51
|
Liu S, Liang QM, Zhou WW, Jiang YD, Zhu QZ, Yu H, Zhang CX, Gurr GM, Zhu ZR. RNA interference of NADPH-cytochrome P450 reductase of the rice brown planthopper, Nilaparvata lugens, increases susceptibility to insecticides. PEST MANAGEMENT SCIENCE 2015; 71:32-39. [PMID: 24515640 DOI: 10.1002/ps.3760] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/06/2013] [Accepted: 02/04/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND NADPH-cytochrome P450 reductase (CPR) is essential for numerous biological reactions catalysed by microsomal cytochrome P450 monooxygenases (P450s). Knockdown of CPR in several insects leads to developmental defects and increased susceptibility to insecticides. However, information about the role of CPR in the brown planthopper, Nilaparvata lugens, is still unavailable. RESULTS A full-length cDNA encoding CPR was cloned from N. lugens (NlCPR). The deduced amino acid sequence showed marked features of classical CPRs, such as an N-terminus membrane anchor, conserved domains for flavin mononucleotide, flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate binding, as well as an FAD-binding motif and catalytic residues. Phylogenetic analysis revealed that NlCPR was located in a branch along with bed bug and pea aphid hemipteran insects. NlCPR mRNA was detectable in all tissues and developmental stages of N. lugens, as determined by real-time quantitative PCR. NlCPR transcripts were most abundant in the abdomen in adults, and in first-instar nymphs. Injection of N. lugens with double-strand RNA (dsRNA) against NlCPR significantly reduced the transcription level of the mRNA, and silencing of NlCPR resulted in increased susceptibility in N. lugens to beta-cypermethrin and imidacloprid. CONCLUSION The results provide first evidence that NlCPR contributes to the susceptibility to beta-cypermethrin and imidacloprid in N. lugens.
Collapse
Affiliation(s)
- Su Liu
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Department of Entomology, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Christiaens O, Smagghe G. The challenge of RNAi-mediated control of hemipterans. CURRENT OPINION IN INSECT SCIENCE 2014; 6:15-21. [PMID: 32846663 DOI: 10.1016/j.cois.2014.09.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/04/2014] [Accepted: 09/10/2014] [Indexed: 06/11/2023]
Abstract
The post-transcriptional gene silencing mechanism RNA interference (RNAi) has potential as a crop protection strategy against important pest insects. Here we focus on Hemiptera pests, comprising some of the most devastating pest organisms as aphids, whiteflies, psyllids, bedbugs and kissing bugs. At first, a state-of-the-art overview is provided of the progress in RNAi in Hemiptera, as well as on the challenges when developing new RNAi-based pest control strategies against hemipteran pests, such as the delivery of dsRNA and degradation in the insect body. We also discuss the variability in RNAi efficiency as observed between species and experiments, and the factors potentially responsible for this phenomenon.
Collapse
Affiliation(s)
- Olivier Christiaens
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
53
|
Liu D, Zhou X, Li M, Zhu S, Qiu X. Characterization of NADPH–cytochrome P450 reductase gene from the cotton bollworm, Helicoverpa armigera. Gene 2014; 545:262-70. [DOI: 10.1016/j.gene.2014.04.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 11/28/2022]
|
54
|
Zhao C, Tang T, Feng X, Qiu L. Cloning and characterisation of NADPH-dependent cytochrome P450 reductase gene in the cotton bollworm, Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2014; 70:130-139. [PMID: 23512641 DOI: 10.1002/ps.3538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/18/2013] [Accepted: 03/19/2013] [Indexed: 06/01/2023]
Abstract
BACKGROUND Previous studies in our laboratory showed that cytochrome P450 CYP6B7 plays a critical role in a Handan fenvalerate resistant strain (HDFR) of Helicoverpa armigera. As an important component of P450 enzyme systems, cytochrome P450 reductase (CPR) plays an essential role in transferring electrons from NADPH to the P450-substrate complex. However, little information about CPR in H. armigera (HaCPR) has been reported. RESULTS A full-length cDNA (3525 bp) of HaCPR was cloned. The open reading frame of the HaCPR gene encoded 687 amino acids and shared 27.87-95.21% identities with other known CPRs. Bioinformatic analysis showed that HaCPR is a transmembrane protein with Mw of 77.4 kDa and contains conserved features. The results of real-time quantitative polymerase chain reaction showed that the expression level of HaCPR mRNA was 1.84-fold higher in midgut of 5th instars of the Handan susceptible strain than that in pupae, and the level in the midgut of HDFR strain was 2.02-fold higher than that of the Handan susceptible strain. The levels of HaCPR mRNA were induced by phenobarbital at concentrations of 2 and 4 mg g(-1) , which enhanced 5.20- and 17.45-fold, respectively, compared to that of the control after 48 h of phenobarbital treatment. CONCLUSIONS The results indicate that HaCPR is important for the development of H. armigera and may play an essential role in the P450-mediated insecticide resistance of H. armigera to fenvalerate.
