51
|
Sandrini M, Brambilla M, Manenti R, Rosini S, Cohen LG, Cotelli M. Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly. Front Aging Neurosci 2014; 6:289. [PMID: 25368577 PMCID: PMC4202785 DOI: 10.3389/fnagi.2014.00289] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/30/2014] [Indexed: 11/13/2022] Open
Abstract
Memory consolidation is a dynamic process. Reactivation of consolidated memories by a reminder triggers reconsolidation, a time-limited period during which existing memories can be modified (i.e., weakened or strengthened). Episodic memory refers to our ability to recall specific past events about what happened, including where and when. Difficulties in this form of long-term memory commonly occur in healthy aging. Because episodic memory is critical for daily life functioning, the development of effective interventions to reduce memory loss in elderly individuals is of great importance. Previous studies in young adults showed that the dorsolateral prefrontal cortex (DLPFC) plays a causal role in strengthening of verbal episodic memories through reconsolidation. The aim of the present study was to explore the extent to which facilitatory transcranial direct current stimulation (anodal tDCS) over the left DLPFC would strengthen existing episodic memories through reconsolidation in elderly individuals. On Day 1, older adults learned a list of 20 words. On Day 2 (24 h later), they received a reminder or not, and after 10 min tDCS was applied over the left DLPFC. Memory recall was tested on Day 3 (48 h later) and Day 30 (1 month later). Surprisingly, anodal tDCS over the left DLPFC (i.e., with or without the reminder) strengthened existing verbal episodic memories and reduced forgetting compared to sham stimulation. These results provide a framework for testing the hypothesis that facilitatory tDCS of left DLPFC might strengthen existing episodic memories and reduce memory loss in older adults with amnestic mild cognitive impairment.
Collapse
Affiliation(s)
- Marco Sandrini
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA ; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences Bethesda, MD, USA
| | - Michela Brambilla
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| | - Rosa Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| | - Sandra Rosini
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia, Italy
| |
Collapse
|
52
|
Forcato C, Fernandez RS, Pedreira ME. Strengthening a consolidated memory: the key role of the reconsolidation process. ACTA ACUST UNITED AC 2014; 108:323-33. [PMID: 25218188 DOI: 10.1016/j.jphysparis.2014.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/30/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
The reconsolidation hypothesis posits that the presentation of a specific cue, previously associated with a life event, makes the stored memory pass from a stable to a reactivated state. In this state, memory is again labile and susceptible to different agents, which may either damage or improve the original memory. Such susceptibility decreases over time and leads to a re-stabilization phase known as reconsolidation process. This process has been assigned two biological roles: memory updating, which suggests that destabilization of the original memory allows the integration of new information into the background of the original memory; and memory strengthening, which postulates that the labilization-reconsolidation process strengthens the original memory. The aim of this review is to analyze the strengthening as an improvement obtained only by triggering such process without any other treatment. In our lab, we have demonstrated that when triggering the labilization-reconsolidation process at least once the original memory becomes strengthened and increases its persistence. We have also shown that repeated labilization-reconsolidation processes strengthened the original memory by enlarging its precision, and said reinforced memories were more resistant to interference. Finally, we have shown that the strengthening function is not operative in older memories. We present and discuss both our findings and those of others, trying to reveal the central role of reconsolidation in the modification of stored information.
Collapse
Affiliation(s)
- Cecilia Forcato
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE - CONICET, Ciudad Universitaria, Pab. II (1428) Buenos Aires, Argentina; Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Rodrigo S Fernandez
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE - CONICET, Ciudad Universitaria, Pab. II (1428) Buenos Aires, Argentina
| | - María E Pedreira
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE - CONICET, Ciudad Universitaria, Pab. II (1428) Buenos Aires, Argentina.
