51
|
Wong CM, Tang HMV, Kong KYE, Wong GWO, Qiu H, Jin DY, Hinnebusch AG. Yeast arginine methyltransferase Hmt1p regulates transcription elongation and termination by methylating Npl3p. Nucleic Acids Res 2010; 38:2217-28. [PMID: 20053728 PMCID: PMC2853106 DOI: 10.1093/nar/gkp1133] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The heterogeneous nuclear ribonucleoprotein Npl3p of budding yeast is a substrate of arginine methyltransferase Hmt1p, but the role of Hmt1p in regulating Npl3p's functions in transcription antitermination and elongation were unknown. We found that mutants lacking Hmt1p methyltransferase activity exhibit reduced recruitment of Npl3p, but elevated recruitment of a component of mRNA cleavage/termination factor CFI, to the activated GAL10-GAL7 locus. Consistent with this, hmt1 mutants displayed increased termination at the defective gal10-Delta56 terminator. Remarkably, hmt1Delta cells also exhibit diminished recruitment of elongation factor Tho2p and a reduced rate of transcription elongation in vivo. Importantly, the defects in Npl3p and Tho2p recruitment, antitermination and elongation in hmt1Delta cells all were mitigated by substitutions in Npl3p RGG repeats that functionally mimic arginine methylation by Hmt1p. Thus, Hmt1p promotes elongation and suppresses termination at cryptic terminators by methylating RGG repeats in Npl3p. As Hmt1p stimulates dissociation of Tho2p from an Npl3p-mRNP complex, it could act to recycle these elongation and antitermination factors back to sites of ongoing transcription.
Collapse
Affiliation(s)
- Chi-Ming Wong
- Department of Biochemistry, The University of Hong Kong, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
52
|
Millevoi S, Vagner S. Molecular mechanisms of eukaryotic pre-mRNA 3' end processing regulation. Nucleic Acids Res 2009; 38:2757-74. [PMID: 20044349 PMCID: PMC2874999 DOI: 10.1093/nar/gkp1176] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Messenger RNA (mRNA) 3′ end formation is a nuclear process through which all eukaryotic primary transcripts are endonucleolytically cleaved and most of them acquire a poly(A) tail. This process, which consists in the recognition of defined poly(A) signals of the pre-mRNAs by a large cleavage/polyadenylation machinery, plays a critical role in gene expression. Indeed, the poly(A) tail of a mature mRNA is essential for its functions, including stability, translocation to the cytoplasm and translation. In addition, this process serves as a bridge in the network connecting the different transcription, capping, splicing and export machineries. It also participates in the quantitative and qualitative regulation of gene expression in a variety of biological processes through the selection of single or alternative poly(A) signals in transcription units. A large number of protein factors associates with this machinery to regulate the efficiency and specificity of this process and to mediate its interaction with other nuclear events. Here, we review the eukaryotic 3′ end processing machineries as well as the comprehensive set of regulatory factors and discuss the different molecular mechanisms of 3′ end processing regulation by proposing several overlapping models of regulation.
Collapse
Affiliation(s)
- Stefania Millevoi
- Institut National de la Santé et de la Recherche Médicale U563, Toulouse, F-31000, France.
| | | |
Collapse
|
53
|
The shuttling protein Npl3 promotes translation termination accuracy in Saccharomyces cerevisiae. J Mol Biol 2009; 394:410-22. [PMID: 19733178 DOI: 10.1016/j.jmb.2009.08.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/24/2009] [Accepted: 08/29/2009] [Indexed: 01/20/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins are multifunctional proteins that bind to newly synthesized mRNAs in the nucleus and participate in many subsequent steps of gene expression. A well-studied Saccharomyces cerevisiae heterogeneous nuclear ribonucleoprotein that has several nuclear functions is Npl3p. Here, we provide evidence that Npl3p also has a cytoplasmic role: it functions in translation termination fidelity. Yeast harboring the npl3-95 mutant allele have an impaired ability to translate lacZ, enhanced sensitivity to cycloheximide and paromomycin, and increased ability to read through translation termination codons. Most of these defects are enhanced in yeast that also lack Upf1p, an RNA surveillance factor crucial for translation termination. We show that the npl3-95 mutant allele encodes a form of Npl3p that is part of high molecular-weight complexes that cofractionate with the poly(A)-binding protein Pab1p. Together, these results lead us to propose a model in which Npl3p engenders translational fidelity by promoting the remodeling of mRNPs during translation termination.