Collapse
Affiliation(s)
- Chunqing Zhao
- College of Science, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
55
|
Suwanchaichinda C, Brattsten LB. Genomic and bioinformatic analysis of NADPH-cytochrome P450 reductase in Anopheles stephensi (Diptera: Culicidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:165. [PMID: 25368081 PMCID: PMC5443604 DOI: 10.1093/jisesa/ieu027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/18/2013] [Indexed: 06/04/2023]
Abstract
The cytochrome P450 monooxygenase (P450) enzyme system is a major mechanism of xenobiotic biotransformation. The nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is required for transfer of electrons from NADPH to P450. One CPR gene was identified in the genome of the malaria-transmitting mosquito Anopheles stephensi Liston (Diptera: Culicidae). The gene encodes a polypeptide containing highly conserved flavin mononucleotide-, flavin adenine dinucleotide-, and NADPH-binding domains, a unique characteristic of the reductase. Phylogenetic analysis revealed that the A. stephensi and other known mosquito CPRs belong to a monophyletic group distinctly separated from other insects in the same order, Diptera. Amino acid residues of CPRs involved in binding of P450 and cytochrome c are conserved between A. stephensi and the Norway rat Rattus norvegicus Berkenhout (Rodentia: Muridae). However, gene structure particularly within the coding region is evidently different between the two organisms. Such difference might arise during the evolution process as also seen in the difference of P450 families and isoforms found in these organisms. CPR in the mosquito A. stephensi is expected to be active and serve as an essential component of the P450 system.
Collapse
Affiliation(s)
- C Suwanchaichinda
- Department of Entomology, Rutgers University, New Brunswick, NJ 08901
| | - L B Brattsten
- Department of Entomology, Rutgers University, New Brunswick, NJ 08901
| |
Collapse
|
56
|
Liu S, Liang QM, Huang YJ, Yuan X, Zhou WW, Qiao F, Cheng J, Gurr GM, Zhu ZR. Cloning, functional characterization, and expression profiles of NADPH-cytochrome P450 reductase gene from the Asiatic rice striped stem borer, Chilo suppressalis (Lepidoptera: Pyralidae). Comp Biochem Physiol B Biochem Mol Biol 2013; 166:225-31. [DOI: 10.1016/j.cbpb.2013.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 10/26/2022]
|
57
|
Bed bugs evolved unique adaptive strategy to resist pyrethroid insecticides. Sci Rep 2013; 3:1456. [PMID: 23492626 PMCID: PMC3596983 DOI: 10.1038/srep01456] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/25/2013] [Indexed: 02/01/2023] Open
Abstract
Recent advances in genomic and post-genomic technologies have facilitated a genome-wide analysis of the insecticide resistance-associated genes in insects. Through bed bug, Cimex lectularius transcriptome analysis, we identified 14 molecular markers associated with pyrethroid resistance. Our studies revealed that most of the resistance-associated genes functioning in diverse mechanisms are expressed in the epidermal layer of the integument, which could prevent or slow down the toxin from reaching the target sites on nerve cells, where an additional layer of resistance (kdr) is possible. This strategy evolved in bed bugs is based on their unique morphological, physiological and behavioral characteristics and has not been reported in any other insect species. RNA interference-aided knockdown of resistance associated genes showed the relative contribution of each mechanism towards overall resistance development. Understanding the complexity of adaptive strategies employed by bed bugs will help in designing the most effective and sustainable bed bug control methods.