| |
Collapse
|
53
|
Schwabe L, Nader K, Pruessner JC. Reconsolidation of human memory: brain mechanisms and clinical relevance. Biol Psychiatry 2014; 76:274-80. [PMID: 24755493 DOI: 10.1016/j.biopsych.2014.03.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/21/2014] [Accepted: 03/10/2014] [Indexed: 12/17/2022]
Abstract
The processes of memory formation and storage are complex and highly dynamic. Once memories are consolidated, they are not necessarily fixed but can be changed long after storage. In particular, seemingly stable memories may re-enter an unstable state when they are retrieved, from which they must be re-stabilized during a process known as reconsolidation. During reconsolidation, memories are susceptible to modifications again, thus providing an opportunity to update seemingly stable memories. While initial demonstrations of memory reconsolidation came mainly from animal studies, evidence for reconsolidation in humans is now accumulating as well. Here, we review recent advances in our understanding of human memory reconsolidation. After a summary of findings on the reconsolidation of human fear and episodic memory, we focus particularly on recent neuroimaging data that provide first insights into how reconsolidation processes are implemented in the human brain. Finally, we discuss the implications of memory modifications during reconsolidation for the treatment of mental disorders such as posttraumatic stress disorder and drug addiction.
Collapse
Affiliation(s)
- Lars Schwabe
- Department of Cognitive Psychology, Ruhr-University Bochum, Bochum, Germany.
| | - Karim Nader
- Department of Psychology and Douglas Mental Health Institute, Montreal, Canada
| | - Jens C Pruessner
- Department of Psychology and Douglas Mental Health Institute, Montreal, Canada; Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
54
|
de la Fuente V, Federman N, Fustiñana MS, Zalcman G, Romano A. Calcineurin phosphatase as a negative regulator of fear memory in hippocampus: control on nuclear factor-κB signaling in consolidation and reconsolidation. Hippocampus 2014; 24:1549-61. [PMID: 25043904 DOI: 10.1002/hipo.22334] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 12/27/2022]
Abstract
Protein phosphatases are important regulators of neural plasticity and memory. Some studies support that the Ca(2+) /calmodulin-dependent phosphatase calcineurin (CaN) is, on the one hand, a negative regulator of memory formation and, on the other hand, a positive regulator of memory extinction and reversal learning. However, the signaling mechanisms by which CaN exerts its action in such processes are not well understood. Previous findings support that CaN negatively regulate the nuclear factor kappaB (NF-κB) signaling pathway during extinction. Here, we have studied the role of CaN in contextual fear memory consolidation and reconsolidation in the hippocampus. We investigated the CaN control on the NF-κB signaling pathway, a key mechanism that regulates gene expression in memory processes. We found that post-training intrahippocampal administration of the CaN inhibitor FK506 enhanced memory retention one day but not two weeks after training. Accordingly, the inhibition of CaN by FK506 increased NF-κB activity in dorsal hippocampus. The administration of the NF-κB signaling pathway inhibitor sulfasalazine (SSZ) impeded the enhancing effect of FK506. In line with our findings in consolidation, FK506 administration before memory reactivation enhanced memory reconsolidation when tested one day after re-exposure to the training context. Strikingly, memory was also enhanced two weeks after training, suggesting that reinforcement during reconsolidation is more persistent than during consolidation. The coadministration of SSZ and FK506 blocked the enhancement effect in reconsolidation, suggesting that this facilitation is also dependent on the NF-κB signaling pathway. In summary, our results support a novel mechanism by which memory formation and reprocessing can be controlled by CaN regulation on NF-κB activity.
