficient inhibition of bsrE mRNA narrowed down. In vivo studies confirmed the in vitro data but indicated that a so far unknown RNA binding protein might exist in B. subtilis that can promote antitoxin/toxin RNA interaction. Using time course experiments, the binding pathway of SR5 and bsrE RNA was elucidated. A comparison with the previously well characterized type I TA system from the B. subtilis chromosome, bsrG/SR4, reveals similarities but also significant differences.
Collapse
Affiliation(s)
- Christin Meißner
- From the AG Bakteriengenetik, Lehrstuhl für Genetik, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| | - Natalie Jahn
- From the AG Bakteriengenetik, Lehrstuhl für Genetik, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| | - Sabine Brantl
- From the AG Bakteriengenetik, Lehrstuhl für Genetik, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| |
Collapse
|
59
|
Cameron JC, Gordon GC, Pfleger BF. Genetic and genomic analysis of RNases in model cyanobacteria. PHOTOSYNTHESIS RESEARCH 2015; 126:171-83. [PMID: 25595545 PMCID: PMC4506261 DOI: 10.1007/s11120-015-0076-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 01/02/2015] [Indexed: 05/20/2023]
Abstract
Cyanobacteria are diverse photosynthetic microbes with the ability to convert CO2 into useful products. However, metabolic engineering of cyanobacteria remains challenging because of the limited resources for modifying the expression of endogenous and exogenous biochemical pathways. Fine-tuned control of protein production will be critical to optimize the biological conversion of CO2 into desirable molecules. Messenger RNAs (mRNAs) are labile intermediates that play critical roles in determining the translation rate and steady-state protein concentrations in the cell. The majority of studies on mRNA turnover have focused on the model heterotrophic bacteria Escherichia coli and Bacillus subtilis. These studies have elucidated many RNA modifying and processing enzymes and have highlighted the differences between these Gram-negative and Gram-positive bacteria, respectively. In contrast, much less is known about mRNA turnover in cyanobacteria. We generated a compendium of the major ribonucleases (RNases) and provide an in-depth analysis of RNase III-like enzymes in commonly studied and diverse cyanobacteria. Furthermore, using targeted gene deletion, we genetically dissected the RNases in Synechococcus sp. PCC 7002, one of the fastest growing and industrially attractive cyanobacterial strains. We found that all three cyanobacterial homologs of RNase III and a member of the RNase II/R family are not essential under standard laboratory conditions, while homologs of RNase E/G, RNase J1/J2, PNPase, and a different member of the RNase II/R family appear to be essential for growth. This work will enhance our understanding of native control of gene expression and will facilitate the development of an RNA-based toolkit for metabolic engineering in cyanobacteria.
Collapse
Affiliation(s)
- Jeffrey C Cameron
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3629 Engineering Hall, 1415 Engineering Dr., Madison, WI, 53706, USA
| | - Gina C Gordon
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3629 Engineering Hall, 1415 Engineering Dr., Madison, WI, 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3629 Engineering Hall, 1415 Engineering Dr., Madison, WI, 53706, USA.
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, USA.
| |
Collapse
|
60
|
Wessner F, Lacoux C, Goeders N, Fouquier d'Hérouel A, Matos R, Serror P, Van Melderen L, Repoila F. Regulatory crosstalk between type I and type II toxin-antitoxin systems in the human pathogen Enterococcus faecalis. RNA Biol 2015; 12:1099-108. [PMID: 26305399 DOI: 10.1080/15476286.2015.1084465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We discovered a chromosomal locus containing 2 toxin-antitoxin modules (TAs) with an antisense transcriptional organization in the E. faecalis clinical isolate V583. These TAs are homologous to the type I txpA-ratA system and the type II mazEF, respectively. We have shown that the putative MazF is toxic for E. coli and triggers RNA degradation, and its cognate antitoxin MazE counteracts toxicity. The second module, adjacent to mazEF, expresses a toxin predicted to belong to the TxpA type I family found in Firmicutes, and the antisense RNA antidote, RatA. Genomic analysis indicates that the cis-association of mazEF and txpA-ratA modules has been favored during evolution, suggesting a selective advantage for this TA organization in the E. faecalis species. We showed regulatory interplays between the 2 modules, involving transcription control and RNA stability. Remarkably, our data reveal that MazE and MazEF have a dual transcriptional activity: they act as autorepressors and activate ratA transcription, most likely in a direct manner. RatA controls txpA RNA levels through stability. Our data suggest a pivotal role of MazEF in the coordinated expression of mazEF and txpA-ratA modules in V583. To our knowledge, this is the first report describing a crosstalk between type I and II TAs.