Collapse
|
54
|
Zhong XY, Wang P, Han J, Rosenfeld MG, Fu XD. SR proteins in vertical integration of gene expression from transcription to RNA processing to translation. Mol Cell 2009; 35:1-10. [PMID: 19595711 PMCID: PMC2744344 DOI: 10.1016/j.molcel.2009.06.016] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Indexed: 12/25/2022]
Abstract
SR proteins have been studied extensively as a family of RNA-binding proteins that participate in both constitutive and regulated pre-mRNA splicing in mammalian cells. However, SR proteins were first discovered as factors that interact with transcriptionally active chromatin. Recent studies have now uncovered properties that connect these once apparently disparate functions, showing that a subset of SR proteins seem to bind directly to the histone 3 tail, play an active role in transcriptional elongation, and colocalize with genes that are engaged in specific intra- and interchromosome interactions for coordinated regulation of gene expression in the nucleus. These transcription-related activities are also coupled with a further expansion of putative functions of specific SR protein family members in RNA metabolism downstream of mRNA splicing, from RNA export to stability control to translation. These findings, therefore, highlight the broader roles of SR proteins in vertical integration of gene expression and provide mechanistic insights into their contributions to genome stability and proper cell-cycle progression in higher eukaryotic cells.
Collapse
Affiliation(s)
- Xiang-Yang Zhong
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651
| | - Pingping Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651
| | - Joonhee Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651
| | - Michael G. Rosenfeld
- Howard Hughes Medicine Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651
| |
Collapse
|
55
|
Beckerman R, Donner AJ, Mattia M, Peart MJ, Manley JL, Espinosa JM, Prives C. A role for Chk1 in blocking transcriptional elongation of p21 RNA during the S-phase checkpoint. Genes Dev 2009; 23:1364-77. [PMID: 19487575 DOI: 10.1101/gad.1795709] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We reported previously that when cells are arrested in S phase, a subset of p53 target genes fails to be strongly induced despite the presence of high levels of p53. When DNA replication is inhibited, reduced p21 mRNA accumulation is correlated with a marked reduction in transcription elongation. Here we show that ablation of the protein kinase Chk1 rescues the p21 transcription elongation defect when cells are blocked in S phase, as measured by increases in both p21 mRNA levels and the presence of the elongating form of RNA polymerase II (RNAPII) toward the 3' end of the p21 gene. Recruitment of specific elongation and 3' processing factors (DSIF, CstF-64, and CPSF-100) is also restored. While additional components of the RNAPII transcriptional machinery, such as TFIIB and CDK7, are recruited more extensively to the p21 locus after DNA damage than after replication stress, their recruitment is not enhanced by ablation of Chk1. Significantly, ablating Chk2, a kinase closely related in substrate specificity to Chk1, does not rescue p21 mRNA levels during S-phase arrest. Thus, Chk1 has a direct and selective role in the elongation block to p21 observed during S-phase arrest. These findings demonstrate for the first time a link between the replication checkpoint mediated by ATR/Chk1 and the transcription elongation/3' processing machinery.
Collapse
Affiliation(s)
- Rachel Beckerman
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev 2009; 23:1247-69. [PMID: 19487567 DOI: 10.1101/gad.1792809] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene transcription in the cell nucleus is a complex and highly regulated process. Transcription in eukaryotes requires three distinct RNA polymerases, each of which employs its own mechanisms for initiation, elongation, and termination. Termination mechanisms vary considerably, ranging from relatively simple to exceptionally complex. In this review, we describe the present state of knowledge on how each of the three RNA polymerases terminates and how mechanisms are conserved, or vary, from yeast to human.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
57
|
McBride AE, Conboy AK, Brown SP, Ariyachet C, Rutledge KL. Specific sequences within arginine-glycine-rich domains affect mRNA-binding protein function. Nucleic Acids Res 2009; 37:4322-30. [PMID: 19454603 PMCID: PMC2715232 DOI: 10.1093/nar/gkp349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The discovery of roles for arginine methylation in intracellular transport and mRNA splicing has focused attention on the methylated arginine–glycine (RG)-rich domains found in many eukaryotic RNA-binding proteins. Sequence similarity among these highly repetitive RG domains, combined with interactions between RG-rich proteins, raises the question of whether these regions are general interaction motifs or whether there is specificity within these domains. Using the essential Saccharomyces cerevisiae mRNA-binding protein Npl3 (ScNpl3) as a model system, we first tested the importance of the RG domain for protein function. While Npl3 lacking the RG domain could not support growth of cells lacking Npl3, surprisingly, expression of the RG domain alone supported partial growth of these cells. To address the specificity of this domain, we created chimeric forms of ScNpl3 with RG-rich domains of S. cerevisiae nucleolar proteins, Gar1 and Nop1 (ScGar1, ScNop1), or of the Candida albicans Npl3 ortholog (CaNpl3). Whereas the CaNpl3 RG chimeric protein retained nearly wild-type function in S. cerevisiae, the ScGar1 and ScNop1 RG domains significantly reduced Npl3 function and self-association, indicating RG domain specificity. Nuclear localization of Npl3 also requires specific RG sequences, yet heterologous RG domains allow similar modulation of Npl3 transport by arginine methylation.