Collapse
Affiliation(s)
- Verónica de la Fuente
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | | | | | | |
Collapse
|
55
|
Delorenzi A, Maza FJ, Suárez LD, Barreiro K, Molina VA, Stehberg J. Memory beyond expression. ACTA ACUST UNITED AC 2014; 108:307-22. [PMID: 25102126 DOI: 10.1016/j.jphysparis.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/05/2023]
Abstract
The idea that memories are not invariable after the consolidation process has led to new perspectives about several mnemonic processes. In this framework, we review our studies on the modulation of memory expression during reconsolidation. We propose that during both memory consolidation and reconsolidation, neuromodulators can determine the probability of the memory trace to guide behavior, i.e. they can either increase or decrease its behavioral expressibility without affecting the potential of persistent memories to be activated and become labile. Our hypothesis is based on the findings that positive modulation of memory expression during reconsolidation occurs even if memories are behaviorally unexpressed. This review discusses the original approach taken in the studies of the crab Neohelice (Chasmagnathus) granulata, which was then successfully applied to test the hypothesis in rodent fear memory. Data presented offers a new way of thinking about both weak trainings and experimental amnesia: memory retrieval can be dissociated from memory expression. Furthermore, the strategy presented here allowed us to show in human declarative memory that the periods in which long-term memory can be activated and become labile during reconsolidation exceeds the periods in which that memory is expressed, providing direct evidence that conscious access to memory is not needed for reconsolidation. Specific controls based on the constraints of reminders to trigger reconsolidation allow us to distinguish between obliterated and unexpressed but activated long-term memories after amnesic treatments, weak trainings and forgetting. In the hypothesis discussed, memory expressibility--the outcome of experience-dependent changes in the potential to behave--is considered as a flexible and modulable attribute of long-term memories. Expression seems to be just one of the possible fates of re-activated memories.
Collapse
Affiliation(s)
- A Delorenzi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - F J Maza
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - L D Suárez
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - K Barreiro
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - V A Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IFEC-CONICET (X5000HUA), Argentina.
| | - J Stehberg
- Laboratorio de Neurobiología, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Chile.
| |
Collapse
|
56
|
Lee JLC, Flavell CR. Inhibition and enhancement of contextual fear memory destabilization. Front Behav Neurosci 2014; 8:144. [PMID: 24808841 PMCID: PMC4009423 DOI: 10.3389/fnbeh.2014.00144] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/10/2014] [Indexed: 11/16/2022] Open
Abstract
The reactivation of a memory can result in its destabilization, necessitating a process of memory reconsolidation to maintain its persistence. Here we show that the destabilization of a contextual fear memory is potentiated by the cannabinoid CB1 receptor agonist Arachidonyl-2-chloroethylamide (ACEA). Co-infusion of ACEA and the IkappaB kinase (IKK) inhibitor sulfasalazine (Sulf) into the dorsal hippocampus impaired contextual fear memory reconsolidation. This observation was achieved under behavioral conditions that, by themselves, did not result in a reconsolidation impairment by Sulf alone. Moreover, we show that the destabilization of a contextual fear memory is dependent upon neuronal activity in the dorsal hippocampus, but not memory expression per se. The effect on contextual fear memory destabilization of intra-hippocampal ACEA was replicated by systemic injections, allowing an amnestic effect of MK-801. These results indicate that memory expression and destabilization, while being independent from one another, are both dependent upon memory reactivation. Moreover, memory destabilization can be enhanced pharmacologically, which may be of therapeutic potential.
Collapse
Affiliation(s)
- Jonathan L C Lee
- School of Psychology, University of Birmingham Edgbaston, Birmingham, UK
| | | |
Collapse
|
57
|
Agren T. Human reconsolidation: a reactivation and update. Brain Res Bull 2014; 105:70-82. [PMID: 24397965 DOI: 10.1016/j.brainresbull.2013.12.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/21/2013] [Accepted: 12/24/2013] [Indexed: 02/02/2023]
Abstract
The reconsolidation hypothesis states that memories, when reactivated, enter a transient, labile state followed by a re-stabilization termed reconsolidation. By affecting the reconsolidation process, memory persistence can be influenced, leading to memory enhancement or decrement. This is a time-dependent process and the result of modulating reconsolidation is present only after the reconsolidation process is completed. Historically, reconsolidation research has been performed on non-human animals, since the methods originally used for reconsolidation disruption are not safe. However, there now exist several techniques safe for humans, and consequently, in recent years, papers on human reconsolidation have emerged. Here, the existing literature on human reconsolidation is reviewed and discussed, including studies on fear memories, appetitive memories, procedural memories, and declarative memories. Methods of memory reactivation are compared between studies, and the consistency and lack of consistency in results over reactivation methods and memory types are discussed. These results provide future challenges, both experimental and clinical, in defining the boundary conditions and mechanisms governing the reconsolidation phenomenon. This article is part of a Special Issue entitled 'Memory Enhancement'.