Collapse
|
58
|
Mamidala P, Mittapelly P, Jones SC, Piermarini PM, Mittapalli O. Molecular characterization of genes encoding inward rectifier potassium (Kir) channels in the bed bug (Cimex lectularius). Comp Biochem Physiol B Biochem Mol Biol 2013; 164:275-9. [PMID: 23416179 DOI: 10.1016/j.cbpb.2013.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/02/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
The molecular genetics of inward-rectifier potassium (Kir) channels in insects is poorly understood. To date, Kir channel genes have been characterized only from a few representative dipterans (i.e., fruit flies and mosquitoes). The goal of the present study was to characterize Kir channel cDNAs in a hemipteran, the bed bug (Cimex lectularius). Using our previously reported bed bug transcriptome (RNA-seq), we identified two cDNAs that encode putative Kir channels. One was a full-length cDNA that encodes a protein belonging to the insect 'Kir3' clade, which we designate as 'ClKir3'. The other was a partial cDNA that encodes a protein with similarity to both the insect 'Kir1' and 'Kir2' clades, which we designate as 'ClKir1/2'. Quantitative real-time PCR analysis revealed that ClKir1/2 and ClKir3 exhibited peak expression levels in late-instar nymphs and early-instar nymphs, respectively. Furthermore, ClKir3, but not ClKir1/2, showed tissue-specific expression in Malpighian tubules of adult bed bugs. Lastly, using an improved procedure for delivering double-stranded RNA (dsRNA) to male and female bed bugs (via the cervical membrane) we demonstrate rapid and systemic knockdown of ClKir3 transcripts. In conclusion, we demonstrate that the bed bug possesses at least two genes encoding Kir channels, and that RNAi is possible for at least Kir3, thereby offering a potential approach for elucidating the roles of Kir channel genes in bed bug physiology.
Collapse
Affiliation(s)
- Praveen Mamidala
- Department of Entomology, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, OH 44691, USA
| | - Priyanka Mittapelly
- Department of Entomology, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, OH 44691, USA
| | - Susan C Jones
- Department of Entomology, The Ohio State University, Columbus, OH 43210, USA
| | - Peter M Piermarini
- Department of Entomology, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, OH 44691, USA
| | - Omprakash Mittapalli
- Department of Entomology, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, OH 44691, USA.
| |
Collapse
|
59
|
Pottier MA, Bozzolan F, Chertemps T, Jacquin-Joly E, Lalouette L, Siaussat D, Maïbèche-Coisne M. Cytochrome P450s and cytochrome P450 reductase in the olfactory organ of the cotton leafworm Spodoptera littoralis. INSECT MOLECULAR BIOLOGY 2012; 21:568-80. [PMID: 22984814 DOI: 10.1111/j.1365-2583.2012.01160.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cytochrome P450 enzymes (P450s) are involved in many physiological functions in insects, such as the metabolism of signal molecules, adaptation to host plants and insecticide resistance. Several P450s have been reported in the olfactory organs of insects, the antennae, and have been proposed to play a role in odorant processing and/or xenobiotic metabolism. Despite recent transcriptomic analyses in several species, the diversity of antennal P450s in insects has not yet been investigated. Here, we report the identification of 37 putative P450s expressed in the antennae of the pest moth Spodoptera littoralis, as well as the characterization of a redox partner, cytochrome P450 reductase (CPR). Phylogenetic analysis revealed that S. littoralis P450s belong to four clades defined by their conservation with vertebrate P450s and their cellular localization. Interestingly, the CYP3 and CYP4 clans, which have been described to be mainly involved in the metabolism of plant compounds and xenobiotics, were largely predominant. More surprisingly, two P450s related to ecdysteroid metabolism were also identified. Expression patterns in adult and larval tissues were studied. Eight P450s appeared to be specific to the chemosensory organs, ie the antennae and proboscis, suggesting a specific role in odorant and tastant processing. Moreover, exposure of males to a plant odorant down-regulated the transcript level of CPR, revealing for the first time the regulation of this gene by odorants within insect antennae. This work suggests that the antennae of insects are a key site for P450-mediated metabolism of a large range of exogenous and endogenous molecules.
Collapse
Affiliation(s)
- M-A Pottier
- UMR, Physiologie de l'Insecte, Signalisation et Communication, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | |
Collapse
|