51
|
Pathak A, Chauhan A, Stothard P, Green S, Maienschein-Cline M, Jaswal R, Seaman J. Genome-centric evaluation of Burkholderia sp. strain SRS-W-2-2016 resistant to high concentrations of uranium and nickel isolated from the Savannah River Site (SRS), USA. GENOMICS DATA 2017; 12:62-68. [PMID: 28373958 PMCID: PMC5367793 DOI: 10.1016/j.gdata.2017.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 01/21/2023]
Abstract
Savannah River Site (SRS), an approximately 800-km2 former nuclear weapons production facility located near Aiken, SC remains co-contaminated by heavy metals and radionuclides. To gain a better understanding on microbially-mediated bioremediation mechanisms, several bacterial strains resistant to high concentrations of Uranium (U) and Nickel (Ni) were isolated from the Steeds Pond soils located within the SRS site. One of the isolated strains, designated as strain SRS-W-2-2016, grew robustly on both U and Ni. To fully understand the arsenal of metabolic functions possessed by this strain, a draft whole genome sequence (WGS) was obtained, assembled, annotated and analyzed. Genome-centric evaluation revealed the isolate to belong to the Burkholderia genus with close affiliation to B. xenovorans LB400, an aggressive polychlorinated biphenyl-degrader. At a coverage of 90 ×, the genome of strain SRS-W-2-2016 consisted of 8,035,584 bases with a total number of 7071 putative genes assembling into 191 contigs with an N50 contig length of 134,675 bases. Several gene homologues coding for resistance to heavy metals/radionuclides were identified in strain SRS-W-2-2016, such as a suite of outer membrane efflux pump proteins similar to nickel/cobalt transporter regulators, peptide/nickel transport substrate and ATP-binding proteins, permease proteins, and a high-affinity nickel-transport protein. Also noteworthy were two separate gene fragments in strain SRS-W-2-2016 homologous to the spoT gene; recently correlated with bacterial tolerance to U. Additionally, a plethora of oxygenase genes were also identified in the isolate, potentially involved in the breakdown of organic compounds facilitating the strain's successful colonization and survival in the SRS co-contaminated soils. The WGS project of Burkholderia sp. strain SRS-W-2-2016 is available at DDBJ/ENA/GenBank under the accession #MSDV00000000.
Collapse
Affiliation(s)
- Ashish Pathak
- Environmental Biotechnology and Genomics Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ashvini Chauhan
- Environmental Biotechnology and Genomics Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - Stefan Green
- DNA Services Facility, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Rajneesh Jaswal
- Environmental Biotechnology and Genomics Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA
| | - John Seaman
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| |
Collapse
|
52
|
Nikel PI, Pérez-Pantoja D, de Lorenzo V. Pyridine nucleotide transhydrogenases enable redox balance of Pseudomonas putida during biodegradation of aromatic compounds. Environ Microbiol 2016; 18:3565-3582. [PMID: 27348295 DOI: 10.1111/1462-2920.13434] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/23/2016] [Indexed: 11/26/2022]
Abstract
The metabolic versatility of the soil bacterium Pseudomonas putida is reflected by its ability to execute strong redox reactions (e.g., mono- and di-oxygenations) on aromatic substrates. Biodegradation of aromatics occurs via the pathway encoded in the archetypal TOL plasmid pWW0, yet the effect of running such oxidative route on redox balance against the background metabolism of P. putida remains unexplored. To answer this question, the activity of pyridine nucleotide transhydrogenases (that catalyze the reversible interconversion of NADH and NADPH) was inspected under various physiological and oxidative stress regimes. The genome of P. putida KT2440 encodes a soluble transhydrogenase (SthA) and a membrane-bound, proton-pumping counterpart (PntAB). Mutant strains, lacking sthA and/or pntAB, were subjected to a panoply of genetic, biochemical, phenomic and functional assays in cells grown on customary carbon sources (e.g., citrate) versus difficult-to-degrade aromatic substrates. The results consistently indicated that redox homeostasis is compromised in the transhydrogenases-defective variant, rendering the mutant sensitive to oxidants. This metabolic deficiency was, however, counteracted by an increase in the activity of NADP+ -dependent dehydrogenases in central carbon metabolism. Taken together, these observations demonstrate that transhydrogenases enable a redox-adjusting mechanism that comes into play when biodegradation reactions are executed to metabolize unusual carbon compounds.
Collapse
Affiliation(s)
- Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Danilo Pérez-Pantoja
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, 4030000 Concepción, Chile
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| |
Collapse
|
53
|
Abstract
In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isolated from infected patients has increased tremendously. In this commentary we wish to summarize recent efforts that aim at discerning pathogenic from beneficial Burkholderia strains.