Collapse
Affiliation(s)
- Anne E McBride
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA.
| | | | | | | | | |
Collapse
|
58
|
Björk P, Jin S, Zhao J, Singh OP, Persson JO, Hellman U, Wieslander L. Specific combinations of SR proteins associate with single pre-messenger RNAs in vivo and contribute different functions. J Cell Biol 2009; 184:555-68. [PMID: 19221196 PMCID: PMC2654125 DOI: 10.1083/jcb.200806156] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 01/14/2009] [Indexed: 02/03/2023] Open
Abstract
Serine/arginine-rich (SR) proteins are required for messenger RNA (mRNA) processing, export, surveillance, and translation. We show that in Chironomus tentans, nascent transcripts associate with multiple types of SR proteins in specific combinations. Alternative splicing factor (ASF)/SF2, SC35, 9G8, and hrp45/SRp55 are all present in Balbiani ring (BR) pre-messenger ribonucleoproteins (mRNPs) preferentially when introns appear in the pre-mRNA and when cotranscriptional splicing takes place. However, hrp45/SRp55 is distributed differently in the pre-mRNPs along the gene compared with ASF/SF2, SC35, and 9G8, suggesting functional differences. All four SR proteins are associated with the BR mRNPs during export to the cytoplasm. Interference with SC35 indicates that SC35 is important for the coordination of splicing, transcription, and 3' end processing and also for nucleocytoplasmic export. ASF/SF2 is associated with polyribosomes, whereas SC35, 9G8, and hrp45/SRp55 cosediment with monoribosomes. Thus, individual endogenous pre-mRNPs/mRNPs bind multiple types of SR proteins during transcription, and these SR proteins accompany the mRNA and play different roles during the gene expression pathway in vivo.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biology and Functional Genomics and Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - ShaoBo Jin
- Department of Molecular Biology and Functional Genomics and Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jian Zhao
- Department of Molecular Biology and Functional Genomics and Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Om Prakash Singh
- Department of Molecular Biology and Functional Genomics and Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jan-Olov Persson
- Department of Molecular Biology and Functional Genomics and Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ulf Hellman
- Ludwig Institute for Cancer Research, SE-751 24 Uppsala, Sweden
| | - Lars Wieslander
- Department of Molecular Biology and Functional Genomics and Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
59
|
Kress TL, Krogan NJ, Guthrie C. A single SR-like protein, Npl3, promotes pre-mRNA splicing in budding yeast. Mol Cell 2008; 32:727-34. [PMID: 19061647 PMCID: PMC2677966 DOI: 10.1016/j.molcel.2008.11.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/20/2008] [Accepted: 11/13/2008] [Indexed: 11/22/2022]
Abstract
Mammalian SR proteins are a family of reversibly phosphorylated RNA binding proteins primarily studied for their roles in alternative splicing. While budding yeast lack alternative splicing, they do have three SR-like proteins: Npl3, Gbp2, and Hrb1. However, these have been best characterized for their roles in mRNA export, leaving their potential roles in splicing largely unexplored. Here, we combined high-density genetic interaction profiling and genome-wide splicing-sensitive microarray analysis to demonstrate that a single SR-like protein, Npl3, is required for efficient splicing of a large set of pre-mRNAs in Saccharomyces cerevisiae. We tested the hypothesis that Npl3 promotes splicing by facilitating cotranscriptional recruitment of splicing factors. Using chromatin immunoprecipitation, we showed that mutation of NPL3 reduces the occupancy of U1 and U2 snRNPs at genes whose splicing is stimulated by Nbl3. This result provides strong evidence that an SR protein can promote recruitment of splicing factors to chromatin.
Collapse
Affiliation(s)
- Tracy L Kress
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143, USA
| | | | | |
Collapse
|