51
|
Berg KCG, Eide PW, Eilertsen IA, Johannessen B, Bruun J, Danielsen SA, Bjørnslett M, Meza-Zepeda LA, Eknæs M, Lind GE, Myklebost O, Skotheim RI, Sveen A, Lothe RA. Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies. Mol Cancer 2017; 16:116. [PMID: 28683746 PMCID: PMC5498998 DOI: 10.1186/s12943-017-0691-y] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022] Open
Abstract
Background Colorectal cancer (CRC) cell lines are widely used pre-clinical model systems. Comprehensive insights into their molecular characteristics may improve model selection for biomedical studies. Methods We have performed DNA, RNA and protein profiling of 34 cell lines, including (i) targeted deep sequencing (n = 612 genes) to detect single nucleotide variants and insertions/deletions; (ii) high resolution DNA copy number profiling; (iii) gene expression profiling at exon resolution; (iv) small RNA expression profiling by deep sequencing; and (v) protein expression analysis (n = 297 proteins) by reverse phase protein microarrays. Results The cell lines were stratified according to the key molecular subtypes of CRC and data were integrated at two or more levels by computational analyses. We confirm that the frequencies and patterns of DNA aberrations are associated with genomic instability phenotypes and that the cell lines recapitulate the genomic profiles of primary carcinomas. Intrinsic expression subgroups are distinct from genomic subtypes, but consistent at the gene-, microRNA- and protein-level and dominated by two distinct clusters; colon-like cell lines characterized by expression of gastro-intestinal differentiation markers and undifferentiated cell lines showing upregulation of epithelial-mesenchymal transition and TGFβ signatures. This sample split was concordant with the gene expression-based consensus molecular subtypes of primary tumors. Approximately ¼ of the genes had consistent regulation at the DNA copy number and gene expression level, while expression of gene-protein pairs in general was strongly correlated. Consistent high-level DNA copy number amplification and outlier gene- and protein- expression was found for several oncogenes in individual cell lines, including MYC and ERBB2. Conclusions This study expands the view of CRC cell lines as accurate molecular models of primary carcinomas, and we present integrated multi-level molecular data of 34 widely used cell lines in easily accessible formats, providing a resource for preclinical studies in CRC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0691-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaja C G Berg
- Department of Molecular Oncology, Institute for Cancer Research & K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O.Box 4953 Nydalen, -0424, Oslo, NO, Norway.,Center for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Peter W Eide
- Department of Molecular Oncology, Institute for Cancer Research & K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O.Box 4953 Nydalen, -0424, Oslo, NO, Norway.,Center for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ina A Eilertsen
- Department of Molecular Oncology, Institute for Cancer Research & K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O.Box 4953 Nydalen, -0424, Oslo, NO, Norway.,Center for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research & K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O.Box 4953 Nydalen, -0424, Oslo, NO, Norway.,Center for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian Cancer Genomic Consortium, Oslo University Hospital, Oslo, Norway
| | - Jarle Bruun
- Department of Molecular Oncology, Institute for Cancer Research & K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O.Box 4953 Nydalen, -0424, Oslo, NO, Norway.,Center for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stine A Danielsen
- Department of Molecular Oncology, Institute for Cancer Research & K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O.Box 4953 Nydalen, -0424, Oslo, NO, Norway.,Center for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian Cancer Genomic Consortium, Oslo University Hospital, Oslo, Norway
| | - Merete Bjørnslett
- Department of Molecular Oncology, Institute for Cancer Research & K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O.Box 4953 Nydalen, -0424, Oslo, NO, Norway.,Center for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Leonardo A Meza-Zepeda
- Norwegian Cancer Genomic Consortium, Oslo University Hospital, Oslo, Norway.,Department of Core Facilities and Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Mette Eknæs
- Department of Molecular Oncology, Institute for Cancer Research & K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O.Box 4953 Nydalen, -0424, Oslo, NO, Norway.,Center for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research & K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O.Box 4953 Nydalen, -0424, Oslo, NO, Norway.,Center for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ola Myklebost
- Norwegian Cancer Genomic Consortium, Oslo University Hospital, Oslo, Norway.,Department of Core Facilities and Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research & K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O.Box 4953 Nydalen, -0424, Oslo, NO, Norway.,Center for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian Cancer Genomic Consortium, Oslo University Hospital, Oslo, Norway
| | - Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research & K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O.Box 4953 Nydalen, -0424, Oslo, NO, Norway.,Center for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian Cancer Genomic Consortium, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research & K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O.Box 4953 Nydalen, -0424, Oslo, NO, Norway. .,Center for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, Oslo, Norway. .,Norwegian Cancer Genomic Consortium, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
52
|