Collapse
Affiliation(s)
- Thomas Agren
- Department of Psychology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
58
|
|
59
|
Barreiro KA, Suárez LD, Lynch VM, Molina VA, Delorenzi A. Memory expression is independent of memory labilization/reconsolidation. Neurobiol Learn Mem 2013; 106:283-91. [DOI: 10.1016/j.nlm.2013.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/25/2013] [Accepted: 10/12/2013] [Indexed: 01/10/2023]
|
60
|
Sandrini M, Censor N, Mishoe J, Cohen LG. Causal role of prefrontal cortex in strengthening of episodic memories through reconsolidation. Curr Biol 2013; 23:2181-4. [PMID: 24206845 DOI: 10.1016/j.cub.2013.08.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/04/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Memory consolidation is a dynamic process. Reactivation of consolidated memories triggers reconsolidation, a time-limited period during which memories can be modified. Episodic memory refers to our ability to recall specific past events about what happened, including where and when. However, it is unknown whether noninvasive stimulation of the neocortex during reconsolidation might strengthen existing episodic memories in humans. To modify these memories, we applied repetitive transcranial magnetic stimulation (rTMS) over right lateral prefrontal cortex (PFC), a region involved in the reactivation of episodic memories. We report that rTMS of PFC after memory reactivation strengthened verbal episodic memories, an effect documented by improved recall 24 hr postreactivation compared to stimulation of PFC without reactivation and vertex (control site) after reactivation. In contrast, there was no effect of stimulation 1 hr postreactivation (control experiment), showing that memory strengthening is time dependent, consistent with the reconsolidation theory. Thus, we demonstrated that right lateral PFC plays a causal role in strengthening of episodic memories through reconsolidation in humans. Reconsolidation may serve as an opportunity to modify existing memories with noninvasive stimulation of a critical brain region, an issue of fundamental importance for memory research and clinical applications.
Collapse
Affiliation(s)
- Marco Sandrini
- Human Cortical Physiology and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA.
| | | | | | | |
Collapse
|
61
|
Reactivation enables memory updating, precision-keeping and strengthening: Exploring the possible biological roles of reconsolidation. Neuroscience 2013; 244:42-8. [DOI: 10.1016/j.neuroscience.2013.04.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 11/18/2022]
|
62
|
Tronson NC, Taylor JR. Addiction: a drug-induced disorder of memory reconsolidation. Curr Opin Neurobiol 2013; 23:573-80. [PMID: 23415831 PMCID: PMC3677957 DOI: 10.1016/j.conb.2013.01.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 12/15/2022]
Abstract
Persistent maladaptive memories that maintain drug seeking and are resistant to extinction are a hallmark of addiction. As such, disruption of memory reconsolidation after retrieval has received attention for its therapeutic potential. Unrestrained reconsolidation may have the opposite effect, leading to reiterative and cumulative strengthening of memory over long periods of time. Here we review the molecular mechanisms underlying reconsolidation of appetitive and drug-rewarded memories, and discuss how these findings contribute to our understanding of the nature of this process. Finally, we suggest that drug-induced alterations to signal transduction might lead to dysregulation of reconsolidation, causing enhancements of drug-related memory after retrieval, and significantly contribute to the compulsive drug seeking that is a core component of addiction.