Collapse
Affiliation(s)
- Leo Eberl
- Department of Plant and Microbial Biology, University Zürich, Zurich, CH-8008, Switzerland
| | - Peter Vandamme
- Laboratory of Microbiology, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
54
|
Expression of SOD and production of reactive oxygen species in Acinetobacter calcoaceticus caused by hydrocarbon oxidation. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-015-1188-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
55
|
Gambino M, Cappitelli F. Mini-review: Biofilm responses to oxidative stress. BIOFOULING 2016; 32:167-178. [PMID: 26901587 DOI: 10.1080/08927014.2015.1134515] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.
Collapse
Affiliation(s)
- Michela Gambino
- a Department of Food, Environmental and Nutrition Sciences , Università degli Studi di Milano , Milan , Italy
| | - Francesca Cappitelli
- a Department of Food, Environmental and Nutrition Sciences , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
56
|
Svenningsen NB, Pérez-Pantoja D, Nikel PI, Nicolaisen MH, de Lorenzo V, Nybroe O. Pseudomonas putida mt-2 tolerates reactive oxygen species generated during matric stress by inducing a major oxidative defense response. BMC Microbiol 2015; 15:202. [PMID: 26445482 PMCID: PMC4595014 DOI: 10.1186/s12866-015-0542-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/02/2015] [Indexed: 01/09/2023] Open
Abstract
Background Soil bacteria typically thrive in water-limited habitats that cause an inherent matric stress to the cognate cells. Matric stress gives rise to accumulation of intracellular reactive oxygen species (ROS), which in turn may induce oxidative stress, and even promote mutagenesis. However, little is known about the impact of ROS induced by water limitation on bacteria performing important processes as pollutant biodegradation in the environment. We have rigorously examined the physiological consequences of the rise of intracellular ROS caused by matric stress for the toluene- and xylene-degrading soil bacterium Pseudomonas putida mt-2. Methods For the current experiments, controlled matric potential stress was delivered to P. putida cells by addition of polyethylene glycol to liquid cultures, and ROS formation in individual cells monitored by a specific dye. The physiological response to ROS was then quantified by both RT-qPCR of RNA transcripts from genes accredited as proxies of oxidative stress and the SOS response along with cognate transcriptional GFP fusions to the promoters of the same genes. Results Extensive matric stress at −1.5 MPa clearly increased intracellular accumulation of ROS. The expression of the two major oxidative defense genes katA and ahpC, as well as the hydroperoxide resistance gene osmC, was induced under matric stress. Different induction profiles of the reporters were related to the severity of the stress. To determine if matric stress lead to induction of the SOS-response, we constructed a DNA damage-inducible bioreporter based on the LexA-controlled phage promoter PPP3901. According to bioreporter analysis, this gene was expressed during extensive matric stress. Despite this DNA-damage mediated gene induction, we observed no increase in the mutation frequency as monitored by emergence of rifampicin-resistant colonies. Conclusions Under conditions of extensive matric stress, we observed a direct link between matric stress, ROS formation, induction of ROS-detoxifying functions and (partial) activation of the SOS system. However, such a stress-response regime did not translate into a general DNA mutagenesis status. Taken together, the data suggest that P. putida mt-2 can cope with this archetypal environmental stress while preserving genome stability, a quality that strengthens the status of this bacterium for biotechnological purposes.
Collapse
Affiliation(s)
- Nanna B Svenningsen
- Department of Plant and Environmental Sciences, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Danilo Pérez-Pantoja
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, 28049, Madrid, Spain.
| | - Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, 28049, Madrid, Spain.
| | - Mette H Nicolaisen
- Department of Plant and Environmental Sciences, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, 28049, Madrid, Spain.
| | - Ole Nybroe
- Department of Plant and Environmental Sciences, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
57
|
Rivard BS, Rogers MS, Marell DJ, Neibergall MB, Chakrabarty S, Cramer CJ, Lipscomb JD. Rate-Determining Attack on Substrate Precedes Rieske Cluster Oxidation during Cis-Dihydroxylation by Benzoate Dioxygenase. Biochemistry 2015; 54:4652-64. [PMID: 26154836 DOI: 10.1021/acs.biochem.5b00573] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rieske dearomatizing dioxygenases utilize a Rieske iron-sulfur cluster and a mononuclear Fe(II) located 15 Å across a subunit boundary to catalyze O2-dependent formation of cis-dihydrodiol products from aromatic substrates. During catalysis, O2 binds to the Fe(II) while the substrate binds nearby. Single-turnover reactions have shown that one electron from each metal center is required for catalysis. This finding suggested that the reactive intermediate is Fe(III)-(H)peroxo or HO-Fe(V)═O formed by O-O bond scission. Surprisingly, several kinetic phases were observed during the single-turnover Rieske cluster oxidation. Here, the Rieske cluster oxidation and product formation steps of a single turnover of benzoate 1,2-dioxygenase are investigated using benzoate and three fluorinated analogues. It is shown that the rate constant for product formation correlates with the reciprocal relaxation time of only the fastest kinetic phase (RRT-1) for each substrate, suggesting that the slower phases are not mechanistically relevant. RRT-1 is strongly dependent on substrate type, suggesting a role for substrate in electron transfer from the Rieske cluster to the mononuclear iron site. This insight, together with the substrate and O2 concentration dependencies of RRT-1, indicates that a reactive species is formed after substrate and O2 binding but before electron transfer from the Rieske cluster. Computational studies show that RRT-1 is correlated with the electron density at the substrate carbon closest to the Fe(II), consistent with initial electrophilic attack by an Fe(III)-superoxo intermediate. The resulting Fe(III)-peroxo-aryl radical species would then readily accept an electron from the Rieske cluster to complete the cis-dihydroxylation reaction.