Gong J, Cho M, Sy M, Salgia R, Fakih M. Molecular profiling of metastatic colorectal tumors using next-generation sequencing: a single-institution experience. Oncotarget 2017; 8:42198-42213. [PMID: 28178681 PMCID: PMC5522060 DOI: 10.18632/oncotarget.15030] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/16/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent molecular characterization of colorectal tumors has identified several molecular alterations of interest that are considered targetable in metastatic colorectal cancer (mCRC). METHODS We conducted a single-institution, retrospective study based on comprehensive genomic profiling of tumors from 138 patients with mCRC using next-generation sequencing (NGS) via FoundationOne. RESULTS Overall, RAS mutations were present in 51.4% and RAF mutations were seen in 7.2% of mCRC patients. We found a novel KRASR68S1 mutation associated with an aggressive phenotype. RAS amplifications (1.4% KRAS and 0.7% NRAS), MET amplifications (2.2%), BRAFL597Ralterations (0.7%), ARAFS214F alterations (0.7%), and concurrent RAS+RAF (1.4%), BRAF+RAF1 (0.7%), and rare PTEN-PIK3CA-AKT pathway mutations were identified and predominantly associated with poor prognosis. ERBB2 (HER2) amplified tumors were identified in 5.1% and all arose from the rectosigmoid colon. Three cases (2.2%) were associated with a hypermutated profile that was corroborated with findings of high tumor mutational burden (TMB): 2 cases with MSI-H and 1 case with a POLE mutation. CONCLUSIONS Comprehensive genomic profiling can uncover alterations beyond the well-characterized RAS/RAF mutations associated with anti-EGFR resistance. ERBB2 amplified tumors commonly originate from the rectosigmoid colon, are predominantly RAS/BRAF wild-type, and may predict benefit to HER2-directed therapy. Hypermutant tumors or tumors with high TMB correlate with MSI-H status or POLE mutations and may predict a benefit from anti-PD-1 therapy.
Collapse
Affiliation(s)
- Jun Gong
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - May Cho
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Marvin Sy
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Marwan Fakih
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
54
|
Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer 2017; 17:79-92. [PMID: 28050011 DOI: 10.1038/nrc.2016.126] [Citation(s) in RCA: 583] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Critical driver genomic events in colorectal cancer have been shown to affect the response to targeted agents that were initially developed under the 'one gene, one drug' paradigm of precision medicine. Our current knowledge of the complexity of the cancer genome, clonal evolution patterns under treatment pressure and pharmacodynamic effects of target inhibition support the transition from a one gene, one drug approach to a 'multi-gene, multi-drug' model when making therapeutic decisions. Better characterization of the transcriptomic subtypes of colorectal cancer, encompassing tumour, stromal and immune components, has revealed convergent pathway dependencies that mandate a 'multi-molecular' perspective for the development of therapies to treat this disease.
Collapse
Affiliation(s)
- Rodrigo Dienstmann
- Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Sage Bionetworks, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, WA 98109, Seattle, USA
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Justin Guinney
- Sage Bionetworks, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, WA 98109, Seattle, USA
| | - Scott Kopetz
- The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030, USA
| | - Sabine Tejpar
- Digestive Oncology Unit, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Josep Tabernero
- Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| |
Collapse
|
55
|
van der Stok EP, Smid M, Sieuwerts AM, Vermeulen PB, Sleijfer S, Ayez N, Grünhagen DJ, Martens JWM, Verhoef C. mRNA expression profiles of colorectal liver metastases as a novel biomarker for early recurrence after partial hepatectomy. Mol Oncol 2016; 10:1542-1550. [PMID: 27692894 DOI: 10.1016/j.molonc.2016.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Identification of specific risk groups for recurrence after surgery for isolated colorectal liver metastases (CRLM) remains challenging due to the heterogeneity of the disease. Classical clinicopathologic parameters have limited prognostic value. The aim of this study was to identify a gene expression signature measured in CRLM discriminating early from late recurrence after partial hepatectomy. METHODS CRLM from two patient groups were collected: I) with recurrent disease ≤12 months after surgery (N = 33), and II) without recurrences and disease free for ≥36 months (N = 30). The patients were clinically homogeneous; all had a low clinical risk score (0-2) and did not receive (neo-) adjuvant chemotherapy. Total RNA was hybridised to Illumina arrays, and processed for analysis. A leave-one-out cross validation (LOOCV) analysis was performed to identify a prognostic gene expression signature. RESULTS LOOCV yielded an 11-gene profile with prognostic value in relation to recurrent disease ≤12 months after partial hepatectomy. This signature had a sensitivity of 81.8%, with a specificity of 66.7% for predicting recurrences (≤12 months) versus no recurrences for at least 36 months after surgery (X2 P < 0.0001). CONCLUSION The current study yielded an 11-gene signature at mRNA level in CRLM discriminating early from late or no relapse after partial hepatectomy.
Collapse
Affiliation(s)
- E P van der Stok
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands.
| | - M Smid
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - A M Sieuwerts
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - P B Vermeulen
- Translational Cancer Research Group, Sint-Augustinus (GZA Hospitals) & CORE (Antwerp University), Oosterveldlaan 24, 2610 Wilrijk-Antwerp, Belgium
| | - S Sleijfer
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - N Ayez
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands
| | - D J Grünhagen
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands
| | - J W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - C Verhoef
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands
| |
Collapse
|