Collapse
Affiliation(s)
- Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109,
| | - Jane R. Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508
- Department of Psychology, Yale University, New Haven, CT 06508,
| |
Collapse
|
63
|
The temporal dynamics of enhancing a human declarative memory during reconsolidation. Neuroscience 2013; 246:397-408. [DOI: 10.1016/j.neuroscience.2013.04.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 04/16/2013] [Accepted: 04/16/2013] [Indexed: 11/23/2022]
|
64
|
Forcato C, Fernandez RS, Pedreira ME. The role and dynamic of strengthening in the reconsolidation process in a human declarative memory: what decides the fate of recent and older memories? PLoS One 2013; 8:e61688. [PMID: 23658614 PMCID: PMC3637303 DOI: 10.1371/journal.pone.0061688] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/13/2013] [Indexed: 11/18/2022] Open
Abstract
Several reports have shown that after specific reminders are presented, consolidated memories pass from a stable state to one in which the memory is reactivated. This reactivation implies that memories are labile and susceptible to amnesic agents. This susceptibility decreases over time and leads to a re-stabilization phase usually known as reconsolidation. With respect to the biological role of reconsolidation, two functions have been proposed. First, the reconsolidation process allows new information to be integrated into the background of the original memory; second, it strengthens the original memory. We have previously demonstrated that both of these functions occur in the reconsolidation of human declarative memories. Our paradigm consisted of learning verbal material (lists of five pairs of nonsense syllables) acquired by a training process (L1-training) on Day 1 of our experiment. After this declarative memory is consolidated, it can be made labile by presenting a specific reminder. After this, the memory passes through a subsequent stabilization process. Strengthening creates a new scenario for the reconsolidation process; this function represents a new factor that may transform the dynamic of memories. First, we analyzed whether the repeated labilization-reconsolidation processes maintained the memory for longer periods of time. We showed that at least one labilization-reconsolidation process strengthens a memory via evaluation 5 days after its re-stabilization. We also demonstrated that this effect is not triggered by retrieval only. We then analyzed the way strengthening modified the effect of an amnesic agent that was presented immediately after repeated labilizations. The repeated labilization-reconsolidation processes made the memory more resistant to interference during re-stabilization. Finally, we evaluated whether the effect of strengthening may depend on the age of the memory. We found that the effect of strengthening did depend on the age of the memory. Forgetting may represent a process that weakens the effect of strengthening.
Collapse
Affiliation(s)
- Cecilia Forcato
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE – CONICET, Buenos Aires, Argentina
| | - Rodrigo S. Fernandez
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE – CONICET, Buenos Aires, Argentina
| | - María E. Pedreira
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE – CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
65
|
Wichert S, Wolf OT, Schwabe L. Changing memories after reactivation: A one-time opportunity? Neurobiol Learn Mem 2013. [DOI: 10.1016/j.nlm.2012.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
66
|
Besnard A, Caboche J, Laroche S. Reconsolidation of memory: A decade of debate. Prog Neurobiol 2012; 99:61-80. [PMID: 22877586 DOI: 10.1016/j.pneurobio.2012.07.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/13/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
|
67
|
Kroes MC, Fernández G. Dynamic neural systems enable adaptive, flexible memories. Neurosci Biobehav Rev 2012; 36:1646-66. [DOI: 10.1016/j.neubiorev.2012.02.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/07/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
|
68
|
Rodríguez MLC, Campos J, Forcato C, Leiguarda R, Maldonado H, Molina VA, Pedreira ME. Enhancing a declarative memory in humans: the effect of clonazepam on reconsolidation. Neuropharmacology 2012; 64:432-42. [PMID: 22819624 DOI: 10.1016/j.neuropharm.2012.06.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