Collapse
Affiliation(s)
- Françoise Wessner
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Caroline Lacoux
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Nathalie Goeders
- c Université Libre de Bruxelles, Faculté des Sciences, Institut de Biologie et Médecine Moléculaire ; Gosselies , Belgium
| | | | - Renata Matos
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Pascale Serror
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Laurence Van Melderen
- c Université Libre de Bruxelles, Faculté des Sciences, Institut de Biologie et Médecine Moléculaire ; Gosselies , Belgium
| | - Francis Repoila
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| |
Collapse
|
61
|
Chaudhary AK, Na D, Lee EY. Rapid and high-throughput construction of microbial cell-factories with regulatory noncoding RNAs. Biotechnol Adv 2015; 33:914-30. [PMID: 26027891 DOI: 10.1016/j.biotechadv.2015.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 12/11/2022]
Abstract
Due to global crises such as pollution and depletion of fossil fuels, sustainable technologies based on microbial cell-factories have been garnering great interest as an alternative to chemical factories. The development of microbial cell-factories is imperative in cutting down the overall manufacturing cost. Thus, diverse metabolic engineering strategies and engineering tools have been established to obtain a preferred genotype and phenotype displaying superior productivity. However, these tools are limited to only a handful of genes with permanent modification of a genome and significant labor costs, and this is one of the bottlenecks associated with biofactory construction. Therefore, a groundbreaking rapid and high-throughput engineering tool is needed for efficient construction of microbial cell-factories. During the last decade, copious small noncoding RNAs (ncRNAs) have been discovered in bacteria. These are involved in substantial regulatory roles like transcriptional and post-transcriptional gene regulation by modulating mRNA elongation, stability, or translational efficiency. Because of their vulnerability, ncRNAs can be used as another layer of conditional control over gene expression without modifying chromosomal sequences, and hence would be a promising high-throughput tool for metabolic engineering. Here, we review successful design principles and applications of ncRNAs for high-throughput metabolic engineering or physiological studies of diverse industrially important microorganisms.
Collapse
Affiliation(s)
- Amit Kumar Chaudhary
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 446-701, Republic of Korea
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
62
|
Burger K, Gullerova M. Swiss army knives: non-canonical functions of nuclear Drosha and Dicer. Nat Rev Mol Cell Biol 2015; 16:417-30. [DOI: 10.1038/nrm3994] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
63
|
Durand S, Tomasini A, Braun F, Condon C, Romby P. sRNA and mRNA turnover in Gram-positive bacteria. FEMS Microbiol Rev 2015; 39:316-30. [PMID: 25934118 DOI: 10.1093/femsre/fuv007] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2015] [Indexed: 01/18/2023] Open
Abstract
It is widely recognized that RNA degradation plays a critical role in gene regulation when fast adaptation of cell growth is required to respond to stress and changing environmental conditions. Bacterial ribonucleases acting alone or in concert with various trans-acting regulatory factors are important mediators of RNA degradation. Here, we will give an overview of what is known about ribonucleases in several Gram-positive bacteria, their specificities and mechanisms of action. In addition, we will illustrate how sRNAs act in a coordinated manner with ribonucleases to regulate the turnover of particular mRNA targets, and the complex interplay existing between the ribosome, the ribonucleases and RNAs.
Collapse
Affiliation(s)
- Sylvain Durand
- CNRS FRE 3630 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Arnaud Tomasini
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, F-67084 Strasbourg, France
| | - Frédérique Braun
- CNRS FRE 3630 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ciarán Condon
- CNRS FRE 3630 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, F-67084 Strasbourg, France
| |
Collapse
|
64
|
RNA Degradation in Staphylococcus aureus: Diversity of Ribonucleases and Their Impact. Int J Genomics 2015; 2015:395753. [PMID: 25977913 PMCID: PMC4419217 DOI: 10.1155/2015/395753] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/04/2015] [Indexed: 11/18/2022] Open
Abstract
The regulation of RNA decay is now widely recognized as having a central role in bacterial adaption to environmental stress. Here we present an overview on the diversity of ribonucleases (RNases) and their impact at the posttranscriptional level in the human pathogen Staphylococcus aureus. RNases in prokaryotes have been mainly studied in the two model organisms Escherichia coli and Bacillus subtilis. Based on identified RNases in these two models, putative orthologs have been identified in S. aureus. The main staphylococcal RNases involved in the processing and degradation of the bulk RNA are (i) endonucleases RNase III and RNase Y and (ii) exonucleases RNase J1/J2 and PNPase, having 5' to 3' and 3' to 5' activities, respectively. The diversity and potential roles of each RNase and of Hfq and RppH are discussed in the context of recent studies, some of which are based on next-generation sequencing technology.