Collapse
Affiliation(s)
- Brent S Rivard
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Melanie S Rogers
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel J Marell
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Matthew B Neibergall
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sarmistha Chakrabarty
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J Cramer
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D Lipscomb
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
58
|
Affiliation(s)
- Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
59
|
de Lorenzo V, Sekowska A, Danchin A. Chemical reactivity drives spatiotemporal organisation of bacterial metabolism. FEMS Microbiol Rev 2014; 39:96-119. [PMID: 25227915 DOI: 10.1111/1574-6976.12089] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this review, we examine how bacterial metabolism is shaped by chemical constraints acting on the material and dynamic layout of enzymatic networks and beyond. These are moulded not only for optimisation of given metabolic objectives (e.g. synthesis of a particular amino acid or nucleotide) but also for curbing the detrimental reactivity of chemical intermediates. Besides substrate channelling, toxicity is avoided by barriers to free diffusion (i.e. compartments) that separate otherwise incompatible reactions, along with ways for distinguishing damaging vs. harmless molecules. On the other hand, enzymes age and their operating lifetime must be tuned to upstream and downstream reactions. This time dependence of metabolic pathways creates time-linked information, learning and memory. These features suggest that the physical structure of existing biosystems, from operon assemblies to multicellular development may ultimately stem from the need to restrain chemical damage and limit the waste inherent to basic metabolic functions. This provides a new twist of our comprehension of fundamental biological processes in live systems as well as practical take-home lessons for the forward DNA-based engineering of novel biological objects.
Collapse
Affiliation(s)
- Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología CSIC, Cantoblanco-Madrid, Spain
| | - Agnieszka Sekowska
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Antoine Danchin
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
60
|
Michener JK, Camargo Neves AA, Vuilleumier S, Bringel F, Marx CJ. Effective use of a horizontally-transferred pathway for dichloromethane catabolism requires post-transfer refinement. eLife 2014; 3:e04279. [PMID: 25418043 PMCID: PMC4271186 DOI: 10.7554/elife.04279] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/22/2014] [Indexed: 01/09/2023] Open
Abstract
When microbes acquire new abilities through horizontal gene transfer, the genes and pathways must function under conditions with which they did not coevolve. If newly-acquired genes burden the host, their utility will depend on further evolutionary refinement of the recombinant strain. We used laboratory evolution to recapitulate this process of transfer and refinement, demonstrating that effective use of an introduced dichloromethane degradation pathway required one of several mutations to the bacterial host that are predicted to increase chloride efflux. We then used this knowledge to identify parallel, beneficial mutations that independently evolved in two natural dichloromethane-degrading strains. Finally, we constructed a synthetic mobile genetic element carrying both the degradation pathway and a chloride exporter, which preempted the adaptive process and directly enabled effective dichloromethane degradation across diverse Methylobacterium environmental isolates. Our results demonstrate the importance of post-transfer refinement in horizontal gene transfer, with potential applications in bioremediation and synthetic biology.