A consolidated memory recalled by a specific reminder can become unstable (labile) and susceptible to facilitation or impairment for a discrete period of time. This labilization phase is followed by a process of stabilization called reconsolidation. The phenomenon has been shown in diverse types of memory, and different pharmacological agents have been used to disclose its presence. Several studies have revealed the relevance of the GABAergic system to this process. Consequently, our hypothesis is that the system is involved in the reconsolidation of declarative memory in humans. Thus, using our verbal learning task, we analyzed the effect of benzodiazepines on the re-stabilization of the declarative memory. On Day 1, volunteers learned an association between five cue- response-syllables. On Day 2, the verbal memory was labilized by a reminder presentation, and then a placebo capsule or 0.25 mg or 0.03 mg of clonazepam was administered to the subjects. The verbal memory was evaluated on Day 3. The volunteers who had received the 0.25 mg clonazepam along with the specific reminder on Day 2, exhibited memory improvement. In contrast, there was no effect when the drug was given without retrieval, when the memory was simply retrieved instead of being reactivated or when short-term memory testing was performed 4 h after reactivation. We discuss the GABAergic role in reconsolidation, which shows a collateral effect on other memories when the treatment is aimed at treating anxiety disorders. Further studies might elucidate the role of GABA in the reconsolidation process associated with dissimilar scenarios. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- M L C Rodríguez
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE - CONICET, Ciudad Universitaria, Pab II (1428), Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
69
|
Federman N, Fustiñana MS, Romano A. Reconsolidation involves histone acetylation depending on the strength of the memory. Neuroscience 2012; 219:145-56. [PMID: 22659565 DOI: 10.1016/j.neuroscience.2012.05.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/18/2022]
Abstract
Gene expression is a necessary step for memory re-stabilization after retrieval, a process known as reconsolidation. Histone acetylation is a fundamental mechanism involved in epigenetic regulation of gene expression and has been implicated in memory consolidation. However, few studies are available in reconsolidation, all of them in vertebrate models. Additionally, the recruitment of histone acetylation as a function of different memory strengths has not been systematically analyzed before. Here we studied the role of histone acetylation in reconsolidation using a well-characterized memory model in invertebrate, the context-signal memory in the crab Chasmagnathus. Firstly, we found an increase in histone H3 acetylation 1h after memory reactivation returning to basal levels at 3 h. Strikingly, this increment was only detected during reconsolidation of a long-term memory induced by a strong training of 30 trials, but not for a short-term memory formed by a weak training of five trials or for a long-term memory induced by a standard training of 15 trials. Furthermore, we showed that a weak memory which was enhanced during consolidation by histone deacetylases inhibition, also recruited histone H3 acetylation in reconsolidation as the strong training does. Accordingly, we found the first evidence that the administration of a histone acetyl transferase inhibitor during memory reconsolidation impairs long-term memory re-stabilization. Finally, we found that strong training memory, at variance with the standard training memory, was resistant to extinction, indicating that such strong training induced in fact a stronger memory. In conclusion, the results presented here support that the participation of histone acetylation during reconsolidation is an evolutionary conserved feature and constitutes a specific molecular characteristic of strong memories.
Collapse
Affiliation(s)
- N Federman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, Pab. II, 2do piso (1428EHA), Buenos Aires, Argentina
| | | | | |
Collapse
|
70
|
The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neurosci Biobehav Rev 2012; 36:1667-707. [PMID: 22484475 DOI: 10.1016/j.neubiorev.2012.03.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 12/13/2022]
Abstract
Memory allows organisms to predict future events based on prior experiences. This requires encoded information to persist once important predictors are extracted, while also being modifiable in response to changes within the environment. Memory reconsolidation may allow stored information to be modified in response to related experience. However, there are many boundary conditions beyond which reconsolidation may not occur. One interpretation of these findings is that the event triggering memory retrieval must contain new information about a familiar stimulus in order to induce reconsolidation. Presently, the mechanisms that affect the likelihood of reconsolidation occurring under these conditions are not well understood. Here we speculate on a number of systems that may play a role in protecting memory from being destabilized during retrieval. We conclude that few memories may enter a state in which they cannot be modified. Rather, metaplasticity mechanisms may serve to alter the specific reactivation cues necessary to destabilize a memory. This might imply that destabilization mechanisms can differ depending on learning conditions.
Collapse
|