Collapse
|
65
|
Brantl S, Jahn N. sRNAs in bacterial type I and type III toxin-antitoxin systems. FEMS Microbiol Rev 2015; 39:413-27. [PMID: 25808661 DOI: 10.1093/femsre/fuv003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 01/17/2023] Open
Abstract
Toxin-antitoxin (TA) loci consist of two genes: a stable toxin whose overexpression kills the cell or causes growth stasis and an unstable antitoxin that neutralizes the toxin action. Currently, five TA systems are known. Here, we review type I and type III systems in which the antitoxins are regulatory RNAs. Type I antitoxins act by a base-pairing mechanism on toxin mRNAs. By contrast, type III antitoxins are RNA pseudoknots that bind their cognate toxins directly in an RNA-protein interaction. Whereas for a number of plasmid-encoded systems detailed information on structural requirements, kinetics of interaction with their targets and regulatory mechanisms employed by the antitoxin RNAs is available, the investigation of chromosomal systems is still in its infancy. Here, we summarize our current knowledge on that topic. Furthermore, we compare factors and conditions that induce antitoxins or toxins and different mechanisms of toxin action. Finally, we discuss biological roles for chromosome-encoded TA systems.
Collapse
Affiliation(s)
- Sabine Brantl
- AG Bakteriengenetik, Lehrstuhl für Genetik, Friedrich-Schiller-Universität Jena, Philosophenweg 12, D-07743 Jena, Germany
| | - Natalie Jahn
- AG Bakteriengenetik, Lehrstuhl für Genetik, Friedrich-Schiller-Universität Jena, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
66
|
Hotto AM, Castandet B, Gilet L, Higdon A, Condon C, Stern DB. Arabidopsis chloroplast mini-ribonuclease III participates in rRNA maturation and intron recycling. THE PLANT CELL 2015; 27:724-40. [PMID: 25724636 PMCID: PMC4558656 DOI: 10.1105/tpc.114.134452] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/24/2014] [Accepted: 02/09/2015] [Indexed: 05/21/2023]
Abstract
RNase III proteins recognize double-stranded RNA structures and catalyze endoribonucleolytic cleavages that often regulate gene expression. Here, we characterize the functions of RNC3 and RNC4, two Arabidopsis thaliana chloroplast Mini-RNase III-like enzymes sharing 75% amino acid sequence identity. Whereas rnc3 and rnc4 null mutants have no visible phenotype, rnc3/rnc4 (rnc3/4) double mutants are slightly smaller and chlorotic compared with the wild type. In Bacillus subtilis, the RNase Mini-III is integral to 23S rRNA maturation. In Arabidopsis, we observed imprecise maturation of 23S rRNA in the rnc3/4 double mutant, suggesting that exoribonucleases generated staggered ends in the absence of specific Mini-III-catalyzed cleavages. A similar phenotype was found at the 3' end of the 16S rRNA, and the primary 4.5S rRNA transcript contained 3' extensions, suggesting that Mini-III catalyzes several processing events of the polycistronic rRNA precursor. The rnc3/4 mutant showed overaccumulation of a noncoding RNA complementary to the 4.5S-5S rRNA intergenic region, and its presence correlated with that of the extended 4.5S rRNA precursor. Finally, we found rnc3/4-specific intron degradation intermediates that are probable substrates for Mini-III and show that B. subtilis Mini-III is also involved in intron regulation. Overall, this study extends our knowledge of the key role of Mini-III in intron and noncoding RNA regulation and provides important insight into plastid rRNA maturation.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/metabolism
- Arabidopsis Proteins/chemistry
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Bacillus subtilis/metabolism
- Base Sequence
- Chloroplasts/metabolism
- Evolution, Molecular
- Exons/genetics
- Genetic Complementation Test
- Introns/genetics
- Models, Biological
- Molecular Sequence Data
- Mutation/genetics
- Polyribosomes/metabolism
- Protein Structure, Tertiary
- RNA Stability
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Untranslated/genetics
- Ribonuclease III/metabolism
- Ribosomes/metabolism
- Sequence Analysis, RNA
- Sequence Homology, Amino Acid
- Transgenes
Collapse
Affiliation(s)
- Amber M Hotto
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Benoît Castandet
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Laetitia Gilet
- Centre National de la Recherche Scientifique FRE3630, Université de Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Andrea Higdon
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Ciarán Condon
- Centre National de la Recherche Scientifique FRE3630, Université de Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - David B Stern
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| |
Collapse
|
67
|
|
68
|
Gilet L, DiChiara JM, Figaro S, Bechhofer DH, Condon C. Small stable RNA maturation and turnover in Bacillus subtilis. Mol Microbiol 2014; 95:270-82. [PMID: 25402410 DOI: 10.1111/mmi.12863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2014] [Indexed: 02/05/2023]
Abstract
Stable RNA maturation is a key process in the generation of functional RNAs, and failure to correctly process these RNAs can lead to their elimination through quality control mechanisms. Studies of the maturation pathways of ribosomal RNA and transfer RNA in Bacillus subtilis showed they were radically different from Escherichia coli and led to the identification of new B. subtilis-specific enzymes. We noticed that, despite their important roles in translation, a number of B. subtilis small stable RNAs still did not have characterised maturation pathways, notably the tmRNA, involved in ribosome rescue, and the RNase P RNA, involved in tRNA maturation. Here, we show that tmRNA is matured by RNase P and RNase Z at its 5' and 3' extremities, respectively, whereas the RNase P RNA is matured on its 3' side by RNase Y. Recent evidence that several RNases are not essential in B. subtilis prompted us to revisit maturation of the scRNA, a component of the signal recognition particle involved in co-translational insertion of specific proteins into the membrane. We show that RNase Y is also involved in 3' processing of scRNA. Lastly, we identified some of the enzymes involved in the turnover of these three stable RNAs.
Collapse
Affiliation(s)
- Laetitia Gilet
- CNRS FRE 3630 (affiliated with University Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | | | | | | | | |
Collapse
|
69
|
Juhas M, Reuß DR, Zhu B, Commichau FM. Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering. Microbiology (Reading) 2014; 160:2341-2351. [DOI: 10.1099/mic.0.079376-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Investigation of essential genes, besides contributing to understanding the fundamental principles of life, has numerous practical applications. Essential genes can be exploited as building blocks of a tightly controlled cell ‘chassis’. Bacillus subtilis and Escherichia coli K-12 are both well-characterized model bacteria used as hosts for a plethora of biotechnological applications. Determination of the essential genes that constitute the B. subtilis and E. coli minimal genomes is therefore of the highest importance. Recent advances have led to the modification of the original B. subtilis and E. coli essential gene sets identified 10 years ago. Furthermore, significant progress has been made in the area of genome minimization of both model bacteria. This review provides an update, with particular emphasis on the current essential gene sets and their comparison with the original gene sets identified 10 years ago. Special attention is focused on the genome reduction analyses in B. subtilis and E. coli and the construction of minimal cell factories for industrial applications.
Collapse
Affiliation(s)
- Mario Juhas
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Daniel R. Reuß
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Bingyao Zhu
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Fabian M. Commichau
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| |
Collapse
|
70
|
Abstract
mRNA degradation is an important mechanism for controlling gene expression in bacterial cells. This process involves the orderly action of a battery of cellular endonucleases and exonucleases, some universal and others present only in certain species. These ribonucleases function with the assistance of ancillary enzymes that covalently modify the 5' or 3' end of RNA or unwind base-paired regions. Triggered by initiating events at either the 5' terminus or an internal site, mRNA decay occurs at diverse rates that are transcript specific and governed by RNA sequence and structure, translating ribosomes, and bound sRNAs or proteins. In response to environmental cues, bacteria are able to orchestrate widespread changes in mRNA lifetimes by modulating the concentration or specific activity of cellular ribonucleases or by unmasking the mRNA-degrading activity of cellular toxins.
Collapse
Affiliation(s)
- Monica P Hui
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, NY 10016;
| | | | | |
Collapse
|
71
|
Wen J, Fozo EM. sRNA antitoxins: more than one way to repress a toxin. Toxins (Basel) 2014; 6:2310-35. [PMID: 25093388 PMCID: PMC4147584 DOI: 10.3390/toxins6082310] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 11/16/2022] Open
Abstract
Bacterial toxin-antitoxin loci consist of two genes: one encodes a potentially toxic protein, and the second, an antitoxin to repress its function or expression. The antitoxin can either be an RNA or a protein. For type I and type III loci, the antitoxins are RNAs; however, they have very different modes of action. Type I antitoxins repress toxin protein expression through interacting with the toxin mRNA, thereby targeting the mRNA for degradation or preventing its translation or both; type III antitoxins directly bind to the toxin protein, sequestering it. Along with these two very different modes of action for the antitoxin, there are differences in the functions of the toxin proteins and the mobility of these loci between species. Within this review, we discuss the major differences as to how the RNAs repress toxin activity, the potential consequences for utilizing different regulatory strategies, as well as the confirmed and potential biological roles for these loci across bacterial species.
Collapse
Affiliation(s)
- Jia Wen
- Department of Microbiology, University of Tennessee, M409 Walters Life Sciences, Knoxville, TN 37996, USA.
| | - Elizabeth M Fozo
- Department of Microbiology, University of Tennessee, M409 Walters Life Sciences, Knoxville, TN 37996, USA.
| |
Collapse
|
72
|
Pervasive transcription: illuminating the dark matter of bacterial transcriptomes. Nat Rev Microbiol 2014; 12:647-53. [DOI: 10.1038/nrmicro3316] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
73
|
|
74
|
Abstract
Small regulatory RNAs (sRNAs) that act by base-pairing were first discovered in so-called accessory DNA elements—plasmids, phages, and transposons—where they control replication, maintenance, and transposition. Since 2001, a huge body of work has been performed to predict and identify sRNAs in a multitude of bacterial genomes. The majority of chromosome-encoded sRNAs have been investigated in E. coli and other Gram-negative bacteria. However, during the past five years an increasing number of sRNAs were found in Gram-positive bacteria. Here, we outline our current knowledge on chromosome-encoded sRNAs from low-GC Gram-positive species that act by base-pairing, i.e., an antisense mechanism. We will focus on sRNAs with known targets and defined regulatory mechanisms with special emphasis on Bacillus subtilis.
Collapse
Affiliation(s)
- Sabine Brantl
- Friedrich-Schiller-Universität Jena; Biologisch-Pharmazeutische Fakultät; AG Bakteriengenetik; Philosophenweg 12; Jena, Germany
| | - Reinhold Brückner
- Mikrobiologie; TU Kaiserslautern; Paul-Ehrlich-Str. 23; D-67663 Kaiserslautern, Germany
| |
Collapse
|
75
|
Toxin-antitoxin systems as multilevel interaction systems. Toxins (Basel) 2014; 6:304-24. [PMID: 24434905 PMCID: PMC3920263 DOI: 10.3390/toxins6010304] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 01/05/2023] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic modules usually composed of a toxin and an antitoxin counteracting the activity of the toxic protein. These systems are widely spread in bacterial and archaeal genomes. TA systems have been assigned many functions, ranging from persistence to DNA stabilization or protection against mobile genetic elements. They are classified in five types, depending on the nature and mode of action of the antitoxin. In type I and III, antitoxins are RNAs that either inhibit the synthesis of the toxin or sequester it. In type II, IV and V, antitoxins are proteins that either sequester, counterbalance toxin activity or inhibit toxin synthesis. In addition to these interactions between the antitoxin and toxin components (RNA-RNA, protein-protein, RNA-protein), TA systems interact with a variety of cellular factors, e.g., toxins target essential cellular components, antitoxins are degraded by RNAses or ATP-dependent proteases. Hence, TA systems have the capacity to interact with each other at different levels. In this review, we will discuss the different interactions in which TA systems are involved and their implications in TA system functions and evolution.
Collapse
|
76
|
Wen J, Won D, Fozo EM. The ZorO-OrzO type I toxin-antitoxin locus: repression by the OrzO antitoxin. Nucleic Acids Res 2013; 42:1930-46. [PMID: 24203704 PMCID: PMC3919570 DOI: 10.1093/nar/gkt1018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Type I toxin–antitoxin loci consist of two genes: a small, hydrophobic, potentially toxic protein, and a small RNA (sRNA) antitoxin. The sRNA represses toxin gene expression by base pairing to the toxin mRNA. A previous bioinformatics search predicted a duplicated type I locus within Escherichia coli O157:H7 (EHEC), which we have named the gene pairs zorO-orzO and zorP-orzP. We show that overproduction of the zorO gene is toxic to E. coli; co-expression of the sRNA OrzO can neutralize this toxicity, confirming that the zorO-orzO pair is a true type I toxin–antitoxin locus. However, OrzO is unable to repress zorO in a strain deleted for RNase III, indicating that repression requires cleavage of the target mRNA. Sequence analysis and mutagenesis studies have elucidated a nucleotide sequence region (V1) that allows differential recognition of the zorO mRNA by OrzO and not OrzP, and a specific single nucleotide within the V1 of OrzO that is critical for repression of zorO. Although there are 18 nt of complementarity between the OrzO sRNA and the zorO mRNA, not all base pairing interactions are needed for repression; however, the amount needed is dependent on whether there is continuous or discontinuous complementarity to the target mRNA.
Collapse
Affiliation(s)
- Jia Wen
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
77
|
Initiation of mRNA decay in bacteria. Cell Mol Life Sci 2013; 71:1799-828. [PMID: 24064983 PMCID: PMC3997798 DOI: 10.1007/s00018-013-1472-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 12/24/2022]
Abstract
The instability of messenger RNA is fundamental to the control of gene expression. In bacteria, mRNA degradation generally follows an "all-or-none" pattern. This implies that if control is to be efficient, it must occur at the initiating (and presumably rate-limiting) step of the degradation process. Studies of E. coli and B. subtilis, species separated by 3 billion years of evolution, have revealed the principal and very disparate enzymes involved in this process in the two organisms. The early view that mRNA decay in these two model organisms is radically different has given way to new models that can be resumed by "different enzymes-similar strategies". The recent characterization of key ribonucleases sheds light on an impressive case of convergent evolution that illustrates that the surprisingly similar functions of these totally unrelated enzymes are of general importance to RNA metabolism in bacteria. We now know that the major mRNA decay pathways initiate with an endonucleolytic cleavage in E. coli and B. subtilis and probably in many of the currently known bacteria for which these organisms are considered representative. We will discuss here the different pathways of eubacterial mRNA decay, describe the major players and summarize the events that can precede and/or favor nucleolytic inactivation of a mRNA, notably the role of the 5' end and translation initiation. Finally, we will discuss the role of subcellular compartmentalization of transcription, translation, and the RNA degradation machinery.
Collapse
|
78
|
Abstract
Type I toxin–antitoxin systems encoded on bacterial chromosomes became the focus of research during the past years. However, little is known in terms of structural requirements, kinetics of interaction with their targets and regulatory mechanisms of the antitoxin RNAs. Here, we present a combined in vitro and in vivo analysis of the bsrG/SR4 type I toxin–antitoxin system from Bacillus subtilis. The secondary structures of SR4 and bsrG mRNA and of the SR4/bsrG RNA complex were determined, apparent binding rate constants calculated and functional segments required for complex formation narrowed down. The initial contact between SR4 and its target was shown to involve the SR4 terminator loop and loop 3 of bsrG mRNA. Additionally, a contribution of the stem of SR4 stem-loop 3 to target binding was found. On SR4/bsrG complex formation, a 4 bp double-stranded region sequestering the bsrG Shine Dalgarno (SD) sequence was extended to 8 bp. Experimental evidence was obtained that this extended region caused translation inhibition of bsrG mRNA. Therefore, we conclude that SR4 does not only promote degradation of the toxin mRNA but also additionally inhibit its translation. This is the first case of a dual-acting antitoxin RNA.