Collapse
Affiliation(s)
- Joshua K Michener
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Aline A Camargo Neves
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Stéphane Vuilleumier
- CNRS Molecular Genetics, Genomics, Microbiology, Université de Strasbourg, Strasbourg, France
| | - Françoise Bringel
- CNRS Molecular Genetics, Genomics, Microbiology, Université de Strasbourg, Strasbourg, France
| | - Christopher J Marx
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, United States
- Department of Biological Sciences, University of Idaho, Moscow, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, United States
| |
Collapse
|
61
|
Bedekar PA, Saratale RG, Saratale GD, Govindwar SP. Oxidative stress response in dye degrading bacterium Lysinibacillus sp. RGS exposed to Reactive Orange 16, degradation of RO16 and evaluation of toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11075-11085. [PMID: 24888611 DOI: 10.1007/s11356-014-3041-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
Lysinibacillus sp. RGS degrades sulfonated azo dye Reactive Orange 16 (RO16) efficiently. Superoxide dismutase and catalase activity were tested to study the response of Lysinibacillus sp. RGS to the oxidative stress generated by RO16. The results demonstrated that oxidative stress enzymes not only protect the cell from oxidative stress but also has a probable role in decolorization along with an involvement of oxidoreductive enzymes. Formation of three different metabolites after degradation of RO16 has been confirmed by GC-MS analysis. FTIR analysis verified the degradation of functional groups of RO16, and HPTLC confirmed the removal of auxochrome group from the RO16 after degradation. Toxicity studies confirmed the genotoxic, cytotoxic, and phytotoxic nature of RO16 and the formation of less toxic products after the treatment of Lysinibacillus sp. RGS. Therefore, Lysinibacillus sp. RGS has a better perspective of bioremediation for textile wastewater treatment.
Collapse
Affiliation(s)
- Priyanka A Bedekar
- Department of Biotechnology, Shivaji University, Kolhapur, 416004, India
| | | | | | | |
Collapse
|
62
|
Kim J, Park W. Oxidative stress response in Pseudomonas putida. Appl Microbiol Biotechnol 2014; 98:6933-46. [PMID: 24957251 DOI: 10.1007/s00253-014-5883-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/30/2022]
Abstract
Pseudomonas putida is widely distributed in nature and is capable of degrading various organic compounds due to its high metabolic versatility. The survival capacity of P. putida stems from its frequent exposure to various endogenous and exogenous oxidative stresses. Oxidative stress is an unavoidable consequence of interactions with various reactive oxygen species (ROS)-inducing agents existing in various niches. ROS could facilitate the evolution of bacteria by mutating genomes. Aerobic bacteria maintain defense mechanisms against oxidative stress throughout their evolution. To overcome the detrimental effects of oxidative stress, P. putida has developed defensive cellular systems involving induction of stress-sensing proteins and detoxification enzymes as well as regulation of oxidative stress response networks. Genetic responses to oxidative stress in P. putida differ markedly from those observed in Escherichia coli and Salmonella spp. Two major redox-sensing transcriptional regulators, SoxR and OxyR, are present and functional in the genome of P. putida. However, the novel regulators FinR and HexR control many genes belonging to the E. coli SoxR regulon. Oxidative stress can be generated by exposure to antibiotics, and iron homeostasis in P. putida is crucial for bacterial cell survival during treatment with antibiotics. This review highlights and summarizes current knowledge of oxidative stress in P. putida, as a model soil bacterium, together with recent studies from molecular genetics perspectives.
Collapse
Affiliation(s)
- Jisun Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5Ga, Seungbuk-Ku, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
63
|
|
64
|
Nikel PI, de Lorenzo V. Robustness of Pseudomonas putida KT2440 as a host for ethanol biosynthesis. N Biotechnol 2014; 31:562-71. [PMID: 24572656 DOI: 10.1016/j.nbt.2014.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/10/2014] [Accepted: 02/15/2014] [Indexed: 12/01/2022]
Abstract
Expansion of the burgeoning biofuels agenda involves not only the design of suitable genetic and metabolic devices but also their deployment into suitable hosts that can endure the stress brought about by the products themselves. The microorganisms that are easiest to genetically manipulate for these endeavors (e.g. Escherichia coli) are often afflicted by an undesirable sensitivity to the very product that they are engineered to synthesize. In this context, we have examined the resistance to the stress arising from ethanol synthesis and/or its addition to cultures of recombinant Pseudomonas putida, using as a benchmark the same trait in an E. coli strain. To this end, ethanologenic strains of these two species were constructed by functionally expressing pdc (pyruvate decarboxylase) and adhB (alcohol dehydrogenase) from Zymomonas mobilis. Recombinants were compared under anoxic conditions as ethanol producers, and cell survival, stress resistance, and phenotypic stability were quantified in each case. P. putida consistently outperformed E. coli in every ethanol tolerance test conducted - whether the alcohol was produced endogenously or added exogenously. These results highlight the value of this bacterium as a microbial cell factory for the production of biofuels owing to its naturally pre-evolved ability to withstand different kinds of chemical stresses.
Collapse
Affiliation(s)
- Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain.
| |
Collapse
|
65
|
de Lorenzo V. From theselfish genetoselfish metabolism: Revisiting the central dogma. Bioessays 2014; 36:226-35. [DOI: 10.1002/bies.201300153] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Víctor de Lorenzo
- Systems & Synthetic Biology Program; Centro Nacional de Biotecnología CSIC Cantoblanco; Madrid Spain
| |
Collapse
|