Collapse
Affiliation(s)
| | - Sabine Brantl
- *To whom correspondence should be addressed. Tel: +49 3641 949570; Fax: +49 3641 949302;
| |
Collapse
|
79
|
Unterholzner SJ, Poppenberger B, Rozhon W. Toxin-antitoxin systems: Biology, identification, and application. Mob Genet Elements 2013; 3:e26219. [PMID: 24251069 PMCID: PMC3827094 DOI: 10.4161/mge.26219] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 02/07/2023] Open
Abstract
Toxin–antitoxin (TA) systems are small genetic elements composed of a toxin gene and its cognate antitoxin. The toxins of all known TA systems are proteins while the antitoxins are either proteins or non-coding RNAs. Based on the molecular nature of the antitoxin and its mode of interaction with the toxin the TA modules are currently grouped into five classes. In general, the toxin is more stable than the antitoxin but the latter is expressed to a higher level. If supply of the antitoxin stops, for instance under special growth conditions or by plasmid loss in case of plasmid encoded TA systems, the antitoxin is rapidly degraded and can no longer counteract the toxin. Consequently, the toxin becomes activated and can act on its cellular targets. Typically, TA toxins act on crucial cellular processes including translation, replication, cytoskeleton formation, membrane integrity, and cell wall biosynthesis. TA systems and their components are also versatile tools for a multitude of purposes in basic research and biotechnology. Currently, TA systems are frequently used for selection in cloning and for single protein expression in living bacterial cells. Since several TA toxins exhibit activity in yeast and mammalian cells they may be useful for applications in eukaryotic systems. TA modules are also considered as promising targets for the development of antibacterial drugs and their potential to combat viral infection may aid in controlling infectious diseases.
Collapse
Affiliation(s)
- Simon J Unterholzner
- 1 Biotechnology of Horticultural Crops; Technische Universität München; Freising, Germany
| | | | | |
Collapse
|
80
|
Bacillus subtilis mutants with knockouts of the genes encoding ribonucleases RNase Y and RNase J1 are viable, with major defects in cell morphology, sporulation, and competence. J Bacteriol 2013; 195:2340-8. [PMID: 23504012 DOI: 10.1128/jb.00164-13] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The genes encoding the ribonucleases RNase J1 and RNase Y have long been considered essential for Bacillus subtilis cell viability, even before there was concrete knowledge of their function as two of the most important enzymes for RNA turnover in this organism. Here we show that this characterization is incorrect and that ΔrnjA and Δrny mutants are both viable. As expected, both strains grow relatively slowly, with doubling times in the hour range in rich medium. Knockout mutants have major defects in their sporulation and competence development programs. Both mutants are hypersensitive to a wide range of antibiotics and have dramatic alterations to their cell morphologies, suggestive of cell envelope defects. Indeed, RNase Y mutants are significantly smaller in diameter than wild-type strains and have a very disordered peptidoglycan layer. Strains lacking RNase J1 form long filaments in tight spirals, reminiscent of mutants of the actin-like proteins (Mre) involved in cell shape determination. Finally, we combined the rnjA and rny mutations with mutations in other components of the degradation machinery and show that many of these strains are also viable. The implications for the two known RNA degradation pathways of B. subtilis are discussed.
Collapse
|
81
|
Commichau FM, Pietack N, Stülke J. Essential genes in Bacillus subtilis: a re-evaluation after ten years. MOLECULAR BIOSYSTEMS 2013; 9:1068-75. [PMID: 23420519 DOI: 10.1039/c3mb25595f] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In 2003, an initial study on essential genes in the Gram-positive model bacterium described 271 genes as essential. In the past decade, the functions of many unknown genes and their encoded proteins have been elucidated. Moreover, detailed analyses have revealed that 31 genes that were thought to be essential are in fact non-essential whereas 20 novel essential genes have been described. Thus, 261 genes coding for 259 proteins and two functional RNAs are regarded essential as of January 2013. Among the essential proteins, the largest group is involved in protein synthesis, secretion and protein quality control. Other large sets of essential proteins are involved in lipid biosynthesis, cell wall metabolism and cell division, and DNA replication. Another interesting group of essential proteins protects the cell against endogenous toxic proteins, metabolites, or other intermediates. There are only six essential proteins in B. subtilis, for which no function is known. The functional analysis of these important proteins is predicted to be a key issue in the research on this model organism in the coming years.
Collapse
Affiliation(s)
- Fabian M Commichau
- Department of General Microbiology, Georg-August-Universität Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | | | | |
Collapse
|
82
|
Commichau FM, Stülke J. A mystery unraveled: essentiality of RNase III in Bacillus subtilis is caused by resident prophages. PLoS Genet 2012; 8:e1003199. [PMID: 23300472 PMCID: PMC3531482 DOI: 10.1371/journal.pgen.1003199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Fabian M. Commichau
- Department of General Microbiology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Georg-August-Universität